Exercises: Green’s Theorem

Problem 1. Calculate

?if(r)dr

where f = [y, —x], and C is the circle 22 + y? = 1 in the positive direction.

Remark: The sign § has the same meaning as | except that the former emphasizes that C' is
a closed curve.

Solution: Let fi(x,y) = y and fo(x,y) = —x. Let D be the region enclosed by C. By Green’s

theorem, we know
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Problem 2. Define Q) as the square in R? enclosing all the points (z,y) satisfying 0 < 2 < 1 and
0 <y < 1. Calculate §, f(r)dr, where f = [6y, 22 — 2y*], and C is the boundary of Q in the
positive direction.

Solution: Let fi(z,y) = 6y and fo(x,y) = 2z — 2y*. Let D be the region enclosed by C. By

Green’s theorem, we know
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Problem 3. Calculate

where C is the same as in the previous problem.

Solution: Let fi(z,y) = x%e¥ and fa(x,y) = y%e®. Let D be the region enclosed by C. By Green’s



theorem, we know
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Problem 4. Define @ as the square in R? enclosing all the points (z,y) satisfying —1 < 2 < 1 and

—1 <y < 1. Calculate
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where C' is the boundary of () in the positive direction. You can use the fact that
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Solution: Break C' into four directed segments C', Co, ..., C4 as shown below:
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Similarly:

Therefore, the original integral equals 2.

Problem 5. Prof. Goofy applies the following argument to “show” that the integral in Problem 4
equals 0. But his argument is wrong. Point out the place where he makes a mistake.

Prof. Goofy’s solution: Set f; = ﬁ and fo = ﬁ Thus:
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Let D be the area enclosed by Q. By Green’s theorem, we have:
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Solution. To apply Green’s theorem, the functions f; and f2 need to be defined everywhere in D.
This is not true: the two functions are undefined at the origin (0, 0)!

Problem 6. Suppose that C' is the union of the two arcs C; and Cs as shown in the following
figure:
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Calculate
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Solution. Set fi = —y and fo = x. Let D be the gray region as shown in the figure below:
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By Green’s theorem, we have:

/C(_y)dx+xdy = 2] duay

which is twice the area of D, namely, 6.



