
Exercises: Green’s Theorem

Problem 1. Calculate ∮
C
f(r)dr

where f = [y,−x], and C is the circle x2 + y2 = 1 in the positive direction.

Remark: The sign
∮

has the same meaning as
∫

except that the former emphasizes that C is
a closed curve.

Solution: Let f1(x, y) = y and f2(x, y) = −x. Let D be the region enclosed by C. By Green’s
theorem, we know ∫

C
f(r) · dr =

∫
C

(f1 dx+ f2dy)

=

∫∫
D

∂f2
∂x

− ∂f1
∂y

dxdy

=

∫∫
D
−1 − 1 dxdy = −2π.

Problem 2. Define Q as the square in R2 enclosing all the points (x, y) satisfying 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. Calculate

∮
C f(r)dr, where f = [6y2, 2x − 2y4], and C is the boundary of Q in the

positive direction.

Solution: Let f1(x, y) = 6y2 and f2(x, y) = 2x − 2y4. Let D be the region enclosed by C. By
Green’s theorem, we know ∫

C
f(r)dr =

∫
C

(f1 dx+ f2dy)

=

∫∫
D

∂f2
∂x

− ∂f1
∂y

dxdy

=

∫∫
D

2 − 12y dxdy

= 2 − 12

∫ 1

0
y

(∫ 1

0
dx

)
dy

= 2 − 12

∫ 1

0
y dy = −4

Problem 3. Calculate ∮
C
x2ey dx+ y2ex dy

where C is the same as in the previous problem.

Solution: Let f1(x, y) = x2ey and f2(x, y) = y2ex. Let D be the region enclosed by C. By Green’s
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theorem, we know ∫
C

(f1 dx+ f2dy) =

∫∫
D

∂f2
∂x

− ∂f1
∂y

dxdy

=

∫∫
D
y2ex − x2ey dxdy

=

∫ 1

0

(∫ 1

0
y2ex − x2ey dx

)
dy

=

∫ 1

0

((
y2ex − ey

3
x3
) ∣∣∣x=1

x=0

)
dy

=

∫ 1

0
y2e− ey

3
− y2 dy = 0.

Problem 4. Define Q as the square in R2 enclosing all the points (x, y) satisfying −1 ≤ x ≤ 1 and
−1 ≤ y ≤ 1. Calculate ∮

C

( −y
x2 + y2

)
dx+

(
x

x2 + y2

)
dy

where C is the boundary of Q in the positive direction. You can use the fact that∫ 1

−1

2

x2 + 1
dx = π.

Solution: Break C into four directed segments C1, C2, ..., C4 as shown below:

(−1,−1)

(1, 1)

C1

C2

C3

C4

∮
C

( −y
x2 + y2

)
dx

=

∫
C1

( −y
x2 + y2

)
dx+

∫
C2

( −y
x2 + y2

)
dx+

∫
C3

( −y
x2 + y2

)
dx+

∫
C4

( −y
x2 + y2

)
dx

=

∫
C1

( −y
x2 + y2

)
dx+

∫
C3

( −y
x2 + y2

)
dx

=

∫ 1

−1

(
1

x2 + 1

)
dx+

∫ −1

1

( −1

x2 + 1

)
dx

=

∫ 1

−1

(
1

x2 + 1

)
dx−

∫ 1

−1

( −1

x2 + 1

)
dx

=

∫ 1

−1

(
2

x2 + 1

)
dx = π.
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Similarly:∮
C

(
x

x2 + y2

)
dy

=

∫
C1

(
x

y2 + x2

)
dy +

∫
C2

(
x

y2 + x2

)
dy +

∫
C3

(
x

y2 + x2

)
dy +

∫
C4

(
x

y2 + x2

)
dy

=

∫
C2

(
x

y2 + x2

)
dy +

∫
C4

(
x

y2 + x2

)
dy

=

∫ 1

−1

(
1

y2 + 1

)
dy +

∫ −1

1

( −1

y2 + 1

)
dy

=

∫ 1

−1

(
1

y2 + 1

)
dy −

∫ 1

−1

( −1

y2 + 1

)
dy

=

∫ 1

−1

(
2

y2 + 1

)
dy = π.

Therefore, the original integral equals 2π.

Problem 5. Prof. Goofy applies the following argument to “show” that the integral in Problem 4
equals 0. But his argument is wrong. Point out the place where he makes a mistake.

Prof. Goofy’s solution: Set f1 = −y
x2+y2

and f2 = x
x2+y2

. Thus:

∂f1
∂y

=
y2 − x2

(x2 + y2)2

∂f2
∂x

=
y2 − x2

(x2 + y2)2
.

Let D be the area enclosed by Q. By Green’s theorem, we have:∮
C

( −y
x2 + y2

)
dx+

(
x

x2 + y2

)
dy =

∫∫
D

∂f2
∂x

− ∂f1
∂y

dxdy =

∫∫
D

0 dxdy = 0.

Solution. To apply Green’s theorem, the functions f1 and f2 need to be defined everywhere in D.
This is not true: the two functions are undefined at the origin (0, 0)!

Problem 6. Suppose that C is the union of the two arcs C1 and C2 as shown in the following
figure:

(−1,−1)

(1, 1)

C1

C2 ( 12 ,
1
2 )

(− 1
2 ,− 1

2 )
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Calculate ∫
C

(−y) dx+ x dy.

Solution. Set f1 = −y and f2 = x. Let D be the gray region as shown in the figure below:

(−1,−1)

(1, 1)

C1

C2 ( 12 ,
1
2 )

(− 1
2 ,− 1

2 )

By Green’s theorem, we have:∫
C

(−y) dx+ x dy = 2

∫∫
D
dxdy

which is twice the area of D, namely, 6.
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