Exercises: Line Integral by Coordinate

Problem 1. Let C be the curve from point p = (0,0) to q = (2,4) on the parabola $y = x^2$. Calculate $\int_C (x^2 - y^2) dx$.

Problem 2. Let $\mathbf{r}(t) = [t, t^2, t^3]$ and $\mathbf{f}(x, y, z) = [x - y, y - z, z - x]$. Let C be the curve from the point of t = 0 to the point of t = 1. Calculate $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$.

Problem 3. Same as in Problem 2, except that C is defined by decreasing t from 1 to 0 (i.e., reversing the direction as in Problem 2).

Problem 4. Calculate $\int_C \mathbf{f}(\mathbf{r}) \cdot d\mathbf{r}$ where $\mathbf{f}(x, y) = [y^2, -x^2]$, and C is the arc from (0, 0) to (1, 4) on the curve $y = 4x^2$.

Problem 5. Calculate

$$\int_C xy \, dx + x^2 y^2 \, dy$$

where C is the quarter-arc from (1,0) to (0,1) on the circle $x^2 + y^2 = 1$.

Problem 6. Let $\mathbf{r}(t) = [x(t), y(t)]$ where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Let p be the point given by $t = \pi/4$. Calculate $\frac{dx}{ds}$ at p.

Problem 7. Let $\mathbf{r}(t) = [x(t), y(t), z(t)]$. Let p be the point given by $t = t_0$. Prove that $\left[\frac{dx}{ds}(t_0), \frac{dy}{ds}(t_0), \frac{dz}{ds}(t_0)\right]$ is a unit tangent vector at p.

Problem 8. This problem allows you to see the equivalence of line integral by arc length and line integral by coordinate. Let $\mathbf{r}(t) = [x(t), y(t)]$ where $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Convert $\int_C x \, dx + \int_C y^2 \, dy$ to line integral by arc length.