Professor
BB.S., M.S., Ph.D.
Telephone: 3943 6877
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Address:
224A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, CUHK
Website: http://ihome.sbs.cuhk.edu.hk/YAOXiaoQiang/
https://scholar.google.com.hk/citations?user=U3ztQhQAAAAJ&hl=zh-TW&oi=ao
ORCID: https://orcid.org/0000-0002-0687-8186
Biography
Prof. YAO Xiaoqiang (姚曉強) obtained his degree of Bachelor of Science in Biology in 1981 from Department of Biology, Hangzhou University, Zhejiang, China. In 1984, he obtained his Master of Philosophy degree from Chinese Academy of Sciences. He then obtained his Ph.D. degree in 1991 from Department of Biological Sciences, The State University of New York at Buffalo, USA. After that, he had postdoctoral training in Department of Internal Medicine, Yale University School of Medicine, USA. In 1996, he became an Assistant Professor in Department of Physiology, The Chinese University of Hong Kong, and later was promoted to Associate Professor in 1999 and Professor in 2002. His research interest is mostly on ion channels in cardiovascular system and cancer cells. These include TRP channels and K+ channels. He has published more than 240 original articles with total citation of >24000 with h-factor of 66, including those in Proc Natl Acad Sci USA, Nature Communications, Circulation Research, Journal of Clinical Investigation and Trends in Pharmacological Sciences.
- Disease modeling using stem cell-derived cardiomyocytes.
- Mechanosensation, cytoskeleton and TRP channels.
- Ca2+ signaling in autophagy, ER stress and vascular tone control in cardiovascular system.
- Ca2+ signaling in cancer progression and multidrug resistance.
- Oxidative stress and atherosclerosis.
- Li, X., Lei, Z.C., Lo, C.Y., Jan, T.Y., Lau, C.W. & Yao, X. (2024). Endothelial cell Orai1 is essential for endothelium-dependent contraction of mouse carotid arteries in normotensive and hypertensive mice. Acta Pharmacol Sin., doi: 10.1038/s41401-024-01227-6
- Meng, Z., Li, Z., Xie, M., Yu, H., Jiang, L. & Yao, X. (2022). TM9SF4 is a novel F-actin disassembly factor that promotes tumor progression and metastasis. Nature Commun, 13(1):5728.
- Xie, M., Mak, J.W., Yu, Y., Cheng, C.T., Chan, H.C., Chan, T.T., Lau, L.H., Wong, M.T., Ko, W.H., Jiang, L. & Yao, X. (2022). TM9SF4 is a crucial regulator of inflammation and ER stress in inflammatory bowel disease. Cell Mol Gastroenterol Hepatol, 14(2):245-270.
- Zhang, Y., Ying, F., Tian, X., Lei, Z., Li, X., Lo, CY., Li, J., Jiang, L.,& Yao, X. (2022). TRPM2 Promotes Atherosclerotic Progression in a Mouse Model of Atherosclerosis. Cells, 11 (9)1423.
- Yu, H., Xie, M., Meng, Z., Lo, C.Y., Chan, F.L., Jiang, L., Meng, X. & Yao, X. (2021). Ion channel MCOLN2 (Mucolipin-2) promotes prostate cancer progression via NF-κB/IL-1β pathway. Br J Cancer., 125:1420-31.
- Yu, L., Xie, M., Wan, C. & Yao, X. (2021). TM9SF4 is a novel regulator in lineage commitment of bone marrow mesenchymal stem cells to either osteoblasts or adipocytes. Stem Cell Res Ther., 12:573.
- Zhu, Y., Xie, M., Meng, Z., Leung, L.K., Chan, F.L., Hu, X., Chi, K., Liu, C.L., & Yao, X. (2019). Knockdown of TM9SF4 boosts ER stress to trigger cell death of chemoresistant breast cancer cells. Oncogene, 38(29), 5778-5791.
- Sun, L., Meng, Z., Zhu, Y., Lu, J., Li, Z., Zhao, Q., Huang, Y., Jiang, L.W. & Yao, X. (2018). TM9SF4 is a novel factor promoting autophagic flux under amino acid starvation. Cell Death Differ, 25(2), 368-379.
- Lau, O.C., Shen, B., Wong, C.O., Tjong, Y.W., Lo, C.Y., Wang, H.C., Huang, Y., Yung, W.H., Chen, Y.C., Fung, M.L., Rudd, J.A., & Yao, X. (2016). TRPC5 channels participate in pressure-sensing in aortic baroreceptors. Nature Commun, 7, 11947.
- Ma, X., Chen, Z., Hua, D., He, D., Wang, L, Zhang, P., Wang, J., Cai, Y., Gao, C., Zhang, X., Zhang, F., Wang, T., Hong, T., Jin, L., Qi, X., Chen, S., Gu, X., Yang, D., Pan, Q., Zhu, Y., Chen, Y., Chen, D., Jiang, L., Han, X., Zhang, Y., Jin, J., & Yao, X. (2014). Essential role for TrpC5-containing extracellular vesicles in breast cancer with chemotherapeutic resistance. Proc Natl Acad Sci USA, 111, 6389-6394. Citation>170.
- Zhang, P., Ma, Y., Wang, Y., Ma, X., Huang, Y., Li, R.A., Wan, S., & Yao, X. (2014). Nitric oxide and protein kinase G act on TRPC1 to inhibit 11,12-EET-induced vascular relaxation. Cardiovasc Res, 104(1), 138-46.
- Du, J., Ma, X., Shen, B., Huang, Y., Birnbaumer, L., & Yao, X. (2014). TRPV4, TRPC1 and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J, 28(11), 4677-85. Citation>130.
- Ma, X., Du, J., Zhang, P., Deng, J., Liu, J., Lam, F.F.Y., Li, R.A., Huang, Y., Jin, J., & Yao, X. (2013). Functional role of TRPV4-KCa2.3 signaling in vascular endothelial cells in normal and streptozotocin-induced diabetic rats. Hypertension, 62(1), 134-9. Citation>100.
- Ma, X., Cai, Y., He, D., Zou, C., Zhang, P., Lo, C.Y., Xu, Z., Chan, F.L., Yu, S., Chen, Y., Zhu, R., Lei, J., Jin, J., & Yao, X. (2012). Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci USA, 109(40), 16282-7. Citation>170.
- Du, J., Wong, W.Y., Sun, L., Huang, Y., & Yao, X. (2012). Protein kinase G regulates flow-induced Ca2+ entry in M1-CCD cells. J Ame Soc Nephrol, 23, 1172-80.
- Wong, C.O., Huang, Y. & Yao, X. (2010). Genistein potentiates TRPC5 activity independently of tyrosine kinases. Br J Pharmacol. 159:1486-1496.
- Ma, X., Cao, J.Y., Luo, J.H., Nilius, B., Huang, Y., Ambudkar, I.S., & Yao, X. (2010). Depletion of intracellular Ca2+ stores stimulates the translocation of TRPV4-C1 heteromers to the plasma membrane. Arterioscler Thromb Vasc Biol, 30(11), 2249-55.
- Ma, X., Qiu, S., Luo, J.H., Ma, Y., Ngai, C.Y., Shen, B., Wong, C.O., Huang, Y., & Yao, X. (2010). Functional role of TRPV4-TRPC1 complex in flow-induced Ca2+ influx. Arterioscler Thromb Vasc Biol, 30(4), 851-8. Citation>120.
- Kwan, H.Y., Shen, B., Ma, X., Kwok, Y.C., Huang, Y., Man, Y.B., Yu, S., & Yao, X. (2009). TRPC1 Associates With BKCa Channel to Form a Signal Complex in Vascular Smooth Muscle Cells. Circ Res, 104, 670-678. Citation>130.
- Li, X., Shen, B., Yao, X.*, & Yang, D.* (2009). A synthetic chloride channel regulates cell membrane potentials and voltage-gated calcium channels. J Am Chem Soc, 131, 13676-80.(*, co-corresponding authors).
- Li, X., Shen, B., Yao, X.*, & Yang, D* (2007). A small synthetic molecule forms chloride channels to mediate chloride transport across cell membrane. J Am Chem Soc, 129:7264-7265 (*, co-corresponding authors). Citation~120.
- Liu, C.L., Ngai, C.Y., Huang, Y., Ko, W.H., Wu, M., He, G.W., Garland, C.J., Dora, K.A. & Yao, X. (2006). Depletion of intracellular Ca2+ stores enhances flow-induced vascular dilatation in rat small mesenteric artery. Br J Pharmacol, 147:506-515.
- Yao, X., & Garland, C.J. (2005). Recent development in endothelial cell TRP channels. Circ Res (Invited Review), 97, 853-863. Citation>300.
- Kwan, H.Y., Huang, Y., & Yao, X. (2004). Regulation of canonical transient receptor potential channel isoforms 3 (TRPC3) by protein kinase G. Proc Natl Acad Sci USA, 101, 2625-2630. Citation≈200.
- Yao, X., & Huang, Y. (2003). From nitric oxide to endothelial cytosolic Ca, a negative feedback control. Trends Pharmacol Sci (review), 24, 263-266.
- Kwan, H.Y., Leung, P.C., Huang, Y., & Yao, X. (2003). Depletion of intracellular Ca2+ stores sensitizes the flow-induced Ca2+ influx in rat endothelial cells. Circ Res, 92, 286-292. Citation≈100.
- Yao, X., Tian, S. & Chan, H.Y., Biemesderfer, D., & Desir, G.V. (2002). Expression of KCNA10, a voltage-gated K channel, in glomerular endothelium and at the apical membrane of the renal proximal tubule. J Am Soc Nephrol, 13, 2831-2839 (One Figure was chosen as Cover page of the Journal).
- Kwan, H.Y., Huang, Y., & Yao, X. (2000). Store-operated Ca++ entry in vascular endothelial cells is inhibited by cGMP via a protein kinase G-dependent mechanism. J Biol Chem, 275, 6758-6773. Citation>120.
- Yao, X., Chang, A., Boulpaep, E.L., Segal, A.S., & Desir, G.V. (1996). Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel preferentially expressed in rabbit kidney medulla. J Clin Invest, 97, 2525-2533.
- Yao, X., Segal, A.S., Welling, P., Zhang, X., Engel, D., Boulpaep, E.L., & Desir, G.V. (1995). Primary structure and functional expression of a cGMP-gated potassium channel. Proc Natl Acad Sci USA, 92, 11711-11715.
* Co-corresponding author
- Hong Kong Innovation & Technology Commission - Seed Fund [PI; 01-Dec-22 to 30-May-24]: "Orai1 Inhibitors as Potential Therapeutic Drugs against Colorectal Cancer Stem Cells" (HK$1,250,000).
- RGC – Collaborative Research Fund [co-PI; 01-Jan-24 to 31-Dec-26]: "The roles of mechanically heterogeneous local niches within primary tumors in metastatic organotropism" (HK$5,985,252).
- Research Impact Fund [co-PI; 30-Jun-19 – 29-Jun-2024]: "Plant Bioreactor for Pharmaceutical Proteins" (HK$5,000,000).