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Abstract

We show in this paper that the success of previous maxi-

mum a posterior (MAP) based blur removal methods partly

stems from their respective intermediate steps, which im-

plicitly or explicitly create an unnatural representation con-

taining salient image structures. We propose a generalized

and mathematically sound L0 sparse expression, together

with a new effective method, for motion deblurring. Our

system does not require extra filtering during optimization

and demonstrates fast energy decreasing, making a small

number of iterations enough for convergence. It also pro-

vides a unified framework for both uniform and non-uniform

motion deblurring. We extensively validate our method and

show comparison with other approaches with respect to

convergence speed, running time, and result quality.

1. Introduction

Single-image motion deblurring, a.k.a. blind deconvolu-

tion, was extensively studied in these a few years and has

achieved great success with a few milestone solutions. Be-

cause naive maximum a posterior (MAP) inference could

fail on natural images, state-of-the-art methods either max-

imize marginalized distributions [5, 17, 18, 6] or propose

novel techniques in MAP to effectively avoid trivial delta

kernel estimates [11, 20, 3, 25, 4, 10].

The set of effective techniques that reinvigorate MAP

[20, 3, 25] can produce high-quality results in seconds and

were broadly adopted in a number of applications. They

also form basic steps for spatially-variant deblurring. The

particularly useful techniques include adaption of the en-

ergy function during optimization [20], explicit sharp edge

pursuit [11, 13, 19, 3, 25, 4, 10], edge selection [25], and

employment of normalized sparsity measure [16]. These

methods achieve efficient inference with their distinct for-

mulation and optimization steps, discussed below.

1.1. Analysis

Prior MAP-based approaches can be roughly categorized

into two groups, i.e., methods with explicit edge prediction

(a) input (b) Shan et al. [20]

(c) Krishnan et al. [16] (d) Cho and Lee [3]

(e) our x̃ (f) final restored image
Figure 1. Intermediate unnatural image representation exists in

many state-of-the-art approaches.

[11, 13, 19, 3, 25, 9, 23], which are referred to as semi-blind

schemes, and those [20, 16] implicitly incorporating spe-

cial regularization to remove detrimental structures in early

stages and gradually enrich image details in iterations.

We found representative approaches in these two respec-

tive groups share the commonness in the middle of the pro-

cedure to generate one or multiple special maps only con-
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taining salient image edges. These maps are vital to make

motion deblurring accomplishable in different MAP-variant

frameworks.

Implicit Regularization Shan et al. [20] adopted a sparse

image prior. This method, in the first a few iterations, uses

a large regularization weight to suppress insignificant struc-

tures and preserve strong ones, creating crisp-edge image

results, as exemplified in Fig. 1(b). This scheme is useful

to remove harmful subtle image structures, making kernel

estimation generally follow correct directions in iterations.

Krishnan et al. [16] used an L1/L2 regularization

scheme. The main feature is to adapt L1-norm regulariza-

tion by treating the L2-norm of image gradients as a weight

in iterations. One intermediate result from this method is

shown in Fig. 1(c). The main difference between this

form and that of [20] is on the way to adapt regularization

strength in iterations. Note both of them suppress details in

the early stage during optimization.

Explicit Filter and Selection In [19, 3], shock filter is

introduced to create a sharpened reference map for kernel

estimation. Cho and Lee [3] performed bilateral filter and

edge thresholding in each iteration to remove small- and

medium-amplitude structures (illustrated in Fig. 1(d)), also

avoiding the trivial solution.

Xu and Jia [25] proposed a texture-removal strategy, ex-

plained and extended in [28], to guide edge selection and

detect large-scale structures. The resulting edge map in

each step is also a small-edge-subdued version from the nat-

ural input. These two schemes have been extensively vali-

dated in motion deblurring.

Unnatural Representation The above techniques enable

several successful MAP frameworks in motion deblurring.

All of them have their intermediate image results or edge

maps different from a natural one, as shown in Fig. 1, due to

only containing high-contrast and step-like structures while

suppressing others. We generally call them unnatural rep-

resentation, which is the key to robust kernel estimation in

motion deblurring.

1.2. Our Contribution

Based on the step-edge properties in unnatural represen-

tation, we in this paper propose a new sparse L0 approxi-

mation scheme to generalize these frameworks. Compared

to local shock filter, our edges are not explicitly created by

filtering in extra steps. Instead, we incorporate a new reg-

ularization term consisting of a family of loss functions to

approximate the L0 cost into the objective, which, during

optimization, leads to consistent energy minimization and

accordingly fast convergence.

Our L0 scheme is mathematically established with high-

sparsity-pursuit regularization. It also assures only salient

change in the image is preserved and made use of, making

our method orders of magnitudes faster than other alterna-

tives with implicit sparse regularization.

Besides this new sparse image representation, we also

contribute a unified framework for both uniform and non-

uniform deblurring, which no longer relies on ad-hoc edge

selection, spatial filtering, or edge re-weighting. This

framework does not sacrifice the competency in solving the

challenging deblurring problem. Given a family of loss

functions, based on which a graduate non-convexity could

be applied, significant edges quickly improve kernel es-

timates in only a few iterations. This is most beneficial

for non-uniform deblurring where intensive computation is

needed in each iteration.

1.3. Other Related Work

In non-uniform deblurring, considering 3D camera rota-

tion, Shan et al. [21] proposed solving in-plane rotation us-

ing single image. Whyte et al. [24] presented a non-uniform

method using variational Bayesian. Tai et al. [22] solved

non-blind deconvolution with a general projective motion

model. Joshi et al. [12] advocated a hardware solution that

physically captures camera rotation. Gupta et al. [7] pro-

posed a different 3D approximation considering translation,

as well as in-plane rotation. It is shown in [14] that both the

3D models [24, 7] produce good results in approximating

the original 6D model. For acceleration, locally uniform

approximation was adopted by Harmeling et al. [8] and

Hirsch et al. [9], which combines the patch-based model

and a global 3D camera motion one. Whyte et al. [23] con-

currently proposed a fast forward model using FFTs and

addressed the problem of pixel saturation. Shock filter is

applied to generate sharp edge prediction. In dealing with

depth variation, a tree structure was proposed in [26] to hi-

erarchically estimate blur kernels with scale change.

2. Framework

We denote by x the latent image and y the blurred obser-

vation. x and y are in their vector forms. The discrete blur

model for camera shake can be expressed as

y =
∑

m

kmHmx + ε, (1)

where x, y, and noise ε are N × 1 vectors. N is the number

of pixels in the image. m indexes camera pose samples. Hm

is a N ×N transformation matrix, which corresponds to ei-

ther camera rotation or translation for pose m. km denotes

the time that camera pose m lasts and is a weight in this

function. Eq. (1) models the blurred image as summing un-

blurred images from all camera poses, which approximates

continuous integral on light receival for each pixel.

Because H can be camera rotation R or translation M ,

we discuss these two cases. Camera rotation with 3 degree



of freedoms (DoF) is generally sufficient to model non-

uniform deblurring [14]. Each Rm thus corresponds to a

camera rotation pose, sampled in 3D. We replace each Hm

in Eq. (1) by rotation Rm to reduce the solution space. Due

to the bi-linearity of the blur model
∑

m kmRmx, there ex-

ist two different forms as
∑

m

kmRmx = BRx = ARk, (2)

where BR =
∑

m kmRm and vector k = (k0 k1 · · · )
T ,

containing all km. colm(AR) = Rmx where colm(·)
fetches the m-th column of matrix A.

Blur with in-plane translation M is referred to as uniform

blur. Each Mm is thus a sample in 2D and its total number

is called kernel size. In camera translation, we similarly

substitute Mm for Hm in Eq. (1), which yields

∑

m

kmMmx = BMx = AMk, (3)

where BM and AM are block Toeplitz with Toeplitz blocks

(BTTB) matrices, since camera translation is linear transla-

tion invariant (LTI).

New Sparsity Function Our framework contains a sparse

φ0(·) loss function, which can effectively approximate L0

sparsity during iterative optimization. Given an input im-

age z, it regularizes the high frequency part by manipulat-

ing gradient vectors ∂∗z, where ∗ ∈ {h, v} denoting two

directions, for each pixel i. The function is defined as

φ0(∂∗z) =
∑

i

φ(∂∗zi), (4)

where

φ(∂∗zi) =

{
1
ǫ2
|∂∗zi|

2, if |∂∗zi| ≤ ǫ

1, otherwise
(5)

φ(·) is actually a piecewise function that concatenates a

quadratic penalty and a constant. When |∂∗zi| < ǫ, φ(·)
is continuous, a necessary condition to form a loss function.

The red curve in Fig. 2(a) illustrates the form of φ(·). It

is very close to the most sparse L0 function. A few other

sparsity-pursuit functions used in deblurring [20, 16] are

also plotted in this figure. With higher sparsity, φ(·) raises

a few desirable properties, discussed later.

Final Objective φ0(·) is incorporated in our method to
regularize optimization, which seeks an intermediate sparse
representation x̃ containing only necessary edges. Our ob-
jective to estimate the blur kernel from the input image is

min
(x̃,k)






‖
∑

m

kmHmx̃ − y‖2 + λ
∑

∗∈{h,v}

φ0(∂∗x̃) + γ‖k‖2






,

(6)

Shan et al.

Ours
L1

L0

=1
=2

-1

=4
-1 =8

-1

(a) (b)
Figure 2. Plots of different penalty functions.

Hm could be either Rm or Mm depending on solving the

uniform or non-uniform deblurring problem, as shown in

Eqs. (2) and (3). λ and γ are two regularization weights.

The function has three terms. The data fidelity term

‖
∑

m kmHmx̃ − y‖2 enforces the blur model constraint.

‖k‖2 helps reduce kernel noise. It also enables fast kernel

estimation using FFTs with the quadratic form. φ0(∂∗x̃) is

the new regularization term, which is instrumental in our

method, to guide kernel estimation.

Property Analysis Gradients with different amplitudes

are penalized in φ(·) when ǫ is small. Combined with the

fidelity term ‖
∑

m kmHmx̃− y‖2, φ(·) has an effect to re-

move fine structures and keep useful salient ones in x̃ in

order to minimize the total cost. These benefits in part stem

from the inhomogeneity property (a.k.a. scale invariance)

of the near-L0 measure – that is, φ0(a
t∂∗z) ≈ φ0(∂∗z)

given any positive-element vector a.

The unnatural L0 representation computed from our

method is image x̃ produced in iterations to solve Eq. (6).

One example has been shown in Fig. 1(e). Compared to

employing shock filter [19, 3] as an extra step that cannot fit

into the overall function for consistent energy minimization,

φ(·) and x̃ are elegantly incorporated in one objective, opti-

mizing which monotonically decreases energy. Meanwhile,

x̃ is not produced by local filtering, which thus guarantees

to contain only necessary strong edges, regardless of blur

kernels.

3. Optimization

Eq. (6) is solved by alternatively computing

x̃t+1 = argmin
x̃






‖Btx̃ − y‖2 + λ

∑

∗∈{h,v}

φ0(∂∗x̃)






, (7)

kt+1 = argmin
k

{
‖At+1k − y‖2 + γ‖k‖2

}
, (8)

in each iteration t + 1, where the information of kt and x̃t

is embedded in the blur matrices Bt and At respectively.

By convention, blur kernels are estimated in a coarse-to-

fine manner in an image pyramid. Estimate from one image



level is taken as an initialization of the next one. We elab-

orate in what follows the optimization process in iteration

t + 1 in the finest level. Computation in other coarser levels

and in different iterations is similar.

3.1. Solve for x̃t+1 with kt

Eq. (7) is non-convex w.r.t. x̃ due to the incorporation

of φ0(·). It can be optimized using the half-quadratic L0

minimization solver introduced in [27]. We employ a sim-

ilar scheme that minimizes a family of loss functions. This

scheme starts from an easy convex expression and heads to-

wards the ideal solution in iterations.

Taking ǫ as a parameter, φ(∂∗zi) defined in Eq. (5) is

equivalent to

φ(∂∗zi; ǫ) = min
l∗i

{

|l∗i|
0 +

1

ǫ2
(∂∗zi − l∗i)

2

}

, (9)

where ∗ ∈ {h, v}. Each l∗i ∈ R and each |l∗i|
0 is a number

to the zero power: |l∗i|
0 = 1 if l∗i 6= 0 and |l∗i|

0 = 0
otherwise. Proof that Eq. (5) is equivalent to Eq. (9) is

presented in our supplementary file in the project website.

Eq. (9) reveals the fact that φ(∂∗zi) is actually a minimum

of
{
|l∗i|

0 + 1
ǫ2

(∂∗zi − l∗i)
2
}

, independent of l∗i.
With Eq. (9), a family of loss functions are obtained

by setting ǫ differently. Four examples are shown in Fig.
2(b) where ǫ decreasing from 1 to 1/8 makes the resulting
function approach the L0 one. The objective for computing
x̃ given a specific ǫ is therefore rewritten as

min
x̃,l







1

λ
‖Bx̃ − y‖2 +

∑

∗∈{h,v}

∑

i

{

|l∗i|
0 +

1

ǫ2
(∂∗x̃i − l∗i)

2

}





.

(10)

We alternate between computing x̃ and updating lhi and lvi

in iterations for each loss function controlled by ǫ.

Update l Solving for lhi in the function {|lhi|
0 +

1/ǫ2(∂hx̃i − lhi)
2} can be achieved by hard thresholding,

given by

lhi =

{
0, |∂hx̃i| ≤ ǫ
∂hx̃i, otherwise

(11)

The proof that it holds is provided in our project website.

The result of lvi can be obtained similarly. With the pixel-

wise closed-form solution, updating l is thus computation-

ally easy and quick.

Update x̃ After fixing l, the energy w.r.t. x̃ is quadratic.
The optimal solution is yielded by solving a linear equa-
tion. It is efficient when dealing with in-plane translational
camera motion M , as the matrix-vector production with re-
gard to the BTTB matrix can be achieved using FFTs. The
solution is expressed as

F (x̃) =
F (BM ) · F (y) + λ

ǫ2
(F (∂h) · F (lh) + F (∂v) · F (lv))

F (BM ) · F (BM ) + λ

ǫ2
F 2

D

,

(12)

where F (·) is the FFT operator, which takes an image vec-

tor or a BTTB kernel matrix as input. F (·) is the complex

conjugate. F−1(·) is the inverse FFT. Multiplication and

division are element-wise operation on two complex vec-

tors. lh and lv are vectors concatenating all lhi and lvi re-

spectively. F 2
D denotes |F (∂h)|2 + |F (∂v)|2, where | · | is

element-wise absolute.

When considering non-uniform blur caused by camera

rotation, which is spatially variant, the blur matrix BR is no

longer block Toeplitz with Toeplitz blocks (BTTB). We turn

to the fast forward approximation with locally-uniform as-

sumption [9, 23], which regularly divides the image into P
patches. Every two neighboring patches have 50% overlap

area. In this approximation, each patch has one blur kernel

basis ARδ , generated by applying rotation to a special patch

δ containing all black pixels except for a white point at the

center. A blur kernel for each patch is then formed using

ARδk =
∑

i kiRiδ, similar to that in Eq. (2). The basis

ARδ is computed beforehand and is image independent [9].

We denote by Cp(x̃) and Ck(ARδk) the p-th patch from
the latent image and its corresponding kernel ARδk respec-
tively. A blurred patch Cp(y) is generated by convolving
Ck(ARδk) and Cp(x̃). In frequency domain, this process is
expressed as

y =

P∑

p=1

C−1
p F−1(F (Cpk(ARδk))

︸ ︷︷ ︸

kernel

·F (w · Cp(x̃)
︸ ︷︷ ︸

patch

) + ε, (13)

where C−1
p (·) is the operator to paste the patch back to the

image. w is a vector representing the Bartlett-Hann window

function tapering to zeros near the patch boundary, which

helps blend overlaid patches.

This model enables a closed-form approximation of x̃ by
deconvolving each patch separately, written as

x̃ =
1

W

∑

p

C−1
p F−1 F (Ck(ARδk)) · F (w · Cp(y)) + λ

ǫ2
FDl

F 2
k + λ

ǫ2
F 2

D

,

(14)

where F 2
k = |F (Ck(ARδk))|2 and FDl = (F (∂h)·F (Cp(lh))+

F (∂v) · F (Cp(lv))). 1/W is a weight to suppress visual arti-

facts caused by the window functions [9].

For non-uniform deblurring, we alternate between Eqs.

(11) and (14) to update l and x̃ respectively. On the con-

trary, when the blur is uniform, Eqs. (11) and (12) are used

instead. In implementation, we use a family of 4 loss func-

tions with ǫ ∈
{
1, 2−1, 4−1, 8−1

}
. It starts from ǫ = 1, as

illustrated in Fig. 2. This process corresponds to lines 6-9

in Algorithm 1 and is conceptually explainable by Graduate

Non-Convexity (GNC) [2].

One important consideration is to save computation es-

pecially in early estimation stages. We achieve it by setting

iteration numbers for different loss functions inversely pro-

portional to ǫ, as indicated in line 6 in Algorithm 1. Large-ǫ



Algorithm 1: L0 Deblurring in One Image Level

input : blurred image y
output: blur kernel k, deblurred image x̃

1 initialize k1 from the coarser-scale kernel estimate

2 for t = 1 : 5 do

3 // update image

4 ǫ← 1
5 for i = 1 : 4 do

6 for j = 1 : ǫ−1 do

7 solve for l using Eq. (11)

8 solve for x̃t+1 using Eqs. (12) or (14)

9 end

10 ǫ← ǫ/2 // graduate non-convexity

11 end

12 // update kernel

13 solve for kt+1 using Eqs. (15) or (17)

14 end

loss functions need only a small number of iterations be-

cause they are more convex-like, easy to optimize. Also,

their results are taken as an initialization for further refine-

ment in smaller-ǫ loss functions; coarse estimates suffice.

3.2. Solve for kt+1 with x̃t+1

The energy function w.r.t. k in Eq. (8) is quadratic. With

the duality of the blur kernel and latent image in convo-

lution, the AM matrix for translational camera motion is

BTTB, making blur kernel estimation also find a closed-

form solution in frequency domain [25]. It is expressed as

kt+1 = F−1

(

F (At+1
M )F (y)

|F (At+1
M )|2 + γ

)

, (15)

where γ is the regularization weight given in Eq. (6).

For the rotational model, AR cannot be diagonalized us-

ing FFTs. We thus iteratively update k following the mul-

tiplication rule. Specifically, taking derivatives of Eq. (8)

and setting them to zeros yield

AT
Ry

(AT
RAR + γ)k

= 1. (16)

AT
RARk and AT

Ry can be efficiently computed using the for-

ward approximation. To further reduce iterations, we intro-

duce a parameter α controlling the “step size” [1], making

updating expressed as

k(n+1) = k(n) ·

(
AT

Ry

(AT
RAR + γ)k(n)

)α

, (17)

where α is set to 1.5 to let the algorithm converge quickly,

resulting in the final estimate k.

Energy

Kernel Similarity

Figure 3. Convergence illustration. The red and blue curves are for

the two examples respectively. “Energy” and ”Kernel Similarity”

plots denote resulting energy and kernel similarity to the ground

truth in iterations. The results get stable in less than 5 iterations.

Algorithm 1 shows main steps. Kernel estimation in line

13 takes the major computation. Our method only needs

to perform it 5 times (according to number t in Algorithm

1) in one image level, compared to tens or even hundreds

iterations involved in other approaches.

3.3. Final Image Restoration

The computed map x̃ is not the final latent natural image

estimate due to lack of details. In the final step, we restore

the natural image by non-blind deconvolution given the final

kernel estimate. A Hyper-Laplacian prior with L0.5 norm

regularization [15] is used. Image restoration for both the

uniform and non-uniform blur is accelerated by FFTs.

4. Discussion

Difference to Shock Filter Compared to edge prediction

using shock filter and edge thresholding [3, 25], our ap-

proach employs Eqs. (11) and (12) to provide more ap-

propriate edge reference maps within a well-established

optimization framework. Eq. (11) achieves theoretically

sound gradient thresholding without extra ad-hoc opera-

tions. In the sequel, our method does not have the edge lo-

cation problem inherent in shock filter when blur kernels are

highly non-Gaussian or the saddle points used in shock filter

do not correspond to latent image edges. Our optimization

framework (Eq. (12)) can naturally produce a sparse rep-

resentation faithful to the input, vastly benefitting motion

deblurring.

Fast Convergence We have observed fast convergence in

our method. We plot in Fig. 3 the energies w.r.t the num-

ber of iterations for two examples. In practice, 5-pass ker-

nel estimation in one image level is enough, compared to

hundreds of iterations by variational Bayesian inference [5],

and tens of iterations in the methods of [20, 16]. Our esti-

mation quality is also high. We measure the similarity be-

tween the estimated kernels and the ground truth using the

maximum correlation, counting in kernel shift. The upper
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Figure 4. Quantitative evaluation on the dataset [17].

Gradient Gradient/Intensity Intensity

PSNRs 29.50 32.35 28.52

Table 1. Image space vs. gradient space.

Methods 255x255 800x800 1024x1024

Cho and Lee [3] (C++) 0.77 5.80 11.53
Xu and Jia [25] (C++) 0.80 5.73 13.60
Krishnan et al. [16] (Matlab) 25.55 215.08 273.98
Levin et al. [18] (Matlab) 76.69 1084.12 1737.37
Ours (Matlab) 1.05 5.78 12.27

Table 2. Running time (in seconds) of different methods in three

image resolutions.

two plots in Fig. 3 manifest that the rapid convergence does

not sacrifice the quality of kernel estimates.

Image Space versus Filter Space The data term con-

straint can be defined in either image space (enforcing in-

tensity level similarity) or gradient space (for gradient do-

main confidence). We conduct experiments on the dataset

from [18] and list the average PSNRs for all 32 images in

Table 1. The finding is that using the image space constraint

for updating x̃ and gradient domain energy to update kernel

k (middle of Table 1) is better than other alternatives.

Running Time All steps can be accelerated by FFTs. We

compare the running time of several representative deblur-

ring methods, of which implementations are available. Run-

ning time reported in Table 2 is obtained on the same PC

with an Intel i7 CPU and 8GB memory. Our Matlab imple-

mentation is quite efficient, which can be further sped up in

optimized C.

5. Experimental Results

We experiment with data on two publicly available blur-

image sets [17, 14]. The set of [17] contains 32 images of

size 255 × 255 blurred with 8 different kernels. Error ra-

tio between our deconvolved images and the ground truth is

Figure 5. Quantitative comparison on the dataset [14]. The num-

bers below the horizontal axis index image sets.

obtained. We use the provided script and non-blind decon-

volution function to generate the results, for fairness. We

set λ and γ to 2E − 3 and 40 respectively for all exam-

ples. We compare our error ratios with those of Fergus et

al. [5], Cho and Lee [3], Xu and Jia [25], Levin et al. [18],

and Krishnan et al. [16], and show them in Fig. 4(c). An

input image and our result are shown in Fig. 4(a). All the

32 kernel estimates from the proposed method are shown in

(b). As indicated in [17], error ratios over 2 will make the

result visually implausible. Our method takes the lead with

93.75% of the results under error ratio 2.

Quantitative Evaluation on the dataset of [14] We also

test our algorithm on another dataset, where images and

ground truth kernels are provided [14]. This dataset con-

sists of 4 images, each is blurred with 12 kernels, includ-

ing several large ones. Two examples are shown in Fig.

6 with result comparison. Quantitative evaluation is con-

ducted by comparing each deblurring result with 199 un-

blurred images captured along the camera motion trajectory

and recording the largest PSNR.

For each image example, we quantitatively compare av-

erage PSNRs among different methods in Fig. 5. Note that

all top ranking methods [25, 3, 23] use shock filter except

ours. The proposed method ranks #1 now.



(a) input (b) Fergus et al. [5] (c) Shan et al. [20] (d) Cho and Lee [3]

(e) Xu and Jia [25] (f) Hirsch et al. [9] (g) Krishnan et al. [16] (h) ours

(i) input (j) Shan et al. [20] (k) Cho and Lee [3] (l) ours

Figure 6. Visual comparison of state-of-the-art methods. Please view these results in their original resolutions in our project website.

Non-uniform Deblurring Our framework is fully appli-

cable to non-uniform deblurring with the model depicted in

the paper. Fig. 7 shows two examples. Our results are visu-

ally comparable to others. The result shown in Fig. 7(i) is

generated using 1128 seconds. For comparison, previously

most efficient approach [9] takes 1567 seconds for the same

image. More results are included in the project website. An

executable is also publicly available.

6. Concluding Remarks

We have presented a new framework for both uniform

and non-uniform motion deblurring, leveraging an unnatu-

ral L0 sparse representation to greatly benefit kernel esti-

mation and large-scale optimization. We proposed a unified

model, which seeks gradient sparsity close to L0 to remove

pernicious small-amplitude structures. The method not only

provides a principled understanding of effective motion de-

blurring strategies, but also notably augments performance

based on the new optimization process.

Acknowledgements

The work described in this paper was supported by a

grant from the Research Grants Council of the Hong Kong

Special Administrative Region (Project No. 413110).

References

[1] D. S. Biggs and M. Andrews. Acceleration of iterative image

restoration algorithms. Applied Optics, 36(8):1766–1775,

1997.

[2] A. Blake and A. Zisserman. Visual reconstruction. MIT

Press, 1987.

[3] S. Cho and S. Lee. Fast motion deblurring. ACM Trans.

Graph., 28(5), 2009.

[4] T. S. Cho, S. Paris, B. K. P. Horn, and W. T. Freeman. Blur

kernel estimation using the radon transform. In CVPR, pages

241–248, 2011.



(a) input (b) Whyte et al. [24] (c) Hirsch et al. [9] (d) ours (e) kernels

(f) input (g) Harmeling et al. [8] (h) Hirsch et al. [9] (i) ours (j) kernels

Figure 7. Non-uniform deblurring results. Kernels are resized for visualization.

[5] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

ACM Trans. Graph., 25(3):787–794, 2006.

[6] A. Goldstein and R. Fattal. Blur-kernel estimation from spec-

tral irregularities. In ECCV, pages 622–635, 2012.

[7] A. Gupta, N. Joshi, C. L. Zitnick, M. F. Cohen, and B. Cur-

less. Single image deblurring using motion density func-

tions. In ECCV, pages 171–184, 2010.

[8] S. Harmeling, M. Hirsch, and B. Schölkopf. Space-

variant single-image blind deconvolution for removing cam-

era shake. In NIPS, pages 829–837, 2010.

[9] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf.

Fast removal of non-uniform camera shake. In ICCV, pages

463–470, 2011.

[10] Z. Hu and M.-H. Yang. Good regions to deblur. In ECCV,

pages 59–72, 2012.

[11] J. Jia. Single image motion deblurring using transparency.

In CVPR, 2007.

[12] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image

deblurring using inertial measurement sensors. ACM Trans.

Graph., 29(4), 2010.

[13] N. Joshi, R. Szeliski, and D. J. Kriegman. Psf estimation

using sharp edge prediction. In CVPR, 2008.

[14] R. Koehler, M. Hirsch, S. Harmeling, B. Mohler, and

B. Schölkopf. Recording and playback of camera

shake: benchmarking blind deconvolution with a real-world

database. In ECCV, pages 27–40, 2012.

[15] D. Krishnan and R. Fergus. Fast image deconvolution using

hyper-laplacian priors. In NIPS, 2009.

[16] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution

using a normalized sparsity measure. In CVPR, pages 233–

240, 2011.

[17] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Under-

standing and evaluating blind deconvolution algorithms. In

CVPR, pages 1964–1971, 2009.

[18] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient

marginal likelihood optimization in blind deconvolution. In

CVPR, pages 2657–2664, 2011.

[19] J. H. Money and S. H. Kang. Total variation minimizing

blind deconvolution with shock filter reference. Image and

Vision Computing, 26(2):302–314, 2008.

[20] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Trans. Graph., 27(3),

2008.

[21] Q. Shan, W. Xiong, and J. Jia. Rotational motion deblurring

of a rigid object from a single image. In ICCV, 2007.

[22] Y.-W. Tai, P. Tan, and M. S. Brown. Richardson-lucy deblur-

ring for scenes under a projective motion path. IEEE Trans.

Pattern Anal. Mach. Intell., 33(8):1603–1618, 2011.

[23] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken

and partially saturated images. In ICCV Workshops, pages

745–752, 2011.

[24] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform

deblurring for shaken images. In CVPR, pages 491–498,

2010.

[25] L. Xu and J. Jia. Two-phase kernel estimation for robust

motion deblurring. In ECCV, pages 157–170, 2010.

[26] L. Xu and J. Jia. Depth-aware motion deblurring. In ICCP,

2012.

[27] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0
gradient minimization. ACM Trans. Graph., 30(6), 2011.

[28] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from

texture via relative total variation. ACM Transactions on

Graphics (TOG), 31(6), 2012.


