CENG3420

Lab 3-1: RISCV-LC Datapath

Chen BAI

Department of Computer Science and Engineering
The Chinese University of Hong Kong

cbai@cse.cuhk.edu.hk

Spring 2021

香港中文大學 The Chinese University of Hong Kong

Overview

Introduction

Background

Lab3-1 Assignmen

LC-3b

- LC-3b: **Little Computer 3, b** version.
- Relatively simple instruction set
- Most used in teaching for CS & CE
- Developed by Yale Patt@UT & Sanjay J. Patel@UIUC

RISCV-LC

- Inspired from LC-3b
- ► RISC-V version (RV32I)
- Programming language: C
- Compatible with Lab2 (RV32I assembler & RV32I simulator)

RISCV-LC

- RISC-V 32 general-purpose registers
- 32-bit data and address
- 28+ instructions (including pseudo instructions)

Plus 4 special-purpose registers:

- Program Counter (PC)
- Instruction Register (IR)
- Memory Access Register (MAR)
- Memory Data Register (MDR)

In order to make labs easy, I have modified some definitions of instructions, and they do not oberseve RISC-V specifications strictly!

Overview

Introduction

Background

Lab3-1 Assignmen

Datapath

Datapath Annotation

Datapath Annotation

RISCV datapath annotation based on the textbook

FSM

- Clock cycle: The cycle time of a microprocessor is the duration of a clock cycle
- ► Finite State Machine: The behavior of the RISCV-LC microarchitecture during a given clock cycle is completely determined by the 33 control signals. These 33 control signals specify the state of the control structure of the RISCV-LC microarchitecture.

FSM

Overview

Introduction

Background

Lab3-1 Assignment

Operations in One Clock Cycle

```
In "riscy-lc.c":
    void cycle() {
        eval_micro_sequencer();
        cycle_memory();
        eval bus drivers();
        drive bus();
        latch_datapath_values();
        CURRENT LATCHES = NEXT LATCHES;
        CYCLE COUNT++;
```


Lab3.1 Assignment

RISCV-LC codes will be released on 21 Apr.

- git clone https://github.com/baichen318/ceng3420.git; cd ceng3420
- git checkout lab3.1

Compile (Linux + x86_64 environment is suggested)

make

Run the simulator

./lc uop benchmarks/isa.bin # RISCV-LC runs isa.bin

Lab3.1 assignment

- Complete uop (i.e., fill x with right 1s or 0s)
- Finish eval_micro_sequencer

These unimplemented codes are annotated with Lab3-1 assignment

Lab3.1 assignment

Verify your codes with binary machine codes suffixed with .bin

- ► isa.bin
- count10.bin
- swap.bin

Submission Method:

Submit the source code and report after the whole Lab3, onto blackboard.

Thanks. For any question:

byu@cse.cuhk.edu.hk cbai@cse.cuhk.edu.hk ybai@cse.cuhk.edu.hk

