CENG 3420 @%

Computer Organization & Design

Lecture 04: Datapath

Bei Yu

(Latest update: February 24, 2021)

Spring 2021

The Processor: Datapath & Control

> We're ready to look at an implementation of the MIPS
» Simplified to contain only:
» Memory-reference instructions: 1w, sw

» Arithmetic-logical instructions: add, addu, sub, subu, and,

nor, slt, sltu

P Arithmetic-logical immediate instructions: addi, addiu,
slti, sltiu

» Control flow instructions: beq, 7

» Generic implementation:
» Use the program counter (PC)
» To supply the instruction address and fetch the instruction from
memory (and update the PC)
» Decode the instruction (and read registers)
> Execute the instruction

2/34

andi,

or,

ori,

Xor,

xori,

Abstract Implementation View

» Two types of functional units:
> elements that operate on data values (combinational)
» elements that contain state (sequential)

PCSrc

— ,:
iy

Add Sum!
Read A
Read : LUSrc
o register 1 Read
Read data 1
register 2

ALU operation
- MemWrite

MemtoReg
Instruction
Write Re0ISterS Read Address Road
Instruction register data 2 al
memory i
s
Write Data
RegWrite data memory
32 MemRead

» Single cycle operation
» Split memory (Harvard) model - one memory for instructions and one for data

3/34

: : 7
Fetching Instructions _§ﬁ3_

&

Reading the instruction from the Instruction Memory
Updating the PC value to be the address of the next (sequential) instruction
PC is updated every clock cycle, so it does not need an explicit write control signal

o n o~

Instruction Memory is read every clock cycle, so it doesn’t need an explicit read control
signal

clock

Fetch

Read
address

Instruction —

Exec Decode

Instruction
memory

4/34

i

Decoding Instructions

1. Sending the fetched instruction’s opcode and function field bits to the control unit
2. Reading two values from the Register File
3. (Register File addresses are contained in the instruction)

r'/i\\

[\
Control |

Fetch \
PC = PC+4 N
Read Addr 1
Register Readl

) Read Addr2 Data 1
Instruction
Exec @' File
[Write Addr Read
) Data 2|
[Write Data

5/34

Reading Registers “Just in Case”

6/34

3
C

» Both RegFile read ports are active for all instructions during the Decode cycle
P Using the rs1 and rs2 instruction field addresses
P Since haven't decoded the instruction yet, don’t know what the instruction is

P Just in case the instruction uses values from the RegFile do “work ahead” by reading
the two source operands

Rachy

;
:
&

£
Reading Registers “Just in Case” 3#3

6/34

» Both RegFile read ports are active for all instructions during the Decode cycle
P Using the rs1 and rs2 instruction field addresses
P Since haven't decoded the instruction yet, don’t know what the instruction is

P Just in case the instruction uses values from the RegFile do “work ahead” by reading
the two source operands

Question

Which instructions do make use of the RegFile values?

7/34

EX-1

All instructions (except) use the ALU after reading the registers. Please analyze
memory-reference, arithmetic, and control flow instructions.

7/34

EX-1

All instructions (except) use the ALU after reading the registers. Please analyze
memory-reference, arithmetic, and control flow instructions.

> Memory reference use ALU to compute addresses:
1w s1, 20 (s2)

7/34

EX-1

All instructions (except) use the ALU after reading the registers. Please analyze
memory-reference, arithmetic, and control flow instructions.

> Memory reference use ALU to compute addresses:
1w s1, 20 (s2)

> Arithmetic use the ALU to do the require arithmetic:
add sl, s2, s3 # (sl = s2 + s3)

7/34

EX-1

All instructions (except) use the ALU after reading the registers. Please analyze
memory-reference, arithmetic, and control flow instructions.

> Memory reference use ALU to compute addresses:
1w s1, 20 (s2)

> Arithmetic use the ALU to do the require arithmetic:
add sl, s2, s3 # (sl = s2 + s3)

» Control use the ALU to compute branch conditions:
beqg sl1, s2, 25

Executing R Format Operations

R format operations: add, sub, sll, slt, xor, srl, sra, or, and

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
[funct? [152 [rsl] funct3] rd [opcode | R-type

» Perform operation (op, funct3 or funct7)onvaluesin rs1 and rs2
P Store the result back into the Register File (into location rd)

> Note that Register File is not written every cycle (e.g. sw), so we need an explicit write
control signal for the Register File

RegWrite ALU control

}

Read Addr 1

Register Read
—>Read Addr2 Data — overflow

File —> Zero
- ALU
PC = PC+4 Write Addr Read

) Data 2|
G Socad Write Data

Fetch Instruction

8/34

Consider the s1t Instruction

» Remember the R format instruction s1t

slt t0, s0, sl # if s0 < sl
then t0 =1
else t0 =0

> Where does the 1 (or 0) come from to store into t 0 in the Register File at the end of
the execute cycle?

PCfrom instruction datapath

Branch
@ target
__, |Read 4| ALU operation
Instruction [| register 1 Read .
data 1
:gier
To branch
- ALU Zero "
Write Registers control logic
register Read
Write gatae
data
RegWrite
32

9/34

10/34

1573
Executing Load and Store Operations Eii

/

POAN_ (0

G 3

&

[imm[11:0] [sl] funct3 | rd [opcode | I-type

‘ imm[11:5] [2 [sl [funct3] imm[4:0] [opcode | S-type

Load and store operations have to

> compute a memory address by adding the base register (in rs1) to the 12-bit signed
offset field in the instruction

» base register was read from the Register File during decode
> offset value in the low order 12 bits of the instruction must be sign extended to create a
32-bit signed value
> store value, read from the Register File during decode, must be written to the Data
Memory

» load value, read from the Data Memory, must be stored in the Register File

24

y

xS

Executing Load and Store Operations (cont.)

PCSrc
M
u
x
| @
Read i
Read — : ALUSrc _ 4 ALU operation
" address rogisierd Read MemWrite
e] MemtoReg
Inticton L register 2
Instruction oy Registers goaq —
Instruction ™ register data 2 data
memory)
| Write
data
Write ~ Data
RegWrite data memory
MemRead
32 pro emRea:
Gen

11/34

3
C

Executing Branch Operations

Rachy

b
:
&

[imm[12] [imm[10:5] rs2 [rsl | funct3 [imm[4:1] [imm[I1] [opcode | B-type

Branch operations have to

» compare the operands read from the Register File during decode (rs1 and rs2
values) for equality (zero ALU output)

> TThe 12-bit B-immediate encodes signed offsets in multiples of 2 bytes.

> The 12-bit immediate offset is sign-extended and added to the address of the branch
instruction to give the target address.

12/34

Executing Branch Operations (cont.)

13/34

PC from instruction datapath —|

Read
—|
Instruction !

Branch

Add Sum target

ALU operation

To branch
control logic

ALU Zero

register 1 Read
Read data 1
register 2
Write Registers
register Read
Write detta, 2
data

RegWrite

32 64

Executing Jump Operations

[imm[20] | imm[10:1] [imm[11] | imm[19:12] [rd ['opcode | J-type

> The J-immediate encodes a signed offset in multiples of 2 bytes.

P> The offset is sign-extended and added to the address of the jump instruction to form
the jump target address.

14/34

132
{i
=\
P

Rachy

b
:
&

Creating a Single Datapath from the Parts :@

> Assemble the datapath elements, add control lines as needed, and design the control
path
P> Fetch, decode and execute each instruction in one clock cycle — single cycle design

» no datapath resource can be used more than once per instruction, so some must be
duplicated (e.g., why we have a separate Instruction Memory and Data Memory)

> to share datapath elements between two different instruction classes will need
multiplexors at the input of the shared elements with control lines to do the selection

» Cycle time is determined by length of the longest path

15/34

Multipilier Insertion

16/34

RegWrite ALU control MemWrite
l i l
Tzero
. Read Addr 1
Instruction i Read Address
Memory ReglsterD & 1
Read Addr2 Data Data
Read ; i
Inddress Instruction— ~ File — Memory ReadData
Write Addr Read
Data 2| \Write Data
F/ri e Data —
MemRead
16 32

Multipilier Insertion

RegWrite ALUSrc ALU control MemWrite MemtoReg

| e |

Instruction ead Addr 1 Read Address
Memor Regist
y cad Addr2 Data 1 l Data
Read i i
Instructiort— File 1 Memory ReadData
Address Write Addr g AL i
Data 2| \Write Data
Write Data r
MemRead
16 32

16/34

Clock Distribution

System Clock

J S S I

clock cycle

RegWrite MemWrite
ALUSrc ALU control MemtoReg
4 ovf
Tzero
Instruction Read Addr 1 A
Memory Regist DRet:? IAddress
Read Addr2 Y@ Data
Read " File A
PCT |address MStructior—| Write Addr ALU Memory Read Data
Dat':2 Write Data
Write Data r
MemRead
16 32

17/34

Adding the Branch Portion

————>|
Ad
4 Add
@ PCSrc
RegWrite LUSrc ALU control MemWrite MemtoReg
| °y l
Izero
Instruction —>(Read Addr 1 A
Redgi Read ddress
Memory eglsterD 1
|+ Read Addr2 Data l Data
Read : 0
PCH—| Instructiop—| File — Memory Read Data
Address Wiite Addr g ALy 4 -
Data 2| \Write Data —>
Nrite Data r
. MemRead
Sign
16 | Extend| Y55

18/34

187
Our Simple Control Structure L)

19/34

> We wait for everything to settle down

> ALU might not produce "right answer" right away

» Memory and RegFile reads are combinational (as are ALU, adders, muxes, shifter,
signextender)

> Use write signals along with the clock edge to determine when to write to the sequential
elements (to the PC, to the Register File and to the Data Memory)

» The clock cycle time is determined by the logic delay through the longest path
» (We are ignoring some details like register setup and hold times)

Summary: Adding the Control

20/34

P> Selecting the operations to perform (ALU, Register File and Memory read/write)
» Controlling the flow of data (multiplexor inputs)
» Information comes from the 32 bits of the instruction

[imm[11:0] [rsT [funct3 | rd [opcode | I-type
31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
[funct? I 152 [rsl] funct3] rd [opcode | R-type

Observations:
» opcode field always in bits 6-0

P> address of two registers to be read are always specified by the rs1 and rs?2 fields
(bits 19—15 and 24-20)

> base register for Lw and sw always in rs1 (bits 19-15)

=)

132
s

(Almost) Complete Single Cycle Datapath

21/34

Ad

Instruction
Memory

Read

IAddress Instr{31-0

RegWrite

l

1} Read Addr 1

Register Read

Read Addr2 Data 1
File

rite Addr Read
Data 2

rite Data

PCSrc

MemWrite MemtoReg

l

tAddress

Data
Memory ReadData

\Write Data

-

!

MemRead

(Almost) Complete Single Cycle Datapath

21/34

Ad

Instruction
Memory

Read

IAddress Instr[31-0

Add
@ PCSrc

—D_

RegDst RegWrite N_USrc MemWrite MemtoReg
i Vfzero l
Read Addr 1
A
RegisterD:?:? \ddress
Read Ag_z:rz l Data
lle Read Data|
) ALU Memory
rite Addr Rea
Data 2 Write Data
\Write Data r
Sign MemRead
16 Extend 32
Instr[5-0]

ALUOp

ALU Control

ALU’s operation based on instruction type and function code x

ALU control Function
input
0000 and
0001 or
0010 xor
0011 nor
0110 add
1110 subtract
1111 set on less than

+Notice that we are using different encodings than in the book

22/34

EX: ALU Control

23/34

» main control unit generates the ALUOp bits

Controlling the ALU uses of multiple decoding levels

> ALU control unit generates ALUcontrol bits

Instrop| funct [ALUOp| action | ALUcontrol
Iw XXXXXX 00

SW XXXXXX 00

beq XXXXXX 01

add 100000 10 add 0110
subt 100010 10 subtract 1110
and 100100 10 and 0000
or 100101 10 or 0001
xor 100110 10 xor 0010
nor 100111 10 nor 00M
slt 101010 10 slt 111

Y

72
)
AN g

)
g

I Fr ey

ALU Control Truth Table

ALU

controlg

ALU

ALU

ALU

control; | control, [controly

ALU
Opo

ALU
Op;

0
0

1

FO

0

1
0
0

1
1
1
1

F5|F4 |F3 | F2 | F1

X X[X[X[|X[X
X X[X[XXX
X|X[{0/0]|0]|O

X|X|0|0
X|X|0
X|X]|0
X|X|0
X|X]|0

24/34

ALU Control Truth Table

F5|F4 |F3|F2 |F1|FO| ALU | ALU ALU ALU ALU ALU
Op4 Opgy | control; | control, | control; | controly
X[X[X|Xx[x[x] o] o[/o] 141 N0
X[x|x|[x|x|[x] o 1+ |[1\] £] 1 0\
x|x]ofofJolo| 1 | o [[]o]]/1 1 0\
x|[xlolo|1]o] 1 | o || 1 1 0
X|x|o[1]o]o| 1] o0]]o 0 0 0
X|x|o]1]o[1] 1] o0]|oO 0 0 1
x[x|{o|1]1]o] 1] o |lo]][\o 1 0/
X[x|o[1]1]1] 1] o]lo]] 0 1 1/
x[x[1]ol1][o] 1 [o |\t] 1N 1 |1

Add/subt Mux control

24/34

ALU Control Logic

From the truth table can design the ALU Control logic

Instr[3]
Instr[2]
Instr[1]
Instr[0]
ALUOp,
ALUOp,

25/34

VG

J L

J L

) U

J&VW

ALUcontrols

ALUcontrol,

ALUcontrol,

ALUcontrol,

(Almost) Complete Datapath with Control Unit

| 0
Ad:
Ad 1
4
—| PCSrc
ALUO Branch
\ MemRead
|n5tr[viemiorkeg
Memvvrite
ALUSrc
RegWrite
RegDs!
i
nstr[25:21] [
Instruction ead Addr 1 Read Address
Memor! Regist
y nstr{20:16] Read Addr 2 Data 1 zer Data
Read i
PCH— Instr{31-0}H 0 File Memory Read Datal—>
Address 1 Write Addr Rea I\ Atu Y
Data 2| Write Data
'“S'[[11) [1Vite Data r
- (.
Linstr{15-9
16 32
Instr{5-0]

26/34

(Almost) Complete Datapath with Control Unit

‘ 0
Ad
Ad 1
4 —|
—> PCSrc
ALUO Branch @
MemRead
Instr[; Control | MemioReg
Unit | Memwrite
ALUSrc
RegWrite
RegDs!
1 o¥f 0
Instr[25:21] [
Instruction Read Addr 1 o
Memory Register Read ddress
Inst20:16] Read Addr2 Data 1 zero) Data
Read "
L—PCH— Instr{31-0]+ 0 File Memory Read Dataf—>|
(Address Write Addr ALy y
Read qb
Data 2 Write Data
st [Wite Data T r 7
o
Instr[15-0]

16 Extend 30

O

26/34

(Almost) Complete Datapath with Control Unit

26/34

—PC

Instr[15-

16 Extend 30

— — ¢
Ad:
Ad 1
4 —

—> PCSrc

ALUQp Branch @

MemRead
Instr[Control | ViemtoReg
Unit | Memvvrite
ALUSrc
RegWrite
0 O\T/f 1
Instruction Read Addr 1 Read Address
Memor Regist
v ReadAddr2 Data 1 zerq) Data
Read "
Instr{31-0H File ALU] Memory Read Data
/Address
\Write Addr Read———!
Data 2 Write Data
Write Data _,‘ r
TO

D

(Almost) Complete Datapath with Control Unit

Ad:
Ad 1
4—s
—> PCSrc
ALUO Branch @

=)

\ MemRead
Control |

|nstr[viemiorkeg
Unit | WViemvvrite
ALUSrc
RegWrite
RegDs!
1 ovf 0
Instr[25:21] [T
Instruction ' ea(:Ad(.iM Read Address
Memory Instr[20:16] | - “addr 2 Data 1 zero Dat N
Read i aa
L—PCH— Instr{31-0]+ 0 File i Memory Read Data f
/Address ; \Write Addr Read Aru v B
Data 2 Write Data —>|
st) [Wwite Data | r
T
Instr[15-0]

16 Extend 30

D

26/34

(Almost) Complete Datapath with Control Unit

0
Ad
Ad 1
4 ——>|

—> PCSrc

ALUOD sline ED

MemRead
|nstr[viemiorkeg
WViemvvrite
ALUSrc
RegWrite
0 O‘T'f 0
Instruction Read Addr 1 Read Address
Memor Regist
v ReadAddr2 Data 1 er Data
Read i
L—PCH— Instr{31-0H File Memory ReadDatal
Address Write Addr Aru v
Read
Data 2 \Write Data
rite Data r
To
Instr[15-9]

16 Extend 30

&)

26/34

Main Control Unit

27/34

Instr RegDst | ALUSrc | MemReg | RegWr | MemRd | MemWr | Branch| ALUOp
R-type | 1 0 0 1 0 0 0| 10

000000

Iw 0 1 1 1 1 0 0 | 00

100011

sw X 1 0 0 1 0 | 00

101011

beq X110 0| O 0 1 | 01

000100

Control Unit Logic

Instr[31]
Instr{30]
Instr[29]
Instr[28]
Instr[27]
Instr[26]

~
N
(]
N

[
£
[
£y

R-type be
typ 4 RegDst

Dﬁ ALUSrc

MemtoReg

Di RegWrite

MemRead
MemWrite

Branch
ALUOp;
ALUOp,

28/34

Review: Executing Jump Operations

[mm[20] | Tmm[10:1] [mm[I]] imm[10:12] | d [opcode | J-type

» The J-immediate encodes a signed offset in multiples of 2 bytes.

P> The offset is sign-extended and added to the address of the jump instruction to form
the jump target address.

29/34

132
{i
=\
P

Rachy

b
:
&

30/34

Instr{25-0])
\ - (shift Y N2
> 26 \left2 0
PC+4[31-28]
Add o
Ad 1
4 ——>|
— PCSrc
Jump
ALUO Branch
MemRead
Instr[Control | VemioReg
Unit | Memvvrite
ALUSrc
RegWrite
RegDs!
0 °¥f 0
Instr[25:21] [
Instruction “?.,Ad(.m Read Address
Memory Instr{20:16 0 o 4 Addr 2 Data 1 zer D
Read i s
L —PcH—| Instr[31-0 File Memory Read Data
/Address Write Addr Read| Atu Y
Data 2| Write Data
\Write Data
! 0
Instr[5-0]

31/34

£ Main Control Unit of 7

Instr RegDst| ALUSrc | MemReg | RegWr | MemRd | MemWr | Branch| ALUOp | Jump
R-type | 1 0 0 1 0 0 0| 10 0
000000

Iw 0 1 1 1 1 0 0|00]| O
100011

sw X 1 0 0 1 0|00]| O
101011

beq X 0 X 0 0 0 1 01 0
000100

j 1
000010

[20

NEGHC

I F & 8

Single Cycle Implementation Cycle Time

32/34

» Unfortunately, though simple, the single cycle approach is not used because it is very
slow
» Clock cycle must have the same length for every instruction

> What is the longest path (slowest instruction)?

=X Instruction Critical Paths
Calculate cycle time assuming negligible delays (for muxes, control unit, sign extend, PC
access, shift left 2, wires) except:

» Instruction and Data Memory (4 ns)

> ALU and adders (2 ns)

» Register File access (reads or writes) (1 ns)

Instr. | IMem | Reg Rd |ALU Op | D Mem |Reg Wr| Total
R- 4 1 2 1 8
type
load

store

beq
jump

33/34

Single Cycle Disadvantages & Advantages

34/34

132
{i
=\
P

Rachy

b
:
&

Uses the clock cycle inefficiently — the clock cycle must be timed to accommodate the
slowest instr

Especially problematic for more complex instructions like floating point multiply

May be wasteful of area since some functional units (e.g., adders) must be duplicated
since they can not be shared during a clock cycle

but It is simple and easy to understand

Cycle 1 Cycle 2

ewl — =

| Iw I SW Waste|

