
CENG 3420
Computer Organization & Design

Lecture 02: Arithmetic and Logic Unit

Bei Yu

(Latest update: January 20, 2021)

Spring 2021

1 / 54

Overview

Overview

Addition

Multiplication & Division

Shift

Floating Point Number

2 / 54

Overview

Overview

Addition

Multiplication & Division

Shift

Floating Point Number

3 / 54

Abstract Implementation View

Address Instruction

Instruction
Memory

Write Data

Write Addr

Read Addr

Read Addr

Register

File ALU
Data
Memory

Address

Write Data

Read DataPC

Read
Data

Read
Data

3 / 54

Arithmetic
Where we’ve been: abstractions
I Instruction Set Architecture (ISA)
I Assembly and machine language

What’s up ahead: Implementing the ALU architecture

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

4 / 54

Arithmetic
Where we’ve been: abstractions
I Instruction Set Architecture (ISA)
I Assembly and machine language

What’s up ahead: Implementing the ALU architecture

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

4 / 54

Review: VHDL

I Supports design, documentation, simulation & verification, and synthesis of hardware
I Allows integrated design at behavioral & structural levels

5 / 54

Review: VHDL (cont.)

Basic Structure
I Design entity-architecture descriptions
I Time-based execution (discrete event simulation) model

Design Entity-Architecture ==
Hardware Component

Entity == External
Characteristics

Architecture (Body) ==
Internal Behavior

or Structure

6 / 54

Review: Entity-Architecture Features

Entity

defines externally visible characteristics

I Ports: channels of communication
I signal names for inputs, outputs, clocks, control

I Generic parameters: define class of components
I timing characteristics, size (fan-in), fan-out

7 / 54

Review: Entity-Architecture Features (cont.)

Architecture
defines the internal behavior or structure of the circuit

I Declaration of internal signals
I Description of behavior

I collection of Concurrent Signal Assignment (CSA) statements (indicated by <=);
I can also model temporal behavior with the delay annotation
I one or more processes containing CSAs and (sequential) variable assignment

statements (indicated by :=)
I Description of structure

I interconnections of components; underlying behavioral models of each component must
be specified

8 / 54

ALU VHDL Representation

entity ALU is
port(A, B: in std_logic_vector (31 downto 0);

m: in std_logic_vector (3 downto 0);
result: out std_logic_vector (31 downto 0);
zero: out std_logic;
ovf: out std_logic)

end ALU;

architecture process_behavior of ALU is
. . .
begin

ALU: process(A, B, m)
begin

. . .
result := A + B;
. . .

end process ALU;
end process_behavior;

9 / 54

Machine Number Representation

I Bits are just bits (have no inherent meaning)∗
I Binary numbers (base 2) – integers

Of course, it gets more complicated:
I storage locations (e.g., register file words) are finite, so have to worry about overflow

(i.e., when the number is too big to fit into 32 bits)
I have to be able to represent negative numbers, e.g., how do we specify -8 in

addi $sp, $sp, -8 #$sp = $sp - 8

I in real systems have to provide for more than just integers, e.g., fractions and real
numbers (and floating point) and alphanumeric (characters)

∗conventions define the relationships between bits and numbers
10 / 54

RISC-V Representation
32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...

1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

What if the bit string represented addresses?
I need operations that also deal with only positive (unsigned) integers

11 / 54

Two’s Complement Operations

I Negating a two’s complement number – complement all the bits and then add a 1
I remember: “negate” and “invert” are quite different!

I Converting n-bit numbers into numbers with more than n bits:
I MIPS 16-bit immediate gets converted to 32 bits for arithmetic
I sign extend: copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010
1010 -> 1111 1010

I sign extension versus zero extend (lb vs. lbu)

12 / 54

Design the RISC-V Arithmetic Logic Unit (ALU)
I Must support the Arithmetic/Logic operations of the ISA

RV 32I:
add, sub, mul, mulh, mulhu, mulhsu,
div, divu, rem, li, addi, sll, srl,
sra, or, xor, not, slt, sltu, slli,
srli, srai, andi, ori, xori, slti,
sltiu,

RV 64I:
addw, subw, remu, mulw, divw, divuw,
remw, remuw, addiw, sllw, srlw, sraw,
srliw, sraiw,

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

I With special handling for:
I sign extend: addi, slti, sltiu
I zero extend: andi, xori
I Overflow detected: add, addi, sub

13 / 54

RISC-V Arithmetic and Logic Instructions

funct7 rs2 funct3rs1 rd opcode
7 5 5 3 5 7

imm[11:0] funct3rs1 rd opcode
12 5 3 5 7

R-type:

I-type:

Type op funct

ADDI 001000 xx

ADDIU 001001 xx

SLTI 001010 xx

SLTIU 001011 xx

ANDI 001100 xx

ORI 001101 xx

XORI 001110 xx

LUI 001111 xx

Type op funct

ADD 000000 100000

ADDU 000000 100001

SUB 000000 100010

SUBU 000000 100011

AND 000000 100100

OR 000000 100101

XOR 000000 100110

NOR 000000 100111

Type op funct

000000 101000

000000 101001

SLT 000000 101010

SLTU 000000 101011

000000 101100

14 / 54

Overview

Overview

Addition

Multiplication & Division

Shift

Floating Point Number

15 / 54

Addition & Subtraction

I Just like in grade school (carry/borrow 1s)

0111 0111 0110
+ 0110 - 0110 - 0101
------- ------ -------

I Two’s complement operations are easy: do subtraction by negating and then adding

0111 -> 0111
- 0110 -> + 1010
------ -------

I Overflow (result too large for finite computer word). E.g., adding two n-bit numbers
does not yield an n-bit number

0111
+ 0001

15 / 54

Building a 1-bit Binary Adder

S	=	A		xor		B		xor		carry_in
carry_out		=	A&B		|		A&carry_in		|		B&carry_in

(majority	function)

A B carry_in carry_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1 bit
Full
Adder

A

B
S

carry_in

carry_out

I How can we use it to build a 32-bit adder?
I How can we modify it easily to build an adder/subtractor?

16 / 54

Building 32-bit Adder

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

I Just connect the carry-out of the least significant bit FA to the
carry-in of the next least significant bit and connect ...

I Ripple Carry Adder (RCA)
I ,: simple logic, so small (low cost)
I /: slow and lots of glitching (so lots of energy consumption)

17 / 54

Glitch
Glitch
invalid and unpredicted output that can be read by the next stage and result in a wrong
action

Example: Draw the propagation delay

18 / 54

Glitch in RCA

1-bit
FA

A0

B0
S0

c0=carry_in

c1

1-bit
FA

A1

B1
S1

c2

1-bit
FA

A2

B2
S2

c3

c32=carry_out

1-bit
FA

A31

B31
S31

c31

. .
 .

A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

19 / 54

But What about Performance?
I Critical path of n-bit ripple-carry adder is n× CP
I Design trick: throw hardware at it (Carry Lookahead)

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0

A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1

A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

20 / 54

A 32-bit Ripple Carry Adder/Subtractor

l complement all the bits

l add a 1 in the least significant bit

A 0111 -> 0111
B - 0110 -> +

1-bit
FA S0

c0=carry_in

c1

1-bit
FA S1

c2

1-bit
FA S2

c3

c32=carry_out

1-bit
FA S31

c31

. .
 .

A0

A1

A2

A31

B0

B1

B2

B31

add/sub

B0

control
(0=add,1=sub) B0 if control = 0

!B0 if control = 1

0001

1001
1

1 0001

21 / 54

Minimal Implementation of a Full Adder

Gate library: inverters, 2-input NANDs, or-and-inverters

architecture concurrent_behavior of full_adder is

signal t1, t2, t3, t4, t5: std_logic;

begin

t1 <= not A after 1 ns;

t2 <= not cin after 1 ns;

t4 <= not((A or cin) and B) after 2 ns;

t3 <= not((t1 or t2) and (A or cin)) after 2 ns;

t5 <= t3 nand B after 2 ns;

S <= not((B or t3) and t5) after 2 ns;

cout <= not((t1 or t2) and t4) after 2 ns;

end concurrent_behavior;

22 / 54

Tailoring the ALU to the MIPS ISA

I Also need to support the logic operations (and, nor, or, xor)
I Bit wise operations (no carry operation involved)
I Need a logic gate for each function and a mux to choose the output

I Also need to support the set-on-less-than instruction (slt)
I Uses subtraction to determine if (a− b) < 0 (implies a < b)

I Also need to support test for equality (bne, beq)
I Again use subtraction: (a− b) = 0 implies a = b

I Also need to add overflow detection hardware
I overflow detection enabled only for add, addi, sub

I Immediates are sign extended outside the ALU with wiring (i.e., no logic needed)

23 / 54

A Simple ALU Cell with Logic Op Support

1-bit
FA

carry_in

carry_out

A

B

add/subt

add/subt

result

op

24 / 54

A Simple ALU Cell with Logic Op Support

1-bit
FA

A

B

result

carry_in

carry_out

add/subt op

add/subt

less

0

1

2

3

6

7

Modifying the ALU Cell for slt

24 / 54

Modifying the ALU for slt

I First perform a subtraction
I Make the result 1 if the subtraction yields a negative

result
I Make the result 0 if the subtraction yields a positive result
I Tie the most significant sum bit (sign bit) to the low order

less input

0

0
set

A1

B1

A0

B0

A31

B31

+

result1

less

+

result0

less

+

result31

less

. . .

25 / 54

Overflow Detection
Overflow occurs when the result is too large to represent in the number of bits allocated
I adding two positives yields a negative
I or, adding two negatives gives a positive
I or, subtract a negative from a positive gives a negative
I or, subtract a positive from a negative gives a positive

Question: prove you can detect overflow by:

Carry into MSB xor Carry out of MSB

1

1

0

1

1

0

0 1 1 1

0 0 1 1+

7

3

0

1

– 6 1 10

1

1 1 0 0

1 0 1 1+

–4

– 5

71

0

26 / 54

Modifying the ALU for Overflow

I Modify the most significant cell to
determine overflow output setting

I Enable overflow bit setting for signed
arithmetic (add, addi, sub)

+

A1

B1

result1

less

+

A0

B0

result0

less

+

A31

B31
result31

less

. . .
0

0
set

zero

. . .

add/subt op

overflow

27 / 54

Overflow Detection and Effects

I On overflow, an exception (interrupt) occurs
I Control jumps to predefined address for exception
I Interrupted address (address of instruction causing the overflow) is saved for possible

resumption
I Don’t always want to detect (interrupt on) overflow

28 / 54

New MIPS Instructions

Category Instr Op Code Example Meaning
Arithmetic
(R & I
format)

add unsigned 0 and 21 addu $s1, $s2, $s3 $s1 = $s2 + $s3
sub unsigned 0 and 23 subu $s1, $s2, $s3 $s1 = $s2 - $s3
add
imm.unsigned

9 addiu $s1, $s2, 6 $s1 = $s2 + 6

Data
Transfer

ld byte
unsigned

24 lbu $s1, 20($s2) $s1 = Mem($s2+20)

ld half unsigned 25 lhu $s1, 20($s2) $s1 = Mem($s2+20)
Cond.
Branch
(I & R
format)

set on less than
unsigned

0 and 2b sltu $s1, $s2, $s3 if ($s2<$s3) $s1=1
else $s1=0

set on less than
imm unsigned

b sltiu $s1, $s2, 6 if ($s2<6) $s1=1
else $s1=0

I Sign extend: addi, addiu, slti

I Zero extend: andi, ori, xori

I Overflow detected: add, addi, sub

29 / 54

http://csillustrated.berkeley.edu/PDFs/posters/
integer-representations-1-history-poster.pdf

30 / 54

http://csillustrated.berkeley.edu/PDFs/posters/integer-representations-1-history-poster.pdf
http://csillustrated.berkeley.edu/PDFs/posters/integer-representations-1-history-poster.pdf

Overview

Overview

Addition

Multiplication & Division

Shift

Floating Point Number

31 / 54

Multiplication

I More complicated than addition
I Can be accomplished via shifting and adding

0010 (multiplicand)
x_1011 (multiplier)
0010
0010 (partial	product

0000 array)
0010

00010110 (product)

I Double precision product produced
I More time and more area to compute

31 / 54

First Version of Multiplication Hardware

32 / 54

Add and Right Shift Multiplier Hardware

multiplicand

32-bit ALU

multiplier Control

add
shift
right

product

0 1 1 0 = 6

0 0 0 0 0 1 0 1 = 5
add 0 1 1 0 0 1 0 1

0 0 1 1 0 0 1 0
add 0 0 1 1 0 0 1 0

0 0 0 1 1 0 0 1
add 0 1 1 1 1 0 0 1

0 0 0 1 1 1 1 0
add 0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

= 30

33 / 54

RISC-V Multiply Instruction

I Multiply (mult and multu) produces a double precision product

mul $rd, $s0, $s1 # hi||lo = $s0 * $s1

0 16 17 0 0 0x18

I Low-order word of the product is left in processor register lo and the high-order word
is left in register hi

I Instructions mfhi rd and mflo rd are provided to move the product to (user
accessible) registers in the register file

I Multiplies are usually done by fast, dedicated hardware and are much more complex
(and slower) than adders

34 / 54

Division

I Division is just a bunch of quotient digit guesses and left shifts and subtracts

dividend
divisor

partial
remainder
array

quotientn
n

remainder
n

0 0 0

0

0

0

35 / 54

Question: Division
Dividing 1001010 by 1000

36 / 54

RISC-V Divide Instruction

I Divide generates the reminder in hi and the quotient in lo

div $rd, $s0, $s1 # lo = $s0 / $s1
hi = $s0 mod $s1

op rs rt rd shamt funct

I Instructions mflo rd and mfhi rd are provided to move the quotient and reminder
to (user accessible) registers in the register file

I As with multiply, divide ignores overflow so software must determine if the quotient is
too large.

I Software must also check the divisor to avoid division by 0.

37 / 54

Overview

Overview

Addition

Multiplication & Division

Shift

Floating Point Number

38 / 54

Shift Operations
I Shifts move all the bits in a word left or right

sll $t2, $s0, 8 #$t2 = $s0 << 8 bits
srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits
sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

I Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit
positions

I Logical shifts fill with zeros, arithmetic left shifts fill with the sign bit

The shift operation is implemented by hardware separate from the ALU

Using a barrel shifter, which would takes lots of gates in discrete logic, but is pretty easy to
implement in VLSI

38 / 54

A Simple Shifter

Ai

Ai-1

Bi

Bi-1

Right Leftnop

Bit-Slice i

...

39 / 54

Parallel Programmable Shifters

Control
Shift amount (Sh4Sh3Sh2Sh1Sh0)
Shift direction (left, right)
Shift type (logical, arithmetic)

=

40 / 54

Logarithmic Shifter Structure

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

Sh0 & right

dataini
dataouti

dataini-1

dataini+1

Sh0 & left

!Sh0

41 / 54

Logarithmic Shifter Structure

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

Sh1 & right

dataini
dataouti

dataini-2

dataini+2

Sh1 & left

!Sh0

41 / 54

Logarithmic Shifter Structure

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

41 / 54

Logarithmic Shifter Structure

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

shifts
of 0
or 8
bits

!Sh3Sh3

0,1,2…15
shifts

41 / 54

Logarithmic Shifter Structure

shifts
of 0
or 1
bits

!Sh0Sh0

0,1
shifts

shifts
of 0
or 2
bits

!Sh1Sh1

0,1,2,3
shifts

shifts
of 0
or 4
bits

!Sh2Sh2

0,1,2,3,4,
5,6,7
shifts

shifts
of 0
or 8
bits

!Sh3Sh3

0,1,2…15
shifts

shifts
of 0
or 16
bits

!Sh4Sh4

0,1,2…31
shifts

41 / 54

Logarithmic Shifter Structure

Sh1 Sh1 Sh2 Sh2 Sh4 Sh4

A3

A2

A1

A0

B1

B0

B2

B3

42 / 54

Overview

Overview

Addition

Multiplication & Division

Shift

Floating Point Number

43 / 54

Floating Point Number

Scientific notation: 6.6254× 10−27

I A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)
I Scale factors to determine the position of the decimal point (e.g. 10−27 indicates

position of decimal point and is called the exponent; the base is implied)
I Sign bit

43 / 54

Normalized Form

I Floating Point Numbers can have multiple forms, e.g.

0.232× 104 = 2.32× 103

= 23.2× 102

= 2320.× 100

= 232000.× 10−2

I It is desirable for each number to have a unique representation => Normalized Form
I We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

I [1..2) for BINARY
I [1..10) for DECIMAL

44 / 54

IEEE Standard 754 Single Precision
32-bit, float in C / C++ / Java

Sign of
number :

32 bits

mantissa fraction
23-bit

representation
excess-127
exponent in
8-bit signed

Value represented

0 0 1 0 1 0 . . . 00 0 0 1 0 1 0 0 0

S M

Value represented

(a) Single precision

(b) Example of a single-precision number

E¢

+

+ 1.001010 … 0 2
– 87

x=

1. M 2
E ¢ – 127

x±=

0 signifies
–1 signifies

00101000 à 40

40 – 127 = – 87

45 / 54

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

52-bit
mantissa fraction

11-bit excess-1023
exponent

64 bits

Sign

S M

(c) Double precision

Value represented 1. M 2
E ¢ – 1023

x±=

E ¢

46 / 54

Question:
What is the IEEE single precision number 40C0 000016 in decimal?

47 / 54

Question:
What is -0.510 in IEEE single precision binary floating point format?

48 / 54

Ref: IEEE Standard 754 Numbers

Format # bits # significant bits macheps # exponent bits exponent range
----------- --------- -------------------------- ---------------- ----------------------- ------------------------------
Single 32 1+23 2-24 (~10-7) 8 2-126 – 2+127 (~10 ±38)
Double 64 1+52 2-53 (~10-16) 11 2-1022 – 2+1023 (~10 ±308)
Double Extended >=80 >=64 <=2-64(~10-19) >=15 2-16382 – 2+16383 (~10 ±4932)
(Double Extended is 80 bits on all Intel machines)
macheps = Machine Epsilon = = 2 – (# significand bits)

l Normalized +/– 1.d…d x 2exp

l Denormalized +/– 0.d…d x 2min_exp à to represent near-zero numbers
e.g. + 0.0000…0000001 x 2-126 for Single Precision

mache

49 / 54

Special Values

Exponents of all 0’s and all 1’s have special meaning

I E=0, M=0 represents 0 (sign bit still used so there is ±0)
I E=0, M6=0 is a denormalized number ±0.M ×2−127 (smaller than the smallest

normalized number)
I E=All 1’s, M=0 represents ±Infinity, depending on Sign
I E=All 1’s, M6=0 represents NaN

50 / 54

Other Features

+, -, x, /, sqrt, remainder, as well as conversion to and from integer are correctly
rounded
I As if computed with infinite precision and then rounded
I Transcendental functions (that cannot be computed in a finite number of steps e.g.,

sine, cosine, logarithmic, , e, etc.) may not be correctly rounded
Exceptions and Status Flags
I Invalid Operation, Overflow, Division by zero, Underflow, Inexact

Floating point numbers can be treated as “integer bit-patterns” for comparisons
I If Exponent is all zeroes, it represents a denormalized, very small and near (or equal

to) zero number
I If Exponent is all ones, it represents a very large number and is considered infinity (see

next slide.)
Dual Zeroes: +0 (0x00000000) and -0 (0x80000000): they are treated as the same

51 / 54

Other Features
Infinity is like the mathematical one

I Finite / Infinity→ 0
I Infinity × Infinity→ Infinity

I Non-zero / 0→ Infinity

I Infinity {Finite or Infinity} → Infinity

NaN (Not-a-Number) is produced whenever a limiting value cannot be determined:

I Infinity - Infinity→ NaN

I Infinity / Infinity→ NaN

I 0 / 0→ NaN

I Infinity × 0→ NaN

I If x is a NaN, x 6= x
I Many systems just store the result quietly as a NaN (all 1’s in exponent), some

systems will signal or raise an exception
52 / 54

Inaccurate Floating Point Operations

• E.g.	Find	1st root	of	a	quadratic	equation
• r	=	(–b	+	sqrt(b*b	– 4*a*c))	/	(2*a)

Sparc processor,	 Solaris,	gcc 3.3	(ANSI	C),	
Expected Answer 0.00023025562642476431
double 0.00023025562638524986
float 0.00024670246057212353

• Problem	is	that	if	c	is	near	zero,

sqrt(b*b	– 4*a*c)	» b

• Rule	of	thumb:	use	the	highest	precision	which	does	not	give	up	too	much	speed

53 / 54

Catastrophic Cancellation

l (a – b) is inaccurate when a » b
l Decimal Examples

¡ Using 2 significant digits to compute mean of 5.1 and 5.2
using the formula (a+b) / 2:

a + b = 10 (with 2 sig. digits, 10.3 can only be stored as 10)
10 / 2 = 5.0 (the computed mean is less than both numbers!!!)

¡ Using 8 significant digits to compute sum of three numbers:
(11111113 + (–11111111)) + 7.5111111 = 9.5111111

11111113 + ((–11111111) + 7.5111111) = 10.000000

l Catastrophic cancellation occurs when

54 / 54

	Main Talk
	Overview
	Addition
	Multiplication & Division
	Shift
	Floating Point Number

