
CMSC 5743
Efficient Computing of Deep Neural Networks

Mo04: Binary/Ternary Network

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: March 23, 2023)

Spring 2023

These slides contain/adapt materials developed by

• Ritchie Zhao et al. (2017). “Accelerating binarized convolutional neural networks
with software-programmable FPGAs”. In: Proc. FPGA, pp. 15–24

• Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using
binary convolutional neural networks”. In: Proc. ECCV, pp. 525–542

2/22

Binary / Ternary Net: Motivation

Normalize

-1 0 1

Quantize

-1 0 1 -1 0 1

Scale

Wp
-Wn Wp-t t

Loss

Wn

Feed Forward Back Propagate Inference Time

Trained
Quantization

0

Full Precision Weight
Normalized  

Full Precision Weight Final Ternary WeightIntermediate Ternary Weight

gradient1 gradient2

Under review as a conference paper at ICLR 2017

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Dense (D)

(a)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Pruning the Network

(b)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Sparse (S)

(c)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Recover Zero Weights

(d)

−0.05 0 0.05
0

1600

3200

4800

6400

Weight Value

C
o

u
n

t

Train on Dense (D)

(e)

Figure 2: Weight distribution of the original GoogLeNet (a), pruned GoogLeNet (b), after retraining
the sparsity-constrained GoogLeNet (c), ignoring the sparisty constraint and recovering the zero
weights (d), and after retraining the dense network (e).

Initial Dense Training: The first D step learns the connection weights and importance via normal
network training on the dense network. Unlike conventional training, however, the goal of this D step
is not only to learn the values of the weights; we are also learning which connections are important.
We use the simple heuristic to quantify the importance of the weights using their absolute value.

Sparse Training: The S step prunes the low-weight connections and trains a sparse network. We
applied the same sparsity to all the layers, thus there’s a single hyper parameter: the sparsity, the
percentage of weights that are pruned to 0. For each layer W with N parameters, we sorted the
parameters, picked the k-th largest one λ = Sk as the threshold where k = N ∗ (1− sparsity), and
generated a binary mask to remove all the weights smaller than λ. Details are shown in Algorithm 1 .

The reason behind removing small weight is partially due to the Taylor expansion of the loss function,
shown in Equation (1)(2). We want to minimize the increase in Loss when conducting hard threshold
in pruning, so we need to minimize the first and second terms in equation 2. Since we are zeroing
out parameters, ∆Wi is actually Wi − 0 = Wi. At local minimum point with ∂Loss/∂Wi ≈ 0

and ∂2Loss
∂W 2

i
> 0, only the second order term matters. Since second order gradient ∂2Loss/∂W 2

i is
expensive to calculate and Wi has a power of 2, we use |Wi| as the metric of pruning. Smaller |Wi|
means smaller increase to the loss function.

Loss = f(x,W1,W2,W3...) (1)

∆Loss =
∂Loss

∂Wi
∆Wi +

1

2

∂2Loss

∂W 2
i

∆Wi
2 + ... (2)

Retraining while enforcing the binary mask in each iteration, we converted a dense network into
a sparse network which has a known sparsity support and can fully recover or even increase the
original accuracy of initial dense model under the sparsity constraint. The sparsity can be tuned using
validation and we found values between 25% and 50% generally work well in our experiments.

Final Dense Training: The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and the entire network is retrained
with 1/10 the original learning rate (since the sparse network is already at a good local minima).
Hyper parameters like dropout ratios and weight decay remained unchanged. By restoring the pruned
connections, the final D step increases the model capacity of the network and make it possible to
arrive at a better local minima compared with the sparse model from S step.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogLeNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for VGGNet and ResNet as well. The original distribution
of weight is centered on zero with tails dropping off quickly. Pruning is based on absolute value so
after pruning the large center region is truncated away. The network parameters un-truncated adjust
themselves during the retraining phase, so in (c) the boundary becomes soft and forms a bimodal
distribution. In (d), at the beginning of the re-dense training step, all the pruned weights come back
again and are reinitialized to zero. Finally, in (e), the previously-pruned weights are retrained together
with the survived weights. In this step, we kept the same learning hyper-parameters (weight decay,
learning rate, etc.) for reborn weights and old weights. Comparing Figure (d) and (e), the old weights’
distribution almost remained the same, while the new weights become more spread around zero. The
overall mean absolute value of the weight distribution is much smaller.

3

=>

Motivation

3/22

6

Binarized Neural Networks (BNN)

∗
Input Map

2.4		6.2		…

3.3		1.8

…

Weights

0.8		0.1		

0.3		0.8

∗
Input Map

(Binary)

1			−1			…

1					1

…

Weights
(Binary)

1		−1		

1		−1

=

Output Map

5.0		9.1		…

4.3		7.8

…

=

123
(Integer)

1				−3		…

3				−7

…

423 =
123 − 5

67 − 8
� : + <

Output Map
(Binary)

1			−1			…

1			−1	

…

=23 = >
+1			if	423 ≥ 0				
−1			otherwise		

→

Batch Normalization

Binarization

Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. Results are binarized after

batch normalization

CNN

BNN

4/22

� 6 conv layers, 3 dense layers, 3 max pooling layers
� All conv filters are 3x3
� First conv layer takes in floating-point input
� 13.4 Mbits total model size (after hardware optimizations)

7

BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

32x32
16x16

8x8
4x4

3 128
128 256

256 512
512

1024 1024

10

Number of feature maps

Feature map
dimensions

4/22

1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1} à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– Fewer bits per weight may be offset by having more weights

8

Advantages of BNN

b1 b2 b1	⨯	b2

+1 +1 +1

+1 −1 −1

−1 +1 −1

−1 −1 +1

b1 b2 b1	XOR b2

0 0 0

0 1 1

1 0 1

1 1 0

4/22

Architecture Depth Param Bits
(Float)

Param Bits
(Fixed-Point)

Error Rate
(%)

ResNet [3]
(CIFAR-10)

164 51.9M 13.0M* 11.26

BNN [2] 9 - 13.4M 11.40

9

BNN vs CNN Parameter Efficiency

� Comparison:
– Conservative assumption: ResNet can use 8-bit weights
– BNN is based on VGG (less advanced architecture)
– BNN seems to hold promise!

* Assuming each float param can be quantized to 8-bit fixed-point

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.
4/22

1 Minimize the Quantization Error

2 Reduce the Gradient Error

Overview

5/22

1 Minimize the Quantization Error

2 Reduce the Gradient Error

Overview

6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

Training Binary Weight Networks

Naive Solution:

�	  ���
�
�
�	.1���
1
.�
�	��
����	
�����	.	���
�	  �
���
2	
.�	
1	
��.

�.	���

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

Full'Precision' Naïve'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

''.'.'.''' '.'.'.''W R
R R

''.'.'.''' '.'.'.''WB BB
B

Binarization

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

Binary Weight Network

''.'.'.''' '.'.'.''
R

R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

56.8'

Full'Precision' Naïve' Binary'Weight'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

B

sign(X)

R B

(1) Binarizing Weights

=

=
=

(3) Convolution with XNOR-Bitcount

BBR R

sign(X)

≈

c"

(2) Binarizing Input

Efficient
=∑ |X:,:,i|

c

Redundant computation in overlapping areas

Inefficient

(2) Binarizing Input

X

R

B

sign(X)

=

Average Filter

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

56.8'

30.5'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

Network Structure in XNOR-Networks

sign(x) !
X1'

+1'

A'typical'block'in'CNN'
BN

or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

✗InformaIon'Loss'

✓MulIple'Maximums'

MaxXPooling'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

Network Structure in XNOR-Networks

BN
or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

✗InformaIon'Loss'

✓MulIple'Maximums' 1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

Network Structure in XNOR-Networks

✓InformaIon'Loss'
✓MulIple'Maximums'

BN
or
m
'

Ac
Iv
'

BN
or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

0'

10'

20'

30'

40'

50'

60'
AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

56.8'

30.5'

44.2'

✓ 32x'Smaller'Model'

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

AlexNet	 VGG	 ResNet-18	

Float	

Binary	

245 MB

500 MB

100 MB

7.4 MB 16 MB 1.5 MB

✓ 58x'Less'ComputaIon'

10 Rastegari et al.

0"

200"

400"

600"

800"

1000"

1200"

VGG*19" ResNet*18" AlexNet"

Double"Precision"

Binary"Precision"

16MB

1GB

1.5MB
100MB

475MB

7.4MB

(a)

1 32 1024

number of channels

0x

20x

40x

60x

80x
Speedup by varying channel size

(b)

0x0 10x10 20x20

filter size

50x

55x

60x

65x
Speedup by varying filter size

(c)

Fig. 4: This figure shows the efficiency of binary convolutions in terms of memory(a) and
computation(b-c). (a) is contrasting the required memory for binary and double precision weights
in three different architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by
binary convolution under (b)-different number of channels and (c)-different filter size

version of AlexNet is only 2.9% below the full precision version of AlexNet. This clas-
sification accuracy out performs competitors on binary neural networks by large margin.
We also present an ablation study, where we evaluate the key elements of our proposed
method; computing scaling factors and our block structure for binary CNN. We shows
that our method of computing the scaling factors is important to reach high accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is cNWNI, where c is the
number of channels, NW = wh and NI = winhin. Our binary approximation of
convolution (equation 11) has cNWNI binary operations and NI non-binary operations.
With the current generation of CPUs, we can perform 64 binary operations in one clock
of CPU, therefore the speedup can be computed by

S =
cNWNI

1
64cNWNI + NI

=
64cNW

cNW + 64
(12)

The speedup depends on the channel size and filter size but not the input size. In
figure 4-(b-c) we illustrate the speedup achieved by changing the number of channels
and filter size. While changing one parameter, we fix other parameters as follow: c =
256, nI = 142 and nW = 32 (majority of convolutions in ResNet[4] architecture have
this structure). Using our approximation of convolution we gain 62.27⇥ theoretical
speed up, but in our CPU implementation with all of the overheads, we achieve 58x
speed up in one convolution. With the small channel size (c = 3) and filter size (NW =
1 ⇥ 1) the speedup is not considerably high. This motivates us to avoid binarization at
the first and last layer of a CNN. In the first layer the chanel size is 3 and in the last
layer the filter size is 1 ⇥ 1. A similar strategy was used in [11]. Figure 4-a shows the
required memory for three different CNN architectures(AlexNet, VGG-19, ResNet-18)
with binary and double precision weights. Binary-weight-networks are so small that can
be easily fitted into portable devices.

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

0'

10'

20'

30'

40'

50'

60'

70'

80'

90'
AlexNet'Top.1$&$5'(%)'ILSVRC2012'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22

Motivation

• Naive methods (Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David
(2015). “Binaryconnect: Training deep neural networks with binary weights during
propagations”. In: Advances in neural information processing systems, pp. 3123–3131,
Matthieu Courbariaux, Itay Hubara, et al. (2016). “Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1”.
In: arXiv preprint arXiv:1602.02830) suffer the accuracy loss

Intuition

• Quantized parameter should approximate the full precision parameter as closely as
possible

Motivation and Intuition

7/22

Towards Accurate Binary
Convolutional Neural Network

Contribution

• Approximate full-precision weights with the linear combination of multiple binary
weight bases

• Introduce multiple binary activations

ABC-Net

9/22

Weights Binarization

• Weights tensors in one layer: W ∈ Rw×h×cin×cout

B1,B2, . . . ,BM ∈ {−1,+1}w×h×cinxcout

W ≈ α1B1 + α2B2 + . . .+ αMBM

Bi = Fui(W) = sign
(
W̄ + ui std(W)

)
, i = 1, 2, . . . ,M

where W̄ = W − mean(W), ui is a shift parameter(e.g. ui = −1 + (i − 1) 2
M−1)

α can be calculated via mina J(α) = ∥W − Bα∥2

ABC-Net

10/22

Forward and Backward

• Forward

B1,B2, · · · ,BM = Fu1(W),Fw2(W), · · · ,Fu,u(W)

solvemin
a

J(α) = ∥W − Bα∥2 for α

O =

M∑

m=1

αm Conv (Bm,A)

• Backward

∂c
∂W

=
∂c
∂O

(
M∑

m=1

αm
∂O
∂Bm

∂Bm

∂W

)
STE
=

∂c
∂O

(
M∑

m=1

αm
∂O
∂Bm

)
=

M∑

m=1

αm
∂c
∂Bm

ABC-Net

11/22

Multiple Binary Activations

• Bounded Activation Function

h(x) ∈ [0, 1]
hr(x) = clip(x + v, 0, 1)
where v is a shift parameter

• Binarization Function

Hv(R) := 2Ihv(R)≥0.5 − 1
A1,A2, . . . ,AN = Hv1(R),Hv2(R), . . . ,HvN(R)
R ≈ β1A1 + β2A2 + . . .+ βNAN

where R is the real-value activation

• A1,A2, . . . ,AN is the base to represent the real-valued activations

ABC-Net

12/22

• ApproxConv is expected to approximate the conventional full-precision convolution
with linear combination of binary convolutions

• The right part is the overall block structure of the convolution in ABC-Net.The input
is binarized using different functions Hv1,Hv2,Hv3
Conv(W,R) ≈ Conv

(∑M
m=1 αmBm,

∑N
n=1 βnAn

)
=
∑M

m=1
∑N

n=1 αmβn Conv (Bm,An)

ABC-Net

13/22

Read the paper2if you want to learn the specific details of the
algorithm

2Xiaofan Lin, Cong Zhao, and Wei Pan (2017). “Towards accurate binary convolutional neural
network”. In: Advances in Neural Information Processing Systems, pp. 345–353.

ABC-Net

14/22

1 Minimize the Quantization Error

2 Reduce the Gradient Error

Overview

15/22

Motivation

• Although STE is often adopted to estimate the gradients in BP, there exists obvious
gradient mismatch between the gradient of the binarization function

• With the restriction of STE, the parameters outside the range of [−1 : +1] will not be
updated.

Motivation and Intuition

15/22

Bi-real net: Enhancing the performance of 1-bit CNNs with
improved representational capability and advanced training

algorithm

Bi-Real

16/22

Naive Binarization Function

• Recall the partial derivative calculation in back propagation
∂L
∂Al,t

r
= ∂L

∂Al,t
b

∂Al,t
b

∂Al,t
r
= ∂L

∂Al,t
b

∂ Sign(Al,t
r)

∂Al,t
r

≈ ∂L
∂Al,t

b

∂F(Al,t
r)

∂Al,t
r

• Sign function is a non-differentiable function, so F is an approximation differentiable
function of Sign function

Bi-Real

17/22

∂L
∂Al,t

r
= ∂L

∂Al,t
b

∂Al,t
b

∂Al,t
r
= ∂L

∂Al,t
b

∂ Sign
(

Al,t
r

)
∂Al,t

r
≈ ∂L

∂Al,t
b

∂F
(

Al,t
r

)
∂Al,t

r

Approximation of Sign function

• Naive Approximation F(x) = clip(x, 0, 1), see fig(b)

• More Precious Approximation in Bi-Real, see fig(c)

Approxsign(x) =





−1, if x < −1
2x + x2, if − 1 ≤ x < 0
2x − x2, if 0 ≤ x < 1
1, otherwise

∂Approxsign(x)
∂x =





2 + 2x, if − 1 ≤ x < 0
2 − 2x, if 0 ≤ x < 1
0, otherwise

Bi-Real

18/22

Read the paper3 if you want to learn the specific details of the
algorithm

3Zechun Liu et al. (2018). “Bi-real net: Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm”. In: Proceedings of the European
conference on computer vision (ECCV), pp. 722–737.

Bi-Real

19/22

Trained ternary quantization

Overview of the trained ternary quantization procedure.

4Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR.

Trained Ternary Quantization4

21/22

Ternary weights value (above) and distribution (below) with iterations for different layers of
ResNet-20 on CIFAR-10.

4Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR.

Trained Ternary Quantization4

21/22

• Hyeonuk Kim et al. (2017). “A Kernel Decomposition Architecture for Binary-weight
Convolutional Neural Networks”. In: Proc. DAC, 60:1–60:6

• Jungwook Choi et al. (2018). “Pact: Parameterized clipping activation for quantized
neural networks”. In: arXiv preprint arXiv:1805.06085

• Dongqing Zhang et al. (2018). “Lq-nets: Learned quantization for highly accurate
and compact deep neural networks”. In: Proceedings of the European conference on
computer vision (ECCV), pp. 365–382

• Aojun Zhou et al. (2017). “Incremental network quantization: Towards lossless cnns
with low-precision weights”. In: arXiv preprint arXiv:1702.03044

• Zhaowei Cai et al. (2017). “Deep learning with low precision by half-wave gaussian
quantization”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5918–5926

Reading List

22/22

	Main Talk
	Minimize the Quantization Error
	Reduce the Gradient Error

