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Binary / Ternary Net: Motivation
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Figure 2: Weight distribution of the original GoogLeNet (a), pruned GoogLeNet (b), after retraining
the sparsity-constrained GoogLeNet (c), ignoring the sparisty constraint and recovering the zero
weights (d), and after retraining the dense network (e).

Initial Dense Training: The first D step learns the connection weights and importance via normal
network training on the dense network. Unlike conventional training, however, the goal of this D step
is not only to learn the values of the weights; we are also learning which connections are important.
We use the simple heuristic to quantify the importance of the weights using their absolute value.

Sparse Training: The S step prunes the low-weight connections and trains a sparse network. We
applied the same sparsity to all the layers, thus there’s a single hyper parameter: the sparsity, the
percentage of weights that are pruned to 0. For each layer W with N parameters, we sorted the
parameters, picked the k-th largest one λ = Sk as the threshold where k = N ∗ (1− sparsity), and
generated a binary mask to remove all the weights smaller than λ. Details are shown in Algorithm 1 .

The reason behind removing small weight is partially due to the Taylor expansion of the loss function,
shown in Equation (1)(2). We want to minimize the increase in Loss when conducting hard threshold
in pruning, so we need to minimize the first and second terms in equation 2. Since we are zeroing
out parameters, ∆Wi is actually Wi − 0 = Wi. At local minimum point with ∂Loss/∂Wi ≈ 0

and ∂2Loss
∂W 2

i
> 0, only the second order term matters. Since second order gradient ∂2Loss/∂W 2

i is
expensive to calculate and Wi has a power of 2, we use |Wi| as the metric of pruning. Smaller |Wi|
means smaller increase to the loss function.

Loss = f(x,W1,W2,W3...) (1)

∆Loss =
∂Loss

∂Wi
∆Wi +

1

2

∂2Loss

∂W 2
i

∆Wi
2 + ... (2)

Retraining while enforcing the binary mask in each iteration, we converted a dense network into
a sparse network which has a known sparsity support and can fully recover or even increase the
original accuracy of initial dense model under the sparsity constraint. The sparsity can be tuned using
validation and we found values between 25% and 50% generally work well in our experiments.

Final Dense Training: The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and the entire network is retrained
with 1/10 the original learning rate (since the sparse network is already at a good local minima).
Hyper parameters like dropout ratios and weight decay remained unchanged. By restoring the pruned
connections, the final D step increases the model capacity of the network and make it possible to
arrive at a better local minima compared with the sparse model from S step.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogLeNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for VGGNet and ResNet as well. The original distribution
of weight is centered on zero with tails dropping off quickly. Pruning is based on absolute value so
after pruning the large center region is truncated away. The network parameters un-truncated adjust
themselves during the retraining phase, so in (c) the boundary becomes soft and forms a bimodal
distribution. In (d), at the beginning of the re-dense training step, all the pruned weights come back
again and are reinitialized to zero. Finally, in (e), the previously-pruned weights are retrained together
with the survived weights. In this step, we kept the same learning hyper-parameters (weight decay,
learning rate, etc.) for reborn weights and old weights. Comparing Figure (d) and (e), the old weights’
distribution almost remained the same, while the new weights become more spread around zero. The
overall mean absolute value of the weight distribution is much smaller.
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Binarized Neural Networks (BNN)
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� 6 conv layers, 3 dense layers, 3 max pooling layers
� All conv filters are 3x3
� First conv layer takes in floating-point input
� 13.4 Mbits total model size (after hardware optimizations)

7

BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.
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1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1}  à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– Fewer bits per weight may be offset by having more weights

8

Advantages of BNN
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Architecture Depth Param Bits
(Float)

Param Bits
(Fixed-Point)

Error Rate
(%)

ResNet [3]
(CIFAR-10)

164 51.9M 13.0M* 11.26

BNN [2] 9 - 13.4M 11.40

9

BNN vs CNN Parameter Efficiency

� Comparison:
– Conservative assumption: ResNet can use 8-bit weights
– BNN is based on VGG (less advanced architecture)
– BNN seems to hold promise!

* Assuming each float param can be quantized to 8-bit fixed-point

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.
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1 Minimize the Quantization Error

2 Reduce the Gradient Error

Overview
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Training Binary Weight Networks 

Naive Solution: 

�	  ���
�
�
�	.1���
1
.�
�	��
����	
�����	.	���
�	  �
���
2	
.�	
1	
��.


�.	���

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22



0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

Full'Precision' Naïve'

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22



''.'.'.''' '.'.'.''W R
R R

''.'.'.''' '.'.'.''WB BB
B

Binarization 

1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22



1

1Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542. 6/22



Binary Weight Network 
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Train for binary weights: 
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Mohammad Rastegari

October 2016

1 Introduction
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1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)
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Network Structure in XNOR-Networks 
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Network Structure in XNOR-Networks 
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Network Structure in XNOR-Networks 
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Fig. 4: This figure shows the efficiency of binary convolutions in terms of memory(a) and
computation(b-c). (a) is contrasting the required memory for binary and double precision weights
in three different architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by
binary convolution under (b)-different number of channels and (c)-different filter size

version of AlexNet is only 2.9% below the full precision version of AlexNet. This clas-
sification accuracy out performs competitors on binary neural networks by large margin.
We also present an ablation study, where we evaluate the key elements of our proposed
method; computing scaling factors and our block structure for binary CNN. We shows
that our method of computing the scaling factors is important to reach high accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is cNWNI, where c is the
number of channels, NW = wh and NI = winhin. Our binary approximation of
convolution (equation 11) has cNWNI binary operations and NI non-binary operations.
With the current generation of CPUs, we can perform 64 binary operations in one clock
of CPU, therefore the speedup can be computed by

S =
cNWNI

1
64cNWNI + NI

=
64cNW

cNW + 64
(12)

The speedup depends on the channel size and filter size but not the input size. In
figure 4-(b-c) we illustrate the speedup achieved by changing the number of channels
and filter size. While changing one parameter, we fix other parameters as follow: c =
256, nI = 142 and nW = 32 (majority of convolutions in ResNet[4] architecture have
this structure). Using our approximation of convolution we gain 62.27⇥ theoretical
speed up, but in our CPU implementation with all of the overheads, we achieve 58x
speed up in one convolution. With the small channel size (c = 3) and filter size (NW =
1 ⇥ 1) the speedup is not considerably high. This motivates us to avoid binarization at
the first and last layer of a CNN. In the first layer the chanel size is 3 and in the last
layer the filter size is 1 ⇥ 1. A similar strategy was used in [11]. Figure 4-a shows the
required memory for three different CNN architectures(AlexNet, VGG-19, ResNet-18)
with binary and double precision weights. Binary-weight-networks are so small that can
be easily fitted into portable devices.
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Motivation

• Naive methods (Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David
(2015). “Binaryconnect: Training deep neural networks with binary weights during
propagations”. In: Advances in neural information processing systems, pp. 3123–3131,
Matthieu Courbariaux, Itay Hubara, et al. (2016). “Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1”.
In: arXiv preprint arXiv:1602.02830) suffer the accuracy loss

Intuition

• Quantized parameter should approximate the full precision parameter as closely as
possible

Motivation and Intuition
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Towards Accurate Binary
Convolutional Neural Network



Contribution

• Approximate full-precision weights with the linear combination of multiple binary
weight bases

• Introduce multiple binary activations

ABC-Net
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Weights Binarization

• Weights tensors in one layer: W ∈ Rw×h×cin×cout

B1,B2, . . . ,BM ∈ {−1,+1}w×h×cinxcout

W ≈ α1B1 + α2B2 + . . .+ αMBM

Bi = Fui(W) = sign
(
W̄ + ui std(W)

)
, i = 1, 2, . . . ,M

where W̄ = W − mean(W), ui is a shift parameter(e.g. ui = −1 + (i − 1) 2
M−1 )

α can be calculated via mina J(α) = ∥W − Bα∥2

ABC-Net
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Forward and Backward

• Forward

B1,B2, · · · ,BM = Fu1(W),Fw2(W), · · · ,Fu,u(W)

solvemin
a

J(α) = ∥W − Bα∥2 for α

O =

M∑

m=1

αm Conv (Bm,A)

• Backward

∂c
∂W

=
∂c
∂O

(
M∑

m=1

αm
∂O
∂Bm

∂Bm

∂W

)
STE
=

∂c
∂O

(
M∑

m=1

αm
∂O
∂Bm

)
=

M∑

m=1

αm
∂c
∂Bm

ABC-Net
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Multiple Binary Activations

• Bounded Activation Function

h(x) ∈ [0, 1]
hr(x) = clip(x + v, 0, 1)
where v is a shift parameter

• Binarization Function

Hv(R) := 2Ihv(R)≥0.5 − 1
A1,A2, . . . ,AN = Hv1(R),Hv2(R), . . . ,HvN(R)
R ≈ β1A1 + β2A2 + . . .+ βNAN

where R is the real-value activation

• A1,A2, . . . ,AN is the base to represent the real-valued activations

ABC-Net
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• ApproxConv is expected to approximate the conventional full-precision convolution
with linear combination of binary convolutions

• The right part is the overall block structure of the convolution in ABC-Net.The input
is binarized using different functions Hv1,Hv2,Hv3
Conv(W,R) ≈ Conv

(∑M
m=1 αmBm,

∑N
n=1 βnAn

)
=
∑M

m=1
∑N

n=1 αmβn Conv (Bm,An)

ABC-Net
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Read the paper2if you want to learn the specific details of the
algorithm

2Xiaofan Lin, Cong Zhao, and Wei Pan (2017). “Towards accurate binary convolutional neural
network”. In: Advances in Neural Information Processing Systems, pp. 345–353.

ABC-Net
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1 Minimize the Quantization Error

2 Reduce the Gradient Error

Overview
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Motivation

• Although STE is often adopted to estimate the gradients in BP, there exists obvious
gradient mismatch between the gradient of the binarization function

• With the restriction of STE, the parameters outside the range of [−1 : +1] will not be
updated.

Motivation and Intuition
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Bi-real net: Enhancing the performance of 1-bit CNNs with
improved representational capability and advanced training

algorithm

Bi-Real
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Naive Binarization Function

• Recall the partial derivative calculation in back propagation
∂L
∂Al,t

r
= ∂L

∂Al,t
b

∂Al,t
b

∂Al,t
r
= ∂L

∂Al,t
b

∂ Sign(Al,t
r )

∂Al,t
r

≈ ∂L
∂Al,t

b

∂F(Al,t
r )

∂Al,t
r

• Sign function is a non-differentiable function, so F is an approximation differentiable
function of Sign function

Bi-Real
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∂L
∂Al,t

r
= ∂L

∂Al,t
b

∂Al,t
b

∂Al,t
r
= ∂L

∂Al,t
b

∂ Sign
(

Al,t
r

)
∂Al,t

r
≈ ∂L

∂Al,t
b

∂F
(

Al,t
r

)
∂Al,t

r

Approximation of Sign function

• Naive Approximation F(x) = clip(x, 0, 1), see fig(b)

• More Precious Approximation in Bi-Real, see fig(c)

Approxsign(x) =





−1, if x < −1
2x + x2, if − 1 ≤ x < 0
2x − x2, if 0 ≤ x < 1
1, otherwise

∂Approxsign(x)
∂x =





2 + 2x, if − 1 ≤ x < 0
2 − 2x, if 0 ≤ x < 1
0, otherwise

Bi-Real
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Read the paper3 if you want to learn the specific details of the
algorithm

3Zechun Liu et al. (2018). “Bi-real net: Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm”. In: Proceedings of the European
conference on computer vision (ECCV), pp. 722–737.

Bi-Real
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Trained ternary quantization



Overview of the trained ternary quantization procedure.

4Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR.

Trained Ternary Quantization4
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Ternary weights value (above) and distribution (below) with iterations for different layers of
ResNet-20 on CIFAR-10.

4Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR.

Trained Ternary Quantization4
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• Hyeonuk Kim et al. (2017). “A Kernel Decomposition Architecture for Binary-weight
Convolutional Neural Networks”. In: Proc. DAC, 60:1–60:6
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