CMSC 5743 Efficient Computing of Deep Neural Networks

Implementation 03: GEMM-3

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: March 2, 2023)

Spring 2023

1 [Sparse Convolution](#page-2-0)

2 [Sparse Hardware Architecture](#page-12-0)

1 [Sparse Convolution](#page-2-0)

2 [Sparse Hardware Architecture](#page-12-0)

Sparse Convolution

- Our DNN may be redundant, and sometimes the filters may be sparse
- Sparsity can be helpful to overcome over-fitting

Sparse Convolution: Naive Implementation 1

w 0 $\overline{0}$ $\overline{4}$ $\overline{8}$

Algorithm Sparse Convlution Naive 1

- 1: **for all** *w*[i] **do**
- 2: **if** $w[i] = 0$ then
- 3: Continue;
- 4: **end if**
- 5: output feature map $Y \leftarrow X \times w[i]$;

6: **end for**

- 1: **for all** *w*[i] **do**
- 2: **if** $w[i] = 0$ then
- 3: Continue;
- 4: **end if**
- 5: output feature map $Y \leftarrow X \times w[i]$;

6: **end for**

BAD implementation for Pipeline!

Sparse Matrix Representation

- CSR: Good for operation on feature maps
- CSC: Good for operation on filters
- We have better control on filters, thus usually CSC.

- BAD implementation for Spatial Locality!
- Poor memory access patterns

SOTA 2: Sparse Convolution

Figure 1: Conceptual view of the direct sparse convolution algorithm. Computation of output value at (y, x) th position of *n*th output channel is highlighted.

```
for each output channel n {
 for j in [W.rowptr[n], W.rowptr[n+1]) {
  off = W_{c}colidx[il: coeff = W_{c}value[il
  for (int y = 0; y < H OUT; ++y) {
   for (int x = 0; x < W OUT; ++x)
    out \lceil n \rceil \lceil v \rceil \lceil x \rceil += coeff*in \lceil off+f(0,v,x) \rceil
```
Figure 2: Sparse convolution pseudo code. Matrix W has compressed sparse row (CSR) format, where rowptr[n] points to the first non-zero weight of *n*th output channel. For the *j*th nonzero weight at (n, c, r, s) , W. colidx [j] contains the offset to (c, r, s) th element of tensor in, which is pre-computed by layout function as $f(c, r, s)$. If in has CHW format, $f(c,r,s) = (cH_{in} + r)W_{in} + s$. The "virtual" dense matrix is formed on-the-fly by shifting in by $(0, y, x)$.

¹ Jongsoo Park et al. (2017). "Faster CNNs with direct sparse convolutions and guided pruning". In: *Proc. ICLR*.

1

- Sparsity is a desired property for computation acceleration. (cuSPARSE library, direct sparse convolution, etc.)
- Sometimes not only the filters but also the input feature maps are sparse.

Discussion: Sparse-Sparse Convolution

- Efficient programming implementation required; (Improve pipeline efficiency)
- When sparsity($input$) = 0.9, sparsity($weight$) = 0.8, more than $10 \times$ speedup;
- Some other issues:
	- How to be compatible with pooling layer?
	- Transform between dense & sparse formats

2 [Sparse Hardware Architecture](#page-12-0)

11/28

Sparse Hardware Architecture

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Han et al. ISCA 2016

Deep Learning Accelerators

• First Wave: Compute (Neu Flow)

• Second Wave: Memory (Diannao family)

• Third Wave: Algorithm / Hardware Co-Design (EIE)

Google TPU: "This unit is designed for dense matrices. Sparse architectural support was omitted for time-to-deploy reasons. Sparsity will have high priority in future designs"

EIE: the First DNN Accelerator for Sparse, Compressed Model

EIE: Parallelization on Sparsity

$$
\mathbf{a} \begin{pmatrix} 0 & \mathbf{a}_1 & 0 & a_3 \end{pmatrix}
$$
\n
$$
\begin{pmatrix}\n w_{0,0} \mathbf{w}_{0,1} & 0 & w_{0,3} \\
 0 & 0 & w_{1,2} & 0 \\
 0 & w_{2,1} & 0 & w_{2,3} \\
 0 & 0 & 0 & 0 \\
 0 & 0 & w_{4,2}w_{4,3} \\
 0 & 0 & 0 & 0 \\
 0 & 0 & w_{5,0} & 0 \\
 0 & 0 & w_{6,3} & 0 \\
 0 & w_{7,1} & 0 & 0\n\end{pmatrix} = \begin{pmatrix}\n b_0 \\
 b_1 \\
 b_2 \\
 -b_2 \\
 b_3 \\
 -b_4 \\
 -b_5 \\
 b_6 \\
 b_7 \\
 -b_7\n\end{pmatrix}
$$
\n
$$
\mathbf{a}_{ELU} \begin{pmatrix}\n b_0 \\
 b_1 \\
 b_1 \\
 0 \\
 b_3 \\
 0 \\
 b_5 \\
 b_6 \\
 0\n\end{pmatrix}
$$

4512/28

EIE: Parallelization on Sparsity

12/28

Dataflow

rule of thumb: $0 * A = 0$ W $* 0 = 0$

EIE Architecture

Weight decode

Figure 1. Excluding Address Accumulate

rule of thumb: $0 * A = 0$ W $* 0 = 0$ 2.09, 1.92=> 2 these resource demands become prohibitive. Table I shows

12/28

Post Layout Result of EIE

- 1. Post layout result
- 2. Throughput measured on AlexNet FC-7

Speedup on EIE

5112/28

Energy Efficiency on EIE

Comparison: Throughput

Comparison: Energy Efficiency

Indexing Module (IM) for sparse data

- ing needed neurons of sparse networks wi exing needed neurons of sparse networks with different levels of sparsities.
- indexing module to each PE, we design a centralized indexing s designed in the builer controller and only t neurons to processing engines. between the neural buffer and PES because the neural buffer and PES because the number of data buffer and PES • A centralized IM is designed in the buffer controller and only transfer the indexed • IM is used for indexing needed neurons of sparse networks with different levels of sparsities.
• A centralized IM is designed in the buffer controller and only transfer the indexed neurons to processing engines.
[•]Shij

²Shijin Zhang et al. (2016). "Cambricon-x: An accelerator for sparse neural networks". In: $\overline{12}$ *Proc. MICRO*. IEEE, pp. 1–12.

Weight Sparsity

Direct indexing and hardware implementation

• Neurons are selected from all input neurons directly based on existed connections in the binary string. ence onder y serm

module in the BC and only transfer the indexed neurons to

Step indexing and hardware implementation between the and Pes because the number of data the string and the original string and the original string, the i

 $\mathcal{F}_{\mathcal{A}}$ space network example with the direct index index index index index index index index in

• Neurons are selected based on the distances between input neurons with existed $\frac{1}{2}$ s ynapses. $\frac{1}{\sqrt{2}}$ synapses.

Lots of Runtime Zeroes

Ineffectual zero computations. Lots of Runtime Zeroes

0.6

 $\label{def:1} \begin{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \end{minipage}[t]{0.9\linewidth} \end{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \end{minipage}[t]{0.9\linewidth} \end{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \end{minipage}[t]{0.9\linewidth} \end{minipage}[t]{0.9\linewidth} \begin{minipage}[t]{0.9\linewidth} \end{$

³ Jorge Albericio et al. (2016). "Cnvlutin: Ineffectual-neuron-free deep net computing". In: *ACM SIGARCH Computer Architecture News* 44.3, pp. 1–13. ³Jorge Albericio et al. (2016). "Cnvlutin: Ineffectual-neuron-free deep neural network

DaDianNao⁴ Mod^4

⁴Yunji Chen et al. (2014). "Dadiannao: A machine-learning supercomputer". In: *2014 47th Annual IEEE/ACM International Symposium on Microarchitecture*. IEEE, pp. 609–622. 17/28

Processing in DaDianNao Processing in DaDianNao

Processing in DaDianNao Processing in DaDianNao

Processing in DaDianNao Processing in DaDianNao

Processing in DaDianNao
Zero-skipping in DaDianNao

Zero removal.

…

Processing in DaDianNao ng in *DaDian*n vao.
²⁰¹0 -

Zero removal.

Processing in DaDianNao

Lanes can not longer operate in lock-step.

Lanes can not longer operate in lock-step.

CNVLUTIN: Decoupling Lanes

CNVLUTIN: Decoupling Lanes CNVLUTIN: Decoupling Lanes

Subunit 0

…

CNVLUTIN: Decoupling Lanes CNVLUTIN: Decoupling Lanes

Subunit 0

…

CNVLUTIN: Decoupling Lanes \Box Lanes

Decoupled Neuron Lanes:

Neuron + coordinate Proceed independently

Partitioned SB:

16-wide accesses

1 synapse per filter

- Wenlin Chen et al. (2015). "Compressing neural networks with the hashing trick". In: *Proc. ICML*, pp. 2285–2294
- Huizi Mao et al. (2017). "Exploring the granularity of sparsity in convolutional neural networks". In: *CVPR Workshop*, pp. 13–20
- Zhuang Liu et al. (2017). "Learning efficient convolutional networks through network slimming". In: *Proc. ICCV*, pp. 2736–2744
- Chenglong Zhao et al. (June 2019). "Variational convolutional neural network pruning". In: *Proc. CVPR*
- Junru Wu et al. (2018). "Deep *k*-Means: Re-training and parameter sharing with harder cluster assignments for compressing deep convolutions". In: *Proc. ICML*