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Strassen



• Time Complexity: O(N3)

Matrix Multiplication: Naive Algorithm
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To compute C = AB, we first partition A, B and C into equal=sized blocked
matrices such that

where Aij,Bij,Cij ∈ R
N
2 ×

N
2 . We then have:

Blockwise Matrix Multiplication
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Matrix Multiplication: Recursive Algorithm
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The recursive algorithm can be formulated as:

This algorithm makes eight recursive calls. Besides, it also adds two n × n
matrices, which requires n2 time. By Master Theorem, the time complexity of the
recursive algorithm is: T(n) = O(Nlog8

2) = O(N3).

Time Complexity Analysis
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Suppose we need to calculate matrix multiplication M × N, following the idea of
blockwise multiplication, we can first split the matrices into:

Then, we calculate the intermediate matrices:

Strassen Algorithm
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The final results are:

Strassen Algorithm
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Strassen Algorithm
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Strassen algorthm makes seven recursive calls. Besides, the additions and
subtractions take N2 time. Therefore, Strassen algorithm can be formulated as:

By Master Theorem, the time complexity of the recursive algorithm is:
T(n) = O(Nlog7

2) = O(N2.8074).

Time Complexity Analysis
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Matrix size w/o Strassen w/ Strassen
(256, 256, 256) 23 23
(512, 512, 512) 191 176 (↓ 7.9%)
(512, 512, 1024) 388 359 (↓ 7.5%)

(1024, 1024, 1024) 1501 1299 (↓ 13.5%)

class XPUBackend final : public Backend {

XPUBackend(MNNForwardType type, MemoryMode mode);

virtual ~XPUBackend();

virtual Execution* onCreate(const vector<Tensor*>& inputs,

const vector<Tensor*>& outputs, const MNN::Op* op);

virtual void onExecuteBegin() const;

virtual void onExecuteEnd() const;

virtual bool onAcquireBuffer(const Tensor* tensor, StorageType storageType);

virtual bool onReleaseBuffer(const Tensor* tensor, StorageType storageType);

virtual bool onClearBuffer();

virtual void onCopyBuffer(const Tensor* srcTensor, const Tensor* dstTensor) const;

}

Strassen Algorithm
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Winograd



The calculation process of convolutional layer

• No padding

• Unit strides

• 3 × 3 kernel size

• 4 × 4 input feature map

What is Convolution?
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The calculation process of deconvolutional layer

• 2 × 2 padding with border of zeros

• Unit strides

• 3 × 3 kernel size

• 4 × 4 input feature map

1Vincent Dumoulin and Francesco Visin (2016). “A guide to convolution arithmetic for deep
learning”. In: arXiv preprint arXiv:1603.07285.

What is Deconvolution (transposed convolution)?1
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2Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm2
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2Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm2
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2Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm2
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Generalization to 2D cases:
Suppose the input feature map is

and the kernel is:

3Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm3
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Using Im2Col function, the convolution process can be defined as:

4Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm4
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We can split the matrices into blocks as:

which can be denoted as:

5Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm5
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Then, the we can use 1D winograd algorithm to calculate the blockwise result:

where

6Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm6
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7Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm7
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7Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.
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7Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm7
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M
erge

𝑌𝑖𝑗
′ 𝑧 =

𝑘

𝑋𝑖𝑗
′ 𝑘 ⋅ 𝑊𝑖𝑗

′ 𝑘 𝑧

𝑋
(4, 4, 𝑈, 𝑖𝑐)

𝑋′
(4, 4, 𝑈, 𝑖𝑐)

𝑊
(3, 3, 𝑖𝑐 , 𝑜𝑐)

𝑊′
(4, 4, 𝑖𝑐 , 𝑜𝑐)

matrix mul

𝑈, 𝑜𝑐 𝑈, 𝑖𝑐 𝑖𝑐 , 𝑜𝑐

matrix mul

matrix mul

matrix mul

𝑌′
(4, 4, 𝑈, 𝑜𝑐)

𝑌 = 𝐴𝑇𝑌′𝐴 𝑌

𝑊′ = 𝐺𝑊𝐺𝑇𝑋′ = 𝐵𝑇𝑋𝐵

(2, 2, 𝑈, 𝑜𝑐)

Optimized Winograd algorithm in MNN
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Training in the Winograd Domain
Workshop track - ICLR 2017
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Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4× 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Producing 4 output pixels: 

Direct Convolution: 
- 4*9=36 multiplications (1x) 

Winograd convolution: 
- 4*4=16 multiplications (2.25x less) 

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

8
8Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.
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During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

Producing 4 output pixels: 

Direct Convolution: 
- 4*9=36 multiplications (1x) 
- sparse weight [NIPS’15] (3x) 
- sparse activation (relu) (3x) 
- Overall saving: 9x 

Winograd convolution: 
- 4*4=16 multiplications (2.25x less) 
- dense  weight (1x) 
- dense activation (1x) 
- Overall saving: 2.25x

Training in the Winograd Domain

8
8Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.
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Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4× 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

Producing 4 output pixels: 

Direct Convolution: 
- 4*9=36 multiplications (1x) 
- sparse weight [NIPS’15] (3x) 
- sparse activation (relu) (3x) 
- Overall saving: 9x 

Winograd convolution: 
- 4*4=16 multiplications (2.25x less) 
- sparse weight (2.5x) 
- dense activation (2.25x) 
- Overall saving: 12x

Solution: Fold Relu into Winograd

8
8Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.
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Figure 2: Test accuracy vs density for the three architectures of Figure 1 on VGG-nagadomi.

re-training until accuracy converges. We varied the pruning rate R from 20% to 70%. The first
convolution layer is not included in pruning but is included in re-training.

Figure 2 shows accuracy as a function of density for the three architectures of Figure 1. The network
of Figure 1c (which moves pruning and ReLU to the transform domain) can be pruned to 40%
density without significant (> 0.1%) loss of accuracy. The conventional network of Figure 1a can
only be pruned to 60% density before accuracy falls.

Figure 3: Activation density of convolution layers of VGG-nagadomi. Whiskers show one standard
deviation above and below the mean.

Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 × 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6× to
5.0×107. Using the Winograd transformation (Figure 1a) requires 1.1×108 multiplies, a reduction
of 2.2× compared to the original network, but an increase of 2.1× compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3×107 multiplies. It combines the
2.2× savings from Winograd with the 4.6× savings from sparsity to give a net reduction of 10.2×
compared to the original network.

5 CONCLUSION

We have shown that we can combine the ≈ 5× computation savings of sparse weights and activa-
tions with the 2−4× savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2× reduction in
computation for a 2× 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).
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Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 × 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6× to
5.0× 107. Using the Winograd transformation (Figure 1a) requires 1.1× 108 multiplies, a reduction
of 2.2× compared to the original network, but an increase of 2.1× compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3× 107 multiplies. It combines the
2.2× savings from Winograd with the 4.6× savings from sparsity to give a net reduction of 10.2×
compared to the original network.

5 CONCLUSION

We have shown that we can combine the ≈ 5× computation savings of sparse weights and activa-
tions with the 2− 4× savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2× reduction in
computation for a 2 × 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).

3
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Dataflow Optimization



Case Study 2
Communication Lower Bound in CNN 

Accelerators 



• Memory access consumes most of total energy
• CNN accelerators are mostly memory dominant

2

Memory Bottleneck in CNN Accelerators

T. Chen et al., DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous
Machine-Learning, ASPLOS'14

Google slide, one of ten lessons learned from three generations TPUs



• Complicated data reuse
• Input reuse
• Sliding window reuse
• Weight reuse
• Output reuse

• Finding minimum communication is 
difficult: huge search space caused 
by 7 levels of loops and complex 
data reuse schemes

3

Convolutional Layer
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+

×

×

×
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• Naive matrix multiplication

• Communication-optimal matrix multiplication

4

Communication in Matrix Multiplication
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Relation between Convolution & Matrix Multiplication (im2col)
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• Weights and outputs are just reshaped ---- without adding or 
removing elements
• Inputs are unfolded ---- all sliding windows (having overlapped 

elements) are explicitly expanded
• Convolution has only one more level of data reuse (sliding window 

reuse) than matrix multiplication

6

Observations

Communication-optimal convolution
= communication-optimal matrix multiplication + sliding window reuse?



• Matrix multiplication only used to inspire derivation process, there 
is not an actual conversion in our implementation
• Theoretical derivation based on Red-Blue Pebble Game [1]

7

Communication Lower Bound of Convolution

Slow memory 
(unlimited size)

Fast memory 
(limited size S)

Processors

?

Convolution

[1] J.-W. Hong and H. T. Kung, “I/O Complexity: The Red-blue Pebble Game,” in ACM Symposium on Theory of Computing (STOC), 1981, pp. 326-333
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Communication-optimal Dataflow

• Communication-optimal tiling parameters
• 𝑏𝑥𝑦 ≈ 𝑅𝑧: balanced loading volumes of 

inputs & weights
• 𝑏𝑥𝑦𝑧 ≈ 𝑆 & 𝑘 = 1: most of on-chip 

memory should be for Psums (using 
least inputs to produce most outputs)
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• Straightforward implementation of communication-optimal dataflow
• Elaborate multiplexer structure to adapt to different tiling 

parameters, no inter-PE data propagation

9

Communication-optimal Architecture
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Simulation Results
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DRAM access: 4.5% more than lower 
bound, >40% reduction than Eyeriss [1]

Energy consumption: 37-87% higher 
than lower bound

[1] Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” in ISCA 2016
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