
CENG3420

Lab 1-1: RISC-V Assembly Language Programing I

Chen BAI
Department of Computer Science & Engineering
Chinese University of Hong Kong
cbai@cse.cuhk.edu.hk

Spring 2022

1 Introduction to Basic RISC-V Assembly Programing

2 RARS

3 System Service in RARS

4 Lab 1-1 Assignment

Outline

2/33

Introduction to Basic RISC-V
Assembly Programing

• We can manipulate 32 general purpose registers in assembly programming directly.

• We prefer using aliases to indicate registers.

• Instructions category

• Load and store instructions
• Bitwise instructions
• Arithmetic instructions
• Control transfer instructions
• Pseudo instructions

Registers

4/33

Table: Register names and descriptions

Register Names ABI Names Description
x0 zero Hard-wired zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary / Alternate link register

x6-7 t1 - t2 Temporary register
x8 s0 / fp Saved register / Frame pointer
x9 s1 Saved register

x10-11 a0-a1 Function argument / Return value registers
x12-17 a2-a7 Function argument registers
x18-27 s2-s11 Saved registers
x28-31 t3-t6 Temporary registers

Register Names and Descriptions

5/33

Data types:
• All instructions are encoding in 32 bits

• Alias: byte (8 bits), halfword (2 bytes), word (4 bytes), double word (8 bytes)

Literals:
• numbers entered as is. e.g., 12 in decimal, and 0xC in hexadecimal

• characters enclosed in single quotes. e.g., ‘b’

• strings enclosed in double quotes. e.g., “A string”

Data Types and Literals

6/33

• Plain text file with data declarations, program code (name of file can be suffixed with
.asm)

• Data declaration section is followed by program code section

Data Declarations

• Identified with assembler directive .data

• Declares variable names used in program

• Storage allocated in main memory (e.g., RAM)

• <name>: .<datatype> <value>

Program Structure I

7/33

Code

• placed in section of text identified with assembler directive .text

• contains program code (instructions)

• starting point for code e.g. execution given label start:

Comments
Anything following # on a line

Program Structure II

8/33

The structure of an assembly program looks like this:

Program outline

Comment giving name of program and description
Template.asm
Bare-bones outline of RISC-V assembly language program

.globl _start

.data # variable declarations follow this line
...

.text # instructions follow this line

_start: # indicates start of code
...

End of program, leave a blank line afterwards is preferred

Program Structure III

9/33

An Example Program

10/33

An Example Program

11/33

LA: The Load Address (la) loads the location address of the specified SYMBOL.

Syntax

la rd, SYMBOL

Usage

.data
NumElements: .byte 6
.text
la x5, NumElements # assign addr[NumElements] to x5

LI: The Load Immediate (LI) loads a register (rd) with an immeidate value given
in the instruction.

Syntax

li rd, CONSTANT

Instructions Overview I

12/33

Usage

li x5,100 # assign 100 to x5

LD: The Load Double word (LD) instruction does the fetching of 64-bit value from
memory and loads into the destination register (rd).

Syntax

ld rd, offset(rs1)

Usage

ld x4, 1352(x9) # assign memory[x9+1352] to x4

SD: The Store Double word (SD) instruction does the copying of 64-bit value from
register (rs2) and loads into the memory(rs1).

Instructions Overview II

13/33

Syntax

sd rs2, offset(rs1)

Usage

sd x4, 1352(x9) # assign mem[x9+1352] to x4

SLL: Shift Logical Left (SLL) performs logical left on the value in register (rs1) by
the shift amountheld in the register (rs2) and stores in (rd) register.

Syntax

sll rd, rs1, rs2

Usage

Instructions Overview III

14/33

li x5, 4 # assign 4 to x5
li x3, 2 # assign 2 to x3
sll x1, x5, x3 # assign x5 << x3 to x1

SRL: Shift Logically Right (SRL) performs logical Right on the value in register
(rs1) by the shift amount held in the register (rs2) and stores in (rd) register.

Syntax

srl rd, rs1, rs2

Usage

li x5, 1024 # assign 1024 to x5
li x3, 2 # assign 2 to x3
srl x1, x5, x3 # assign x5 >> x3 to x1

Instructions Overview IV

15/33

SLLI: Shift Logically Left Immediate (SLLI) performs logical left on the value in
register (rs1) by the shift amount held in the register (imm) and stores in (rd)
register.

Syntax

slli rd, rs1, imm

Usage

slli x1, x1, 3 # assign x1 << 3 to x1

SRLI: Shift Logically Right Immediate (SRLI) performs logical Right on the value
in register (rs1) by the shift amount held in the register (imm) and stores in (rd)
register.

Syntax

Instructions Overview V

16/33

srli rd, rs1, imm

Usage

srli x1, x1, 1 # assign x1 >> 1 to x1

Instructions Overview VI

17/33

For more information about RISC-V instructions and assembly programing you
can refer to:

1 Lecture slides and textbook.

2 RARS Help: F1

3 https:
//github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md

4 https:
//web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

More Information

18/33

https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://github.com/riscv/riscv-asm-manual/blob/master/riscv-asm.md
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/
https://web.eecs.utk.edu/~smarz1/courses/ece356/notes/assembly/

RISC-V ISA Simulator – RARS

• RARS is the RISC-V Assembler, Runtime and Simulator for RISC-V assembly
language programs

• RARS supports RISC-V IMFDN ISA base (riscv32 & riscv64).

• RARS supports debugging using breakpoints like ebreak.

• RARS supports side by side comparison from psuedo-instruction to machine code
with intermediate steps.

• You need Java environment to run RARS

Dowload it here: https://github.com/TheThirdOne/rars/releases/
download/continuous/rars_f0c874c.jar
Execute the command to start RARS: java -jar <rars jar path>

What is RARS

20/33

https://github.com/TheThirdOne/rars/releases/download/continuous/rars_f0c874c.jar
https://github.com/TheThirdOne/rars/releases/download/continuous/rars_f0c874c.jar

RARS edit panel

RARS Overview

21/33

RARS execution panel
22/33

RARS edit panel

RARS Basic Introduction

23/33

RARS execution panel
24/33

• Create a new source file: Ctrl + N

• Close the current source file: Ctrl + W

• Assemble the source code: F3

• Execute the current source code: F5

• Step running: F7

• Instructions & System call query: F1

Shortcuts in Windows

25/33

System Service in RARS

RARS provides a small set of operating system-like services through the system
call (ecall) instruction. Register contents are not affected by a system call, except
for result registers in some instructions.

• Load the service number (or number) in register a7.

• Load argument values, if any, in a0, a1, a2 ..., as specified.

• Issue ecall instruction.

• Retrieve return values, if any, from result registers as specified.

System Calls in RARS I

27/33

System Calls in RARS II

28/33

An example shows how to use system calls in RARS

Using system call

Comment giving name of program and description
sys-call.asm
Bare-bones outline of RISC-V assembly language program

.globl _start

.data
msg: .asciz "Hello, world!\n"

.text
_start:
li a7, 4 # system call code for PrintString
la a0, msg # address of string to print
ecall # Use the system call
End of program, leave a blank line afterwards is preferred

You can check the output in Run/IO of the program information panel.

An Example of System Calls in RARS I

29/33

• li loads a register with an immediate value given in the instruction.

• la loads an address of the specified symbol.

• .asciz emits the specified string within double quotes and includes the terminated
zero character at the end.

An Example of System Calls in RARS II

30/33

Lab 1-1 Assignment

Write a RISC-V assembly program step by step as shown below:

1 Define two variables var1 and var2 which have initial value 15 and 19, respectively.
(var1 = 15 and var2 = 19)

2 Print MEMORY addresses of var1 and var2 using syscall.

3 Increase var1 by 1 and multiply var2 by 4.

4 Print var1 and var2 again.

5 Swap var1 and var2 and print them. (var1 and var2 are changed)

Submission Method:
Submit the source code and report after the whole lectures of Lab1 into Blackboard.

Lab Assignment

32/33

1 Variables should be declared following the .data identifier.

2 <name>: .<datatype> <value>

3 Use la instruction to access the RAM address of declared data.

4 Use system call to print integers.

5 Do not forget exit system call.

6 You should print a new line to distinguish outputs!

Some Tips

33/33

	Introduction to Basic RISC-V Assembly Programing
	RARS
	System Service in RARS
	Lab 1-1 Assignment

