
CENG 3420
Computer Organization & Design

HW4 Review

Zhisheng ZHONG
CSE Department, CUHK
zszhong@link.cuhk.edu.hk

Spring 2022



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

2/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

3/32



Parameter Description

S = 2s Number of sets
E Number of blocks

B = 2b Block size (bytes)
m = log2(M) Number of main memory address bits

M = 2m Maximum number of unique memory addresses
s = log2(S) Number of set index bits
b = log2(B) Number of block offset bits

t = m− (s + b) Number of tag bits
C = B× E× S Cache size not including overhead (valid and tag bits)

Complete the form for different caches below:

Cache id m C B E S t s b
1. 32 1024 4 1
2. 32 1024 8 4
3. 32 1024 32 32

Q1 Description

3/32



For S : C = B× E× S → S = C/B/E, (1)
For s : s = log2(S), (2)
For b : b = log2(B), (3)
For t : t = m− (s + b). (4)

According to Equations (1), (2), (3), and (4), we can fill the table:

Cache id m C B E S t s b
1. 32 1024 4 1 256 22 8 2
2. 32 1024 8 4 32 24 5 3
3. 32 1024 32 32 1 27 0 5

Solution 1

4/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

5/32



A processor has a 32-bit memory address space (i.e. 32-bit addresses). The
memory is broken into blocks of 32 bytes each. The computer also has a cache
capable of storing 16K bytes.

1 How many blocks can the cache store?
2 direct-mapping:

Tag Block Byte offset

3 2-way set associative mapping:

Tag Set Byte offset

Q2.1, Q2.2, and Q2.3 Description

5/32



1 #(Block) = 16 K bytes/32 bytes = (24 × 210)/25 = 29 = 512 blocks.

2 Direct mapping

Tag Block Byte offset
A31-A14 (18 bits) A13-A5 (9 bits) A4-A0 (5 bits)

Remaining bits
(32 - 5 - 9 = 18)

512 blocks = 29,
9 address bits

32 bytes per block

3 2-way set associate mapping

Tag Set Byte offset
A31-A13 (19 bits) A12-A5 (8 bits) A4-A0 (5 bits)

Remaining bits
(32 - 5 - 8 = 19)

512 blocks/2-way= 28,
8 address bits

32 bytes per block

Solution of Q2.1, Q2.2, and Q2.3

6/32



Consider the following two empty caches, calculate cache hit rates for the
reference word addresses: (a) “0, 4, 0, 4, 0, 4, 0, 4”; (b) “0, 3, 0, 3, 0, 3, 0, 3”.

Q2.4 Description

7/32



Note

There is no direct mathematical relationship between the number way and set.
In this question, there is no block index for the 2-way associative mapping cache.
4 = (100)2, 3 = (011)2, 0 = (000)2.
Thus, 4 and 0 belong to the same set.

Solution of Q2.4

8/32



For “0, 4, 0, 4, 0, 4, 0, 4”, the contents of the two caches are shown in the following:

The hit rate of direct mapping cache is 0
8 = 0.

The hit rate of 2-way associative mapping cache is 6
8 = 75%.

Solution of Q2.4

9/32



For “0, 3, 0, 3, 0, 3, 0, 3”, the contents of the two caches are shown in the following.

The hit rate of direct mapping cache is 6
8 = 75%.

The hit rate of 2-way associative mapping cache is 6
8 = 75%.

Solution of Q2.4

10/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

11/32



In the following questions, start from an empty cache and give the contents of the
cache after the following sequence of memory references (addresses are
hexadecimal numbers): A0, F1, FF, 35, C8, 89, FE, 88, A1, A2, A3, A9, 99, 80, 83.

1 A block=2 (2-word), 4-way cache with the LRU replacement.

2 A block=4 (4-word), 2-way cache with the FIFO replacement.

Q3 Description

11/32



Note

Multi-word Direct Mapping: a more sophisticated version of a normal Direct
Mapping. A sequence of address (data) will be input into the same block.

Tag data1 data2
A0 A1
00 01

Least Recently Used (LRU): meaning it discards the least recently used items first.

First In, First Out (FIFO): similar to queue.

Solution of Q3

12/32



Similar to Q2.4, here we give an example for illustration:

Solution of Q3

13/32



Solution of Q3.1

14/32



Solution of Q3.1

15/32



Solution of Q3.2

16/32



Solution of Q3.2

17/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

18/32



Suppose the access times to the cache and the main memory are 50 ns and 200 ns
respectively. When the CPU runs a program, it accesses the cache 2000 times and
main memory 50 times. Calculate the hit rate and access efficiency of this
cache-main memory system.

Q4 Description

18/32



Denote tc (the cache access times), tm (the main memory access times).
The following three solutions can get full marks:

1 1 miss = 1 main memory access, miss penalty = tm

2 1 miss = 1 main memory access + 1 cache access, miss penalty = tm + tc

3 (optimal, refer to Lecture 17, Page 22)
1 miss = 1 main memory access + 2 cache access, miss penalty = tm + 2tc

Solution of Q4

19/32



Case 1: 1 miss = 1 main memory access, miss penalty = tm

The hit rate:
h =

Nh

Nh + Nm
=

2000
2000 + 50

≈ 0.976 = 97.6%.

The average memory access time:

ta = htc + (1− h)M = htc + (1− h)tm,

The access efficiency:

e =
tc

ta
=

tc

htc + (1− h)tm
=

50
0.976× 50 + (1− 0.976)× 200

≈ 0.93 = 93%.

Solution of Q4

20/32



Case 2: 1 main memory access + 1 cache access, miss penalty = tm + tc

The hit rate:
h =

Nh

Nh + Nm
=

2000− 50
2000

= 0.975 = 97.5%.

The average memory access time:

ta = htc + (1− h)M = htc + (1− h)(tm + tc),

The access efficiency:

e =
tc

ta
=

tc

htc + (1− h)(tm + tc)
=

50
0.975× 50 + (1− 0.975)× 250

≈ 0.91 = 91%.

Solution of Q4

21/32



Case 3: 1 miss = 1 main memory access + 2 cache access, miss penalty = tm + 2tc

The hit rate:

h =
Nh

Nh + Nm
=

2000− 50× 2
2000− 50× 2 + 50

≈ 0.974 = 97.4%.

The average memory access time:

ta = htc + (1− h)M = htc + (1− h)(tm + 2tc),

The access efficiency:

e =
tc

ta
=

tc

htc + (1− h)(tm + 2tc)
=

50
0.974× 50 + (1− 0.974)× 300

≈ 0.89 = 89%.

Solution of Q4

22/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

23/32



Please draw the page tables for processes A and B:

Q5 Description

23/32



A page table is the data structure used by a virtual memory system in a computer
operating system to store the mapping between virtual addresses and physical
addresses. (Refer Lecture 18, Page 13).

Solution of Q5

24/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

25/32



Problems in this exercise refer to the following sequence of instructions, and
assume that it is executed on a 2-issue RISC-V:

LOOP: lw x31, 0(x20) # x31 = some value
add x31, x31, x21 # add scalar in x21
sw x31, 0(x20) # store result
addi x20, x20, -8 # decrement pointer
blt x22, x20, LOOP # branch if x22 < x20

1 Using the scheduled instruction to calculate IPC (instructions per clock cycle).

2 Suppose we have four registers (x28, x29, x30, x31), please design a solution to unroll
the loop for better IPC.

Q6 Description

25/32



The above code in C language style:

while(index_i < index_j)
{

temp = a[index_j];
temp = temp + some_scalar;
a[index_j] = temp;
index_j = index_j - 1;

}

Function: Add a scalar to a vector.

Solution of Q6

26/32



The scheduled instruction:

IPC = 5/4 = 1.25.

Solution of Q6

27/32



A possible solution:

IPC = 14/8 = 1.75 > 1.25.
Deal with four items at once.
You can change the order of the register x28, x29, x30, and x31.

Solution of Q6

28/32



1 Q1

2 Q2

3 Q3

4 Q4

5 Q5

6 Q6

7 Q7

Overview

29/32



Assume we have a program where 10% of the execution time is purely sequential
and that the rest of the execution time can be improved by parallelization. For the
part of the code that can be parallelized, each core gives only 80% improvement.
For instance, 5 cores give 5× 80% = 4 times improvement.

1 Create a speedup chart, showing speedup on the Y-axis and the number of cores on
the X-axis. Show the graph for 25 to 200 cores, for instance by plotting with 25 cores
interval.

2 What is the maximal speedup that can be achieved regardless how many cores we
add?

Q7 Description

29/32



Apply Amdahl’s law, the function of speedup S in terms of the number of core N
can be:

S(N) =
1

1−10%
N×80% + 10%

.

Core Num 25 50 75 100 125 150 175 200
Speedup 6.90 8.16 8.70 8.99 9.17 9.30 9.40 9.47

Solution of Q7

30/32



The maximal speedup that can be achieved is:

lim
N→+∞

S(N) = lim
N→+∞

1
1−10%
N×80% + 10%

= 10.

Solution of Q7

31/32



THANK YOU!


	Main Talk
	Q1
	Q2
	Q3
	Q4
	Q5
	Q6
	Q7


