
CENG 3420: HW3 Review

Ziyi Wang
Department of Computer Science & Engineering
Chinese University of Hong Kong
ziyiwang21@cse.cuhk.edu.hk

April 5, 2022



Assume a program requires the execution of 50 × 106 FP instructions, 110 × 106

INT instructions, 80 × 106 L/S instructions, and 16 × 106 branch instructions. The
CPI for each type of instruction is 1, 1, 4, and 2, respectively. Assume that the
processor has a 2 GHz clock rate.

1 By how much must we reduce the CPI of L/S instructions if we want the program to
run two times faster?

2 By how much is the execution time of the program improved if the CPI of INT and
FP instructions is reduced by 40% and the CPI of L/S and Branch is reduced by 30%?

Q1 Description

2/22



CPU time =
Instruction count × CPIavg

clock rate

Since Instruction count and clock rate remain the same, it’s all about the averaged
CPI:

CPIavg =

n∑
i=1

Instruction_counti × CPIi

Q1 Anaylysis

3/22



Instruction count = 50 × 106 + 110 × 106 + 80 × 106 + 16 × 106 = 256 × 106

’run two times faster’ equals to ’reduce the CPU time by 50% ’, which then equals
to ’reduce the average CPI by 50% ’. The original average CPI can be calculated as
:

CPI
′
avg = 1 × 50 × 106

256 × 106 + 1 × 110 × 106

256 × 106 + 4 × 80 × 106

256 × 106 + 2 × 16 × 106

256 × 106

= 2

By assuming the target CPI of L/S instruction as C, we can get the following
equation:

CPIavg = 1 × 50 × 106

256 × 106 + 1 × 110 × 106

256 × 106 + C × 80 × 106

256 × 106 + 2 × 16 × 106

256 × 106

= 0.5 × CPI∗avg = 1

According to the above equation, we get C = 0.8, which means the CPI of L/S
instructions should be reduced by (1 − 0.8/4)× 100% = 80%.

Solution to Q1.1

4/22



CPIavg = 0.6 × 50 × 106

256 × 106 + 0.6 × 110 × 106

256 × 106 + 2.8 × 80 × 106

256 × 106 + 1.4 × 16 × 106

256 × 106

= 1.3375

Since the CPU time is proportional to the average CPI, then the execution time is
improved by 1 − CPUtime

CPUtime∗ = 1 − CPIavg
CPI∗avg

= 1 − 1.3375/2 = 0.331 = 33.1%

Solution to Q1.2

5/22



In this exercise, we examine how pipelining affects the clock cycle time of the
processor. For simplicity, we limit our attention to 4 instruction classes: Load (lw),
Store (sw), R-type, and Branch(beq). Problems in this exercise assume that
individual stages of the datapath have the following latencies:

IF ID EX MEM WB
250ps 350ps 150ps 300ps 200ps

And the stages that each instruction class need to execute is listed as follows:

Instruction Class IF ID EX MEM WB
Load (lw) X X X X X
Store (sw) X X X X

R-type X X X X
Branch X X X

1 What is the clock cycle time in a pipelined and non-pipelined processor?

2 What is the total latency of an lw instruction in a pipelined and non-pipelined
processor? Assuming there is no data harzard.

Q2 Description

6/22



Thekey to solving this question is:
• In a non-pipelined processor, the clock cycle time must allow for the slowest

instruction.

clock cycle time equals to the excution time of the slowest instruction.

• In a pipelined processor, all the pipeline stages take a single clock cycle, so clock cycle
must be long enough to accommodate the slowest stage.

clock cycle time equals to the execution time of the slowest stage.

Q2 Analysis

7/22



1 For the non-pipelined processor, we first list the total execution time for each
instruction as follows:

Instruction Class IF ID EX MEM WB Total time
Load (lw) 250ps 350ps 150ps 300ps 200ps 1250ps
Store (sw) 250ps 350ps 150ps 300ps 1050ps

R-type 250ps 350ps 150ps 200ps 950ps
Branch 250ps 350ps 150ps 750ps

For the non-pipelined processor, clock cycle time equals to the excution time of the
slowest instruction –that is ’lw’ –so the clock cycle time required is 1250ps.
For the pipelined processor, the clock cycle time equals to the excution time of the
slowest stage– –that is ’ID’ –so the clock cycle time required is 350ps.

2 For the non-pipelined processor, the total latency of an lw instruction is 1250ps as
shown in the above table. While for the pipelined processor, the total latency of an lw
instruction is 350 × 5 = 1750ps.

Solution to Q2

8/22



Problems in this exercise refer to the following sequence of instructions, and
assume that it is executed on a five-stage pipelined datapath:

1 If there is no forwarding, draw a pipeline diagram to show where to insert NOPs to
ensure correct execution.

2 If there is forwarding, draw a pipeline diagram with forwarding to ensure correct
execution. You can insert NOPs if necessary.

Q3 Description

9/22



Reg

Reg
lw x13, 4(x15)

IM

ALU DM Reg

NOP

or x13, x15, x13

NOP

IM Reg

ALU DM Reg

IM Reg

ALU DM

NOP

NOP

add x15, x12, x11

Solution to Q3.1

10/22



lw x13, 4(x15) IM Reg

ALU DM Reg

NOP

or x13, x15, x13 IM Reg

ALU DM Reg

IM Reg

ALU DM Regadd x15, x12, x11

Ex forwarding Mem forwarding

Note that we still need a NOP here.

Solution to Q3.2

11/22



This exercise examines the accuracy of various branch predictors for the following
repeating pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT. (T means
’Taken’ and NT means ’Not taken’)

1 What is the accuracy of always-taken and always-not-taken predictors for this
sequence of branch outcomes?

2 What is the accuracy of the 2-bit predictor if this pattern is repeated forever,
assuming that the predictor starts off in the top right state (State 2) of the FSM on
slide page 36, lec 12?

Q4 Description

12/22



• For the always-taken predictor, its accuracy equals to the probability that the branch
outcome is Taken.

• For the always-not-taken predictor, its accuracy equals to the probability that the
branch outcome is Not Taken.

• For the 2-bit predictor, we should find out the repeating pattern of the prediction.

Q4 Analysis

13/22



1 the accuracy of always-taken predictor is 3/5 ∗ 100% = 60%, and the accuracy of
always-not-taken predictor is 2/5 ∗ 100% = 40%.

2 Let’s first list the conditions for the first two iterations of repeating pattern as follows:

Iteration1 Iteration2
Branch output T NT T T NT T NT T T NT

State 2 1 2 1 1 2 1 2 1 1
Predict T T T T T T T T T T

Change state or not yes yes yes no yes yes yes yes no yes
Accurate or not X × X X × X × X X ×

We can see that the condition of the first branch of iteration 2 is just the same as that
of iteration 1, which means the following iterations keep the same as iteration 1. So
we can use the result of iteration 1 to evaluate the accuracy of the 2-bit predictor, and
that is 3/5 ∗ 100% = 60%.

Solution to Q4

14/22



In this exercise we look at memory locality properties of matrix computation. The
following code is written in C, where elements within the same row are stored
contiguously. Assume each word is a 64-bit integer.

1 Which variable references exhibit temporal locality?

2 Which variable references exhibit spatial locality?

Q5 Description

15/22



3 Locality is affected by both the reference order and data layout. The same
computation can also be written below in Matlab, which differs from C in that it
stores matrix elements within the same column contiguously in memory.

Which variable references exhibit temporal locality in the Matlab version?

4 Which variable references exhibit spatial locality in the Matlab version?

Q5 description

16/22



• Spatial Locality means that all the data which is stored nearby to the recently visited
data have high chances of usage.

• It is relevant to how the matrix is stored in memory! (row-first / column-first)

• Temporal Locality means that data which is recently used have high chances of
usage again.

Q5 Analysis

17/22



1 B[I][0].
For each I, B[I][0] is needed for the next 8000 iterations of J.

2 A[I][J].
Since the elements within the same row are stored contiguously, then A[I][J+1] is next
to A[I][J].

3 B[I][0].
For each I, B[I][0] is needed for the next 8000 iterations of J.

4 A[J][I].
Since the elements within the same column are stored contiguously, then A[J+1][I] is
next to A[J][I].

Solution to Q5

18/22



How many total bits are required for a direct-mapped cache with 8 KiB of data
and four-word blocks, assuming a 32-bit address?

Q6 Description

19/22



The number of bits includes both the storage for data and for the tags
• For a direct mapped cache with 2n blocks, n bits are used for the index

• For a block size of 2m words (2m+2 bytes), m bits are used to address the word within
the block, and 2 bits are used to address the byte within the word.

Size of the tag field: 32 - (n + m + 2)
Total number of bits in a direct-mapped cache:

2n × (block size + tag field size + valid field size) (1)

Q6 Analysis

20/22



We know that 8 KiB is 2048 (211) words. With a block size of four words (22), there
are 512 (29) blocks.
Each block has 4 × 32 or 128 bits of data plus a tag, which is 32-9-2-2 bits, plus a
valid bit. Thus, the complete cache size is

29 × (4 × 32 + (32 − 9 − 2 − 2) + 1) = 74 × 210 = 74Kibits

Solution to Q6

21/22



THANK YOU!


