HEHPLKE

The Chinese University of Hong Kong

CMSC5743
L09: Network Architecture Search

Bei Yu
! I gl |
(Latest update: September 13, 2020)

Fall 2020

1/29

Overview

Search Space Design

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

NAS Benchmark

Estimation strategy

2/29

Overview

Search Space Design

3/29

Basic architecture search

Each node in the graphs corresponds to a layer in a neural network '

"Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter (2018). “Neural architecture search: A survey”. In: arXiv preprint
arXiv:1808.05377

3/29

Cell-based search

Normal cell and reduction cell can be connected in different order?

2Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter (2018). “Neural architecture search: A survey”. In: arXiv preprint
arXiv:1808.05377

4/29

Graph-based search space @&

Randomly wired neural networks generated by the classical Watts-Strogatz model 3

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1284—-1293
5/29

Overview

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

6/29

Select method to
ccombine hidden state

softmax
layer
/

NAS as hyperparameter optimization
Select operation for }\ Select operation for }\

Select one |\ Select second |\
hidden state hidden state first hidden state second hidden state
\ \ \ \ \
\ ’_L‘ \ !‘LI \ ’_L‘ \ ’_T_‘ \
\ \ \ \ \
g Y I
\ \ 7 7

- -

controller
hidden layer

\ N7/

- - -

. [Tyl
I repeat B times 1

Controller architecture for recursively constructing one block of a convolutional cell 4
Features

> 5 categorical choices for N block
> 2 categorical choices of hidden states, each with domain 0, 1, ..., N — 1
» 2 categorical choices of operations
> 1 categorical choices of combination method
> Total number of hyperparameters for the cell: 5B (with B = 5 by default)

» Unstricted search space

> Possible with conditional hyperparameters
(but only up to a prespectified maximum number of layers)
> Example: chain-structured search space
> Top-level hyperparameter: number of layers L
> Hyperparameters of layer K conditional on L > k

6/29

Ao e Aoy] o i e fmp PR

e I A,

Reinforcement learning

Sample architecture A
with probability p

[v

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Overview of the reinforcement learning method with RNN °

Reinforcement learning with a RNN controller

» State-of-the-art results for CIFAR-10, Penn Treebank

» Large computation demands
800 GPUs for 3-4 weeks, 12, 800 archtectures evaluated

5Barret Zoph and Quoc V Le (2016). “Neural architecture search with reinforcement learning”. In: arXiv preprint

arXiv:1611.01578
7/29

Reinforcement learning

8/29

Reinforcement learning with a RNN controller
J<90) = EP(alzT;Qc) [R]
where R is the reward (e.g., accuracy on the validation dataset)
Apply REINFORCEMENT rule
0.J(6c) = 31—y Ep(ayri00) (V6. 10g P(arlag_1y.1; 6c)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
e it Soimt Vo, 10g Plarag_1)150c) (Rk — b)

Ry

i a
.

Reinforcement Learning

25 1
Off-policy reinforcment learning module for GANs architecture search] Off-policy data

1
!
1 I
1 l
1 New ;!
: Action [Cell : : Memory Buffer
] H N A t]
I 1 [[state,action,reward,next state]
1 I
1 [1
1 | [state,action.reward,next state]
H Policy Network .
1 DS | [[state,action,reward,next state]
|) Cells |
H— . H
! O @) o |
1 current current progressive = [)
[Pravious. | [state,action.reward,next state]
;i depth performance b Cells 1
Lttt et R]
1 State + ! [state,action,reward,next state]
1 U

Overview of the E2ZGAN ©

Reward define
Ri(s,a) = 1S(t) — IS(t — 1) + «(FID(t — 1) — FID(t))

The objective loss function

J(ﬂ—) = Zt:O]E(S,,a,) p(w)R(stv ai) = BEorchitecture p(w)lsﬁnal - aFIDﬁnal

8Yuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective gan architecture search”. In: arXiv
preprint arXiv:2007.09180
9/29

Evolution
Evolution methods

Neuroevolution (already since the 1990s)

» Typically optimized both architecture and weights with evolutionary methods
e.g., Angeline, Saunders, and Pollack 1994; Stanley and Miikkulainen 2002

> Mutation steps, such as adding, changing or removing a layer
e.g., Real, Moore, et al. 2017; Miikkulainen et al. 2017

test accuracy (%)

0.9 28.1 70.2 wall time (hours) 562

10/29

Regularized / Aging Evolution

Regularized / Aging Evolution methods

» Standard evolutionary algorithm e.g. Real, Aggarwal, et al. 2019
But oldest solutions are dropped from the population (even the best)

> State-of-the-art results (CIFAR-10, ImageNet)
Fixed-length cell search space

random search

0.92, Evyolution PR

>

9)

o

-]

. Q
Comparison of 3
evolution, o
RL and e
n

3}

|_

a

o

|_

0 Experiment Time (hours) 200

11/29

Baysian Optimization @3
Baysian optimzation methods

» Joint optimization of a vision architecture with 238 hyperparameters with TPE
Bergstra, Yamins, and Cox 2013
» Auto-Net
» Joint architecture and hyperparameter search with SMAC
» First Auto-DL system to win a competition dataset against human experts
Mendoza et al. 2016
> Kernels for GP-based NAS
> Arc kernel
Swersky, Snoek, and Adams 2013
> NASBOT
Kandasamy et al. 2018
» Sequential model-based optimization
> PNAS
C. Liuetal. 2018

12/29

DARTS

Overview of SNAS 7

Continous relaxiation
0 (x) = 3 e(ag”)

- .o0x
0cO Zo’e(’) exp(aglx/)) ()

7Hanxiao Liu, Karen Simonyan, and Yiming Yang (2018). “Darts: Differentiable architecture search”. In: arXiv preprint
arXiv:1806.09055

13/29

DARTS &)

A bi-level optimization

min L,q(w* (), a)

s.t. w*(a) = argmin Lygin(w, o)
w

Algorithm 1 DARTS algorithm

Require: Create a mixed operation O(¥) parameterized by o’) for each edge (i,)
Ensure: The architecture characterized by «
1: while not converged do
2. Update architecture a by descending /o Lyar(W — & 7w Lirain(W, @), &)
(& = 0if using first order approximation)
Update weights w by descending N/, L rain (W,)
end while
5. Derive the findal architecture based on the learned «

El

14/29

SNAS

SAMPLING

r(2) : : >
[o] H i
// | o' 0 0* 0 0t 0* 0° 0 [o]
- ©n o o [ilo 0y o 1lo o
X o2 o o o ©2 0 0 0 1
©3) 0 0 0 1 02 o o [@lo
\ ®w2 0 0 0 1 w2 [llo o o A
= =] [z]
w3 0l oo w3 o o Mo
2y 0 o [lo | 23 01 00
\ y
z® DAG(zM) z® DAG(Z2?)
E[£]
Overview of SNAS &

Stochastic NAS
Ez po(2)[R(Z)] = Ez ,(2)[Le(Z)]

X =30 O0i(x) = 30, ZF014(x)

where E; , ()[R(Z)] is the objective loss, Z; ; is a one-hot random variable vector to each edge
[, J) i .is the intermediate node
8Sirui Xie et al. (2018). “SNAS: stochastic neural architecture search”. In: arXiv preprint arXivi1812.09926
15/29

SNAS

16/29

Apply Gummbel-softmax trick to relax the p,(Z)
exp((log al-{ -+G’-())
sz,j :fai,j(Gﬁj) A ol +Gl
Z[oexP(i)

where Z; ; is the softened one-hot random variable, «; ; is the architecture parameter, Ais
the temperature of the Softmax function, and G satisfies that

Gumbel distribution
kK _ k
G =— log (—log (U;))

where Ufij is a uniform random variable

Difference between DARTS and SNAS

i
011 02 013

i 1 2 4.3
i j 1%, @i g

011 0} bﬁl 01 07w (0F m i i 1
[(Kagtafa] [@b REREISA 4 i~ P@jm)
1 o

]E[L] T - IE[L]

A comparison between DARTS (i.e., the left) and SNAS (i.e., the right) °
Summary

» Deterministic gradients in DARTS and Stochastic gradients in SNAS
» DARTS require that the derived neural network should be retrained while SNAS has no need

9Sirui Xie et al. (2018). “SNAS: stochastic neural architecture search”. In: arXiv preprint arXivi1812.09926
17/29

Efficient methods

18/29

Main approaches for making NAS efficient

>

>
>
>

v

Weight inheritance & network morphisms
Weight sharing & one-shot models
Discretize methods

Multi-fidelity optimization

Zela et al. 2018, Runge et al. 2018

Meta-learning
Wong et al. 2018

132
{i
=\
P

Rachy

b
:
&

Network morphisms

Network morphisms

Wei et al. 2016

» Change the network structure, but not the modelled function

i.e., for every input the network yields the same output as before applying the network
morphism

> Allow efficient moves in architecture space

SA + b =

19/29

Weight inheritance & network morphisms

2

Cai, Chen, et al. 2017; Elsken, J. Metzen, and Hutter 2017; Cortes et al. 2017; Cai, J. Yang,

etal. 2018

modelpest
perf. = 82%

20/29

o
Nﬁi“ hoﬂ’
pe®

ApplyNetMorphs
—_—

™~

model,
perf. = 82%

modely
perf. = 82%

[[1

model,,
perf. = 82%

neigh

train

train

train

model;
perf. =90%

liL

modely
perf. = 88%

model,,
perf. = 84%

neigh

1¥2%pout spopdn

modelpess
perf. = 0.90

Discretize methods

Discretize the search space

Discretize the search space (e.g., operators, path, channels etc.) to achieve efficient NAS
algorithms

update

= ~-.--~-|;OOL it CO:“V——--.— -4 ..-.~-.P‘00L
: - Weight _ ity .-
Identity - 3x3 Parameters 3x3 Identity 3x3

N updateq"’"x\,‘;'_'---""'
o B o wee & «— Architecture Parameters — B o .. [
1 (1] (] ... 0 <« Binary Gate (0:prune, 1:keep) — 0 1 (1]
o R i
(1) Update weight parameters fmap notin memory (2) Update architecture parameters

Learning both weight parameters and binarized architecture parameters '°

0Han Cai, Ligeng Zhu, and Song Han (2018). “Proxylessnas: Direct neural architecture search on target task and
hardware”. In: arXiv preprint arXiv:1812.00332
21/29

Discretize methods
Another example: PC-DARTS

Partial Channel Connection —

7

<
S
Sample /™
Soz Concat
. +
A
X

0 -
5X5
X5 sep @ P xiS02)
fo3 (X0i S0

N .
&) po = 2000

Toreoexplal]}

— Edge Normalization
PC(y .
0 Partial Channel n.a("msﬁ
Xo .
Connection
<« |1 Partial Channel IPELGINE]
1 Connection m _’ 3
PCry. . I PC
x2 |» Partial Channel fo3 (X2: S X3
Connection

exp(f}
Overview of PC-DARTS. !

s

"o e}

"Yuhui Xu et al. (2019). “Pc-darts: Partial channel connections for memory-efficient differentiable architecture search”. In:
arXiv preprint arXiv:1907.05737

22/29

Discretize methods

23/29

-y

Partial channel connection
expocﬁi

PC (... —
Jig (i3 Si4) = 2oco S (Sij* xi) + (1 = Sij * x;)
where §; ; defines a channel sampling mask, which assigns 1 to selected channels and 0 to
masked ones.

Edge normalization

PC _ exphiy o
XT = ZK]’ Ei,quzlﬁi,J - fij (%)

Edge normalization can mitigate the undesired fluctuation introduced by partial channel
connection

iy
T

:
i

Overview

NAS Benchmark

24/29

Benchmark

The motivation
NAS algorithms are hard to reproduce normally

» Some NAS algorithms require months of compute time, making these methods
inaccessible to most researchers

» Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

» Chris Ying et al. (2019). “Nas-bench-101: Towards reproducible neural architecture
search”. In: International Conference on Machine Learning, pp. 7105-7114

» Xuanyi Dong and Yi Yang (2020). “Nas-bench-102: Extending the scope of
reproducible neural architecture search”. In: arXiv preprint arXiv:2001.00326

24/29

NAS-Bench-101

25/29

global avg pool

stack 3

downsample

[stack 2 [r2:eg
downsample J cIeII

conv stem

The stem of the search space

The stem is composed of three cells, followed by a downsampling layer. The downsampling layer
halves the height and width of the feature map via max-pooling and the channel count is doubled.

Operation on node

@
)
()
®

The pattern are repeated three times, followed by global average pooling and a final dense softmax

layer. The initial layer is a stem consisting of one 3 x 3 convolution with 128 output channels.

NAS-Bench-101

The space of cell architectures is a directed acyclic graph on V nodes and E edges, each node has
one of L labels, representing the corresponding operation. The constraints on the search space

The search space

> [=3

» 3 x 3 convolution
» 1 x 1 convolution
» 3 x 3 max-pool

> V<7
> E<9

» input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7 x 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

26/29

NAS-Bench-101

27/29

The dataset of NAS-Bench-101 is a mapping from the (A, Epoch, trial#) to
» Training accuracy
» Validation accuracy
» Testing accuracy
» Training time in seconds
> Number of trainable parameters

Applications

» Compare different NAS algorithms
» Research on generalization abilities of NAS algorithms

NAS-Bench-201

architecture]

>

—> zeroize
skip-connect
1X1 conv
3X3 conv

roloineopeein s
_ predefined operation set

Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each cellis a
directed acyclic graph, where each edge is associated with an operation selected from a predefined operation as shown in
Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201

NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as
its search space

#architectures | #datasets | ||O|| | Search space constraint | Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial -
Nas-Bench-201 15.6K 3 5 no constraint all fine-grained info. (e.g., #params, FLOPs, latency)

28/29

Overview

Estimation strategy

29/29

Estimation strategy

Strategy

» Task specific
» Classficiation tasks
e.g., accuracy, error rate, etc.
> Segmentation tasks
e.g., pixel accuracy, MloU
» Generation tasks
e.g., Inception Score, Frechet Inception Score, etc.
» Latency considered factors

> #FLOPs
> #Parameters

Tips

Different NAS methods can incorporate diverse factors into search consideration

29/29

	Main Talk
	Search Space Design
	Blackbox Optimization
	NAS as a hyperparameter optimization
	Reinforcement Learning
	Evolution methods
	Regularized methods
	Baysian Optimization
	Differentiable search
	Efficient methods

	NAS Benchmark
	Estimation strategy

