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Basic architecture search

Each node in the graphs corresponds to a layer in a neural network '

"Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter (2018). “Neural architecture search: A survey”. In: arXiv preprint
arXiv:1808.05377
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Cell-based search

Normal cell and reduction cell can be connected in different order?

2Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter (2018). “Neural architecture search: A survey”. In: arXiv preprint
arXiv:1808.05377
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Graph-based search space @&

Randomly wired neural networks generated by the classical Watts-Strogatz model 3

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 1284—-1293
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NAS as hyperparameter optimization
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Controller architecture for recursively constructing one block of a convolutional cell 4
Features

> 5 categorical choices for N block
> 2 categorical choices of hidden states, each with domain 0, 1, ..., N — 1
» 2 categorical choices of operations
> 1 categorical choices of combination method
> Total number of hyperparameters for the cell: 5B (with B = 5 by default)

» Unstricted search space

> Possible with conditional hyperparameters
(but only up to a prespectified maximum number of layers)
> Example: chain-structured search space
> Top-level hyperparameter: number of layers L
> Hyperparameters of layer K conditional on L > k
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Reinforcement learning

Sample architecture A
with probability p

[ v

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Overview of the reinforcement learning method with RNN °

Reinforcement learning with a RNN controller

» State-of-the-art results for CIFAR-10, Penn Treebank

» Large computation demands
800 GPUs for 3-4 weeks, 12, 800 archtectures evaluated

5Barret Zoph and Quoc V Le (2016). “Neural architecture search with reinforcement learning”. In: arXiv preprint

arXiv:1611.01578
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Reinforcement learning
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Reinforcement learning with a RNN controller
J<90) = EP(alzT;Qc) [R]
where R is the reward (e.g., accuracy on the validation dataset)
Apply REINFORCEMENT rule
0.J(6c) = 31—y Ep(ayri00) (V6. 10g P(arlag_1y.1; 6c)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
e it Soimt Vo, 10g Plarag_1)150c) (Rk — b)

Ry
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Reinforcement Learning

25 1
Off-policy reinforcment learning module for GANs architecture search ] Off-policy data
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Overview of the E2ZGAN ©

Reward define
Ri(s,a) = 1S(t) — IS(t — 1) + «(FID(t — 1) — FID(t))

The objective loss function

J(ﬂ—) = Zt:O ]E(S,,a,) p(w)R(stv ai) = BEorchitecture p(w)lsﬁnal - aFIDﬁnal

8Yuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective gan architecture search”. In: arXiv
preprint arXiv:2007.09180
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Evolution
Evolution methods

Neuroevolution (already since the 1990s)

» Typically optimized both architecture and weights with evolutionary methods
e.g., Angeline, Saunders, and Pollack 1994; Stanley and Miikkulainen 2002

> Mutation steps, such as adding, changing or removing a layer
e.g., Real, Moore, et al. 2017; Miikkulainen et al. 2017

test accuracy (%)

0.9 28.1 70.2 wall time (hours) 562
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Regularized / Aging Evolution

Regularized / Aging Evolution methods

» Standard evolutionary algorithm e.g. Real, Aggarwal, et al. 2019
But oldest solutions are dropped from the population (even the best)

> State-of-the-art results (CIFAR-10, ImageNet)
Fixed-length cell search space

random search

0.92, Evyolution PR
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Baysian Optimization @3
Baysian optimzation methods

» Joint optimization of a vision architecture with 238 hyperparameters with TPE
Bergstra, Yamins, and Cox 2013
» Auto-Net
» Joint architecture and hyperparameter search with SMAC
» First Auto-DL system to win a competition dataset against human experts
Mendoza et al. 2016
> Kernels for GP-based NAS
> Arc kernel
Swersky, Snoek, and Adams 2013
> NASBOT
Kandasamy et al. 2018
» Sequential model-based optimization
> PNAS
C. Liuetal. 2018
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DARTS

Overview of SNAS 7

Continous relaxiation
0 (x) = 3 e(ag”)

-  .o0x
0cO Zo’e(’) exp(aglx/)) ( )

7Hanxiao Liu, Karen Simonyan, and Yiming Yang (2018). “Darts: Differentiable architecture search”. In: arXiv preprint
arXiv:1806.09055
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DARTS &)

A bi-level optimization

min L,q(w* (), a)

s.t. w*(a) = argmin Lygin(w, o)
w

Algorithm 1 DARTS algorithm

Require: Create a mixed operation O(¥) parameterized by o’) for each edge (i, )
Ensure: The architecture characterized by «
1: while not converged do
2. Update architecture a by descending /o Lyar(W — & 7w Lirain(W, @), &)
(& = 0if using first order approximation)
Update weights w by descending N/, L rain (W, )
end while
5. Derive the findal architecture based on the learned «

El
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SNAS

SAMPLING
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Overview of SNAS &

Stochastic NAS
Ez po(2)[R(Z)] = Ez ,(2)[Le(Z)]

X =30 O0i(x) = 30, ZF014(x)

where E; , ()[R(Z)] is the objective loss, Z; ; is a one-hot random variable vector to each edge
[, J) i .is the intermediate node
8Sirui Xie et al. (2018). “SNAS: stochastic neural architecture search”. In: arXiv preprint arXivi1812.09926
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SNAS
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Apply Gummbel-softmax trick to relax the p,(Z)
exp( (log al-{ -+G’-( ) )
sz,j :fai,j(Gﬁj) A ol +Gl
Z[ oexP(i)

where Z; ; is the softened one-hot random variable, «; ; is the architecture parameter, Ais
the temperature of the Softmax function, and G satisfies that

Gumbel distribution
kK _ k
G =— log (—log (U; ))

where Ufij is a uniform random variable



Difference between DARTS and SNAS
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A comparison between DARTS (i.e., the left) and SNAS (i.e., the right ) °
Summary

» Deterministic gradients in DARTS and Stochastic gradients in SNAS
» DARTS require that the derived neural network should be retrained while SNAS has no need

9Sirui Xie et al. (2018). “SNAS: stochastic neural architecture search”. In: arXiv preprint arXivi1812.09926
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Efficient methods
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Main approaches for making NAS efficient

>

>
>
>

v

Weight inheritance & network morphisms
Weight sharing & one-shot models
Discretize methods

Multi-fidelity optimization

Zela et al. 2018, Runge et al. 2018

Meta-learning
Wong et al. 2018
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Network morphisms

Network morphisms

Wei et al. 2016

» Change the network structure, but not the modelled function

i.e., for every input the network yields the same output as before applying the network
morphism

> Allow efficient moves in architecture space

SA + b =
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Weight inheritance & network morphisms

2

Cai, Chen, et al. 2017; Elsken, J. Metzen, and Hutter 2017; Cortes et al. 2017; Cai, J. Yang,

etal. 2018

modelpest
perf. = 82%
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Discretize methods

Discretize the search space

Discretize the search space (e.g., operators, path, channels etc.) to achieve efficient NAS
algorithms

update

= ~-.--~-|;OOL it CO:“V——--.— -4 ..-.~-.P‘00L
: - Weight _ ity .-
Identity - 3x3 Parameters 3x3 Identity 3x3

N updateq"’"x\,‘;'_'---""'
o B o wee & «— Architecture Parameters — B o .. [
1 (1] (] ... 0 <« Binary Gate (0:prune, 1:keep) — 0 1 (1]
o R i
(1) Update weight parameters fmap notin memory  (2) Update architecture parameters

Learning both weight parameters and binarized architecture parameters '°

0Han Cai, Ligeng Zhu, and Song Han (2018). “Proxylessnas: Direct neural architecture search on target task and
hardware”. In: arXiv preprint arXiv:1812.00332
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Discretize methods
Another example: PC-DARTS

Partial Channel Connection —
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Overview of PC-DARTS. !

s

"o e}

"Yuhui Xu et al. (2019). “Pc-darts: Partial channel connections for memory-efficient differentiable architecture search”. In:
arXiv preprint arXiv:1907.05737
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Discretize methods
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Partial channel connection
expocﬁi

PC (... —
Jig (i3 Si4) = 2oco S (Sij* xi) + (1 = Sij * x;)
where §; ; defines a channel sampling mask, which assigns 1 to selected channels and 0 to
masked ones.

Edge normalization

PC _ exphiy o
XT = ZK]’ Ei,quzlﬁi,J - fij (%)

Edge normalization can mitigate the undesired fluctuation introduced by partial channel
connection
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Benchmark

The motivation
NAS algorithms are hard to reproduce normally

» Some NAS algorithms require months of compute time, making these methods
inaccessible to most researchers

» Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

» Chris Ying et al. (2019). “Nas-bench-101: Towards reproducible neural architecture
search”. In: International Conference on Machine Learning, pp. 7105-7114

» Xuanyi Dong and Yi Yang (2020). “Nas-bench-102: Extending the scope of
reproducible neural architecture search”. In: arXiv preprint arXiv:2001.00326
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NAS-Bench-101
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global avg pool

stack 3

downsample

[ stack 2 [ r2:eg
downsample J cIeII

conv stem

The stem of the search space

The stem is composed of three cells, followed by a downsampling layer. The downsampling layer
halves the height and width of the feature map via max-pooling and the channel count is doubled.

Operation on node

@
)
()
®

The pattern are repeated three times, followed by global average pooling and a final dense softmax

layer. The initial layer is a stem consisting of one 3 x 3 convolution with 128 output channels.



NAS-Bench-101

The space of cell architectures is a directed acyclic graph on V nodes and E edges, each node has
one of L labels, representing the corresponding operation. The constraints on the search space

The search space

> [ =3

» 3 x 3 convolution
» 1 x 1 convolution
» 3 x 3 max-pool

> V<7
> E<9

» input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7 x 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

26/29



NAS-Bench-101
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The dataset of NAS-Bench-101 is a mapping from the (A, Epoch, trial#) to
» Training accuracy
» Validation accuracy
» Testing accuracy
» Training time in seconds
> Number of trainable parameters

Applications

» Compare different NAS algorithms
» Research on generalization abilities of NAS algorithms



NAS-Bench-201

architecture]

>

—> zeroize
skip-connect
1X1 conv
3X3 conv

roloineopeein s
_ predefined operation set

Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each cellis a
directed acyclic graph, where each edge is associated with an operation selected from a predefined operation as shown in
Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201

NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as
its search space

#architectures | #datasets | ||O|| | Search space constraint | Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial -
Nas-Bench-201 15.6K 3 5 no constraint all fine-grained info. (e.g., #params, FLOPs, latency)
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Estimation strategy

Strategy

» Task specific
» Classficiation tasks
e.g., accuracy, error rate, etc.
> Segmentation tasks
e.g., pixel accuracy, MloU
» Generation tasks
e.g., Inception Score, Frechet Inception Score, etc.
» Latency considered factors

> #FLOPs
> #Parameters

Tips

Different NAS methods can incorporate diverse factors into search consideration
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