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Deeper and Larger Networks

41 

Deep Convolutional Neural Networks 

Modern Deep CNN: 5 – 1000 Layers 

Classes FC 
Layer 

CONV 
Layer 

Low-Level 
Features CONV 

Layer 

High-Level 
Features … 

1 – 3 Layers 

I Researchers design deeper and larger networks to ensure model performance.
I , VGG-16, 16 parameter layers
I , VGG-19, 19 parameter layers
I , GoogLeNet, 22 parameter layers
I , ResNet : -18, -34, -50, -101, -152 layers
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Memory and Computations

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.
Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥106 to 155⇥106 params. Both
these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200 MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

I The size of the blob is proportional to the number of network parameters.
I More than millions of parameters and billions of operations.
I Challenges in memory and energy, finally affect the performance.
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Linear Regression
Input
I y = (y1, . . . , yN)>: N samples to measure performance
I X = (x(1), . . . , x(N))>: N parameters, where x(i) = (x(i)1 , . . . , x

(i)
p )> is parameter

vector for sample yi

Output
I β = (β1, β2, . . . , βp)>: linear regression model coefficients, s.t. y ≈ Xβ

y1
y2
. . .
yN

 ≈


x(1)1 x(1)2 . . . x(1)p

x(2)1 x(2)2 . . . x(2)p
. . . . . . . . . . . .

x(N)
1 x(N)

2 . . . x(N)
p



β1
β2
. . .
βp



Objective

min
β
‖y− Xβ‖22
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Challenges in Linear Regression

X =


x(1)1 x(1)2 . . . x(1)p

x(2)1 x(2)2 . . . x(2)p
. . . . . . . . . . . .

x(N)
1 x(N)

2 . . . x(N)
p

 N: sample #
p: parameter #

I Time consuming to run simulation or measure→ sample# N is limited
I If N < parameter# p,→ no unique solutions
I Overfitting problem
I Should reduce parameter#
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Local Analysis

Si =
f (x1, · · · , xi + ∆xi, · · · , xK)− f (x1, · · · , xK)

∆xi

I , Computationally efficient
I / Only take into account local variation around nominal value

Least Squares

min
β
‖y− Xβ‖22 → β = (X>X)−1X>y

I , Global view
I / Too complicated model after analysis
I / Need large simulation size (N > p)
I / Otherrwise X>X may be singular (difficult to invert)
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`0-Norm Regularization

minimize ‖y− Xβ‖,
subject to ‖β‖0 ≤ λ.

I , Global view
I / NP-hard
I Orthogonal matching pursuit (OMP): iterative heuristics
I / Computational expensive
I Good in temperature analysis, but NOT good in energy analysis
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Ridge Regression

arg min
β
‖y− Xβ‖22 + λ

p∑
i=j
‖βj‖22

→ β = (X>X + λI)−1X>y
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Lasso

arg min
β
‖y− Xβ‖22 + λ

p∑
i=j
|βj|

I “`1 penalty” (Lasso)
I β optimally solved by Coordinate Descent [Friedman+,AOAS’07]

I λ: nonnegative regularization parameter
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Closed-Form For Single Variable
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Coordinate Descent

I The idea behind coordinate descent is, simply, to optimize a target function with
respect to a single parameter at a time, iteratively cycling through all parameters until
convergence is reached

I Coordinate descent is particularly suitable for problems, like the lasso, that have a
simple closed form solution in a single dimension but lack one in higher dimensions
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Coordinate Descent (cont.)
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Coordinate Descent (cont.)
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Group Lasso

I We denote X as being composed of J groups X1,X2, . . . ,XJ

I Xβ =
∑

j Xjβj, where βj represents the coefficients belonging to the jth group

arg min
β
‖y− Xβ‖22 +

∑
j
λj‖βj‖

= arg min
β
‖y−

∑
j

Xjβj‖22 +
∑

j
λj‖βj‖

Example:
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Structured Sparsity Learning1
Random sparsity, theoretical Speedup 6= practical Speedup

5"

Theoretical"Speedup"≠"Practical"Speedup"
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Forwarding"speedups"of"AlexNet"on"GPU"platforms"and"the"sparsity."Baseline"is"
GEMM"of"cuBLAS."The"sparse"matrixes"are"stored"in"the"format"of"Compressed"
Sparse"Row"(CSR)"and"accelerated"by"cuSPARSE."

Random 
sparsity 

Irregular 
memory 
access 

Poor 
cache 
locality 

No or 
trivial 
speedup 

Hardcoding nonzero weights in source 
code in B. Liu, etc., CVPR 2015 

Customizing an EIE chip accelerator 
for compressed DNN in S. Han ISCA 
2017 

Software customization 

Hardware customization 

1Wei Wen et al. (2016). “Learning structured sparsity in deep neural networks”. In: Proc. NIPS, pp. 2074–2082.
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Structured Sparsity Learning
Structural Sparsity
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Structural Sparsity Learning – Some Examples
Dense matrix to block sparse matrix

3 BANK-BALANCED SPARSITY
Our proposed sparsity pattern, Bank-Balanced Sparsity (BBS), achieves
both high model accuracy and high hardware e�ciency. In this sec-
tion, we �rst describe the pattern of BBS and the motivation for
designing it. Then, we present the detailed bank-balanced pruning
algorithm to induce BBS on LSTM weight matrices. Finally, we
analyze the pruning e�ectiveness of BBS in terms of achievable
accuracy and sparsity. The e�cient hardware acceleration design
for BBS will be introduced in the next section.

3.1 Bank-Balanced Sparsity Pattern
For matrices represented in BBS, each matrix row is split into mul-
tiple equal-sized banks (i.e., sub-rows), and each bank has the same
number of non-zero values. Figure 1 illustrates BBS with an example
and compares it with unstructured sparsity and block sparsity. In
this example, three sparse matrices with di�erent sparsity patterns
are all pruned from the dense example weight matrix in Figure 1(a))
with a sparsity ratio of 50%. Fine-grained pruning globally sorts
the weights and prunes the smallest 50% of weights, leading to an
unstructured sparse matrix (Figure 1(b)); Coarse-grained pruning
induces a block sparse matrix (Figure 1(c)) by setting the block
size to 2x2 and the block representative with the block average;
Our bank-balanced pruning induces a bank-balanced sparse matrix
(Figure 1(d)) by splitting each matrix row into 2 equal-sized banks
and applying �ne-grained pruning inside each bank independently.

0.2 -0.6 -0.1 0.6

0.4 0.1 0.1 0.5

0.7 -0.1 0.5 0.1

-0.1 0.6 0.3 0.6

Figure 1: Comparing BBS with unstructured sparsity and
block sparsity by pruning a dense matrix with a sparsity ra-
tio of 50%.

We design this BBS sparsity pattern with consideration on both
hardware e�ciency and model accuracy. In general, partitioning
weight matrix into multiple sub-matrices is mandatory for parallel
computing. In BBS, each matrix row is split into multiple banks
with the same size and same sparsity. This bank-balanced partition-
ing enables an e�cient SpMxV design to exploit both inter-row
parallelism and intra-row parallelism (i.e., inter-bank parallelism)
with guaranteed load balance and no vector access con�icts. The
detailed SpMxV design for BBS will be described in Section 4.1. In
addition, since BBS applies �ne-grained pruning within each bank
independently, the relatively large weights which contribute more
to model accuracy in each bank can be preserved.

Another potential design for a sparsity pattern would be to split
weight matrices into 2-D blocks like block sparsity and apply �ne-
grained pruning within each 2-D block. Larger weights within each
block can be preserved as well in this scheme. However, after prun-
ing, each 2-D block is still an unstructured sparse matrix. It is still
challenging to design an e�cient hardware accelerator architec-
ture due to the irregularity of sparse sub-matrices. For example,
parallelizing SpMxV across 2-D blocks leads to concurrent irregular
vector accesses.

3.2 Bank-Balanced Pruning Algorithm
To induce BBS on LSTM weight matrices, we adopt a bank-balanced
pruning method that prunes each bank independently with the
same threshold percentage to obtain the same sparsity ratio among
banks.

Algorithm 1 Bank-Balanced Pruning Algorithm
Input:

The matrix to be pruned, M ;
The number of banks per row, BankNum;
The expected sparsity, Sparsit�;

Output:
The pruned matrix, Mp ;

1: for each Mi 2 M .rows do
2: Divide the row Mi into BankNum blocks;
3: for each bank 2 Mi do
4: Sort the elements in bank ;
5: Calculate the bank internal threshold T in line with

Sparsit�;
6: for each element 2 bank do
7: prune element if element < T ;
8: end for
9: end for

10: end for
11: return the pruned matrix, Mp ;

Like previous pruning methods, we apply the bank-balanced
pruning method iteratively to a pre-trained network, and �ne-tune
the network after each pruning iteration to restore the model accu-
racy. Algorithm 1 illustrates the detailed bank-balanced pruning
method to induce BBS on LSTM weight matrices. In each pruning
iteration, bank-balanced pruning �rst partitions each matrix row to
multiple equal-sized banks and sorts the weights within each bank
by their absolute values. The importance of weights is represented
as their bank internal ranking of absolute values. Iteratively, a per-
centage of weights with the smallest absolute values are pruned.
We slowly increase the pruning percentage from 0% to the target
sparsity, while the rate of increase decreases with each pruning
iteration. During pruning, if the model accuracy drops signi�cantly
and cannot be recovered via �ne-tuning, we withdraw this pruning
iteration and stop the pruning procedure.

3.3 Analysis of Our Pruning Method
Intuitively, a pruning method should remove only smaller weights
and preserve larger weights that contribute more to model accu-
racy. Fine-grained pruning clamps weights of small magnitudes to
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Structural Sparsity Learning – Some Examples

Removing rows/columns in GEMM (row/column-wise sparsity)
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Structured Sparsity Learning

Group Lasso Regularization

I ED(W) is the loss on data.

I R(·) is non-structured regularization applying on every weight, e.g., `2-norm.

I Rg(·) is the structured sparsity regularization for G groups on each layer:

Rg(w) =

G∑
g=1
‖w(g)‖g.

I Here ‖ · ‖g is group lasso, or ‖w(g)‖g =

√∑|w(g)|
i=1 (w(g)

i )2, where |w(g)| is the number
of weights in w(g).
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Structural Sparsity Learning
Group Lasso Regularization

Learned structured sparsity is determined by the way of splitting groups.
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E(W) = ED(W) + λ · R(W) + λg
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Rg(W(l))
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Channel Pruning2

2Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep Neural Networks”. In:
Proc. ICCV.
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Feature Pruning3

Pruning Networks using Neuron Importance Score Propagation (NISP)

NISP: Pruning Networks using Neuron Importance Score Propagation

Ruichi Yu1 Ang Li3⇤ Chun-Fu Chen2 Jui-Hsin Lai5† Vlad I. Morariu4⇤

Xintong Han1 Mingfei Gao1 Ching-Yung Lin6† Larry S. Davis1

1University of Maryland, College Park 2IBM T. J. Watson Research
3DeepMind 4Adobe Research 5JD.com 6Graphen.ai

{richyu, xintong, mgao, lsd}@umiacs.umd.edu, anglili@google.com

chenrich@us.ibm.com, larry.lai@jd.com, morariu@adobe.com, cylin@graphen.ai

Abstract

To reduce the significant redundancy in deep Convo-
lutional Neural Networks (CNNs), most existing methods
prune neurons by only considering the statistics of an indi-
vidual layer or two consecutive layers (e.g., prune one layer
to minimize the reconstruction error of the next layer), ig-
noring the effect of error propagation in deep networks. In
contrast, we argue that for a pruned network to retain its
predictive power, it is essential to prune neurons in the en-
tire neuron network jointly based on a unified goal: min-
imizing the reconstruction error of important responses in
the “final response layer” (FRL), which is the second-to-
last layer before classification. Specifically, we apply fea-
ture ranking techniques to measure the importance of each
neuron in the FRL, formulate network pruning as a binary
integer optimization problem, and derive a closed-form so-
lution to it for pruning neurons in earlier layers. Based on
our theoretical analysis, we propose the Neuron Importance
Score Propagation (NISP) algorithm to propagate the im-
portance scores of final responses to every neuron in the
network. The CNN is pruned by removing neurons with least
importance, and it is then fine-tuned to recover its predictive
power. NISP is evaluated on several datasets with multiple
CNN models and demonstrated to achieve significant accel-
eration and compression with negligible accuracy loss.

1. Introduction

CNNs require a large number of parameters and high
computational cost in both training and testing phases. Re-
cent studies have investigated the significant redundancy
in deep networks [6] and reduced the number of neurons
and filters [3, 13, 22, 26] by pruning the unimportant ones.

⇤This work was done while the author was at the University of Mary-
land.

†This work was done while the author was at IBM.
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Figure 1. We measure the importance of neurons in the final re-
sponse layer (FRL), and derive Neuron Importance Score Propa-
gation (NISP) to propagate the importance to the entire network.
Given a pre-defined pruning ratio per layer, we prune the neu-
rons/filters with lower importance score. We finally fine-tune the
pruned model to recover its predictive accuracy.

However, most current approaches that prune neurons and
filters consider only the statistics of one layer (e.g., prune
neurons with small magnitude of weights [22, 13]), or two
consecutive layers [26] to determine the “importance” of
a neuron. These methods prune the “least important” neu-
rons layer-by-layer either independently [13] or greedily
[22, 26], without considering all neurons in different layers
jointly.

One problem with such methods is that neurons deemed
unimportant in an early layer can, in fact, contribute signifi-
cantly to responses of important neurons in later layers. Our
experiments (see Sec.4.4) reveal that greedy layer-by-layer
pruning leads to significant reconstruction error propaga-
tion, especially in deep networks, which indicates the need
for a global measurement of neuron importance across dif-
ferent layers of a CNN.

To address this problem, we argue that it is essential
for a pruned model to retain the most important responses
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Figure 1. We measure the importance of neurons in the final re-
sponse layer (FRL), and derive Neuron Importance Score Propa-
gation (NISP) to propagate the importance to the entire network.
Given a pre-defined pruning ratio per layer, we prune the neu-
rons/filters with lower importance score. We finally fine-tune the
pruned model to recover its predictive accuracy.

However, most current approaches that prune neurons and
filters consider only the statistics of one layer (e.g., prune
neurons with small magnitude of weights [22, 13]), or two
consecutive layers [26] to determine the “importance” of
a neuron. These methods prune the “least important” neu-
rons layer-by-layer either independently [13] or greedily
[22, 26], without considering all neurons in different layers
jointly.

One problem with such methods is that neurons deemed
unimportant in an early layer can, in fact, contribute signifi-
cantly to responses of important neurons in later layers. Our
experiments (see Sec.4.4) reveal that greedy layer-by-layer
pruning leads to significant reconstruction error propaga-
tion, especially in deep networks, which indicates the need
for a global measurement of neuron importance across dif-
ferent layers of a CNN.

To address this problem, we argue that it is essential
for a pruned model to retain the most important responses

I FRL: final response layer
I Measure the importance of the neurons across the entire model;
I Rank features on the final response layer;
I Minimize the reconstruction errors of (important) final responses;
I Back-propagate the importance values and prune the neurons.

3Ruichi Yu et al. (2018). “NISP: Pruning networks using neuron importance score propagation”. In: Proc. CVPR,
pp. 9194–9203.
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Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

I Prune network using NISP.
I Fine-tune the pruned network.
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Figure 1. We measure the importance of neurons in the final re-
sponse layer (FRL), and derive Neuron Importance Score Propa-
gation (NISP) to propagate the importance to the entire network.
Given a pre-defined pruning ratio per layer, we prune the neu-
rons/filters with lower importance score. We finally fine-tune the
pruned model to recover its predictive accuracy.

However, most current approaches that prune neurons and
filters consider only the statistics of one layer (e.g., prune
neurons with small magnitude of weights [22, 13]), or two
consecutive layers [26] to determine the “importance” of
a neuron. These methods prune the “least important” neu-
rons layer-by-layer either independently [13] or greedily
[22, 26], without considering all neurons in different layers
jointly.

One problem with such methods is that neurons deemed
unimportant in an early layer can, in fact, contribute signifi-
cantly to responses of important neurons in later layers. Our
experiments (see Sec.4.4) reveal that greedy layer-by-layer
pruning leads to significant reconstruction error propaga-
tion, especially in deep networks, which indicates the need
for a global measurement of neuron importance across dif-
ferent layers of a CNN.

To address this problem, we argue that it is essential
for a pruned model to retain the most important responses
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Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

Some notations:
I The l-th layer f (l)(x) is represented as:

f (l)(x) = σ(l)(w(l)x + b(l)).

I A network with depth n as a function F(n):

F(n) = f (n) ◦ f (n−1) ◦ · · · ◦ f (1).

I The sub-network from i-th to j-th layer:

G(i, j) = f (j) ◦ f (j−1) ◦ · · · ◦ f (i).
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Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

I Define a binary vector s∗l : neuron prune indicator for the l-th layer.

I The objective function for a single sample is defined as:

F(s∗l |x, sn; F) = 〈 sn, |F(x)− F(s∗l � x)| 〉,

where 〈·, ·〉 is dot product, � is element-wise product, and | · | is element-wise
absolute value.

I For all samples in the dataset:

arg min
s∗l

M∑
m=1
F(s∗l |x(m)

l , sn; G(l+1,n))

I Derive an upper-bound on this objective and minimize the upper-bound.
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Overview

Sparse Regression

Pruning

Sparse Hardware Architecture
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EIE: Efficient Inference Engine on 
Compressed Deep Neural Network 

 
Han et al.  
ISCA 2016

29 / 45



Deep Learning Accelerators

• First Wave: Compute (Neu Flow)  

• Second Wave: Memory (Diannao family)  

• Third Wave: Algorithm / Hardware Co-Design (EIE)

 43

Google TPU: “This unit is designed for dense matrices. Sparse 
architectural support was omitted for time-to-deploy reasons. 
Sparsity will have high priority in future designs” 
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Sparse Weight
90% static sparsity

Weight Sharing
4-bit weights

[Han et al. ISCA’16]
EIE: the First DNN Accelerator for  

 Sparse, Compressed Model

Sparse Activation
70% dynamic sparsity

10x less computation

5x less memory footprint

3x less computation

8x less memory footprint

Compression Acceleration Regularization  44

0 * A = 0 W * 0 = 0 2.09, 1.92=> 2
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EIE: Parallelization on Sparsity
[Han et al. ISCA’16]

 45

29 / 45



a⃗
(

0 a1 0 a3
)

× b⃗
PE0

PE1

PE2

PE3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1

−b2
b3

−b4
b5
b6

−b7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ReLU⇒

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
0

b3
0

b5
b6
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

PE PE PE PE 

Central Control 

Compression Acceleration Regularization

EIE: Parallelization on Sparsity
[Han et al. ISCA’16]
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Dataflow
[Han et al. ISCA’16]
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EIE Architecture

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han∗ Xingyu Liu∗ Huizi Mao∗ Jing Pu∗ Ardavan Pedram∗

Mark A. Horowitz∗ William J. Dally∗†

∗Stanford University, †NVIDIA
{songhan,xyl,huizi,jingpu,perdavan,horowitz,dally}@stanford.edu

Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120× energy saving; Exploiting sparsity saves 10×; Weight
sharing gives 8×; Skipping zero activations from ReLU saves
another 3×. Evaluated on nine DNN benchmarks, EIE is
189× and 13× faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88×104 frames/sec with a power dissipation of only 600mW.
It is 24,000× and 3,400× more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9×, 19× and 3× better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,

4-bit	  
Relative	Index

4-bit	  
Virtual	weight

16-bit		
Real	weight

16-bit	  
Absolute	Index

Encoded	Weight	
Relative	Index	
Sparse	Format	

ALU

Mem

Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these
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Post Layout Result of EIE

Technology 40 nm

# PEs 64

on-chip SRAM 8 MB

Max Model Size 84 Million

Static Sparsity 10x

Dynamic Sparsity 3x

Quantization 4-bit

ALU Width 16-bit

Area 40.8 mm^2

MxV Throughput 81,967 layers/s

Power 586 mW

1. Post layout result
2. Throughput measured on AlexNet FC-7 

Compression Acceleration Regularization

[Han et al. ISCA’16]
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10× weight sparsity and 3× activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU GPU mGPU EIE

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v × aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M×V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10× weight sparsity and 3× activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v × aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M×V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Weight Sparsity4

Indexing Module (IM) for sparse data
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Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it
is used for indexing needed neurons of sparse neural networks
with different levels of sparsity. Instead of distributing an
indexing module to each PE, we design a centralized indexing
module in the BC and only transfer the indexed neurons to
PEs, which can significantly reduce the bandwidth requirement
between the neural buffer and PEs because the number of data
after indexing is much smaller in sparse networks. In Figure 9,
different input neurons are selected for different PEs based on
stored connections. For PE #0, only two neurons, i.e., n0 and
n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two
commonly-used indexing options, i.e., direct indexing and step
indexing. The direct indexing approach uses a binary string
with one bit per synapse, indicating whether the corresponding
synapse exists, i.e., “1” for existence and “0” for absence. The
step indexing approach further indexes the binary string of
direct indexing by using distances between existed synapses
(“1”s in the binary string), i.e., each element in the index table
indicates the distance between two existed synapses.

Although there exists other indexing methods, such as
Compressed Sparse Row (CSR), Coordinate list (COO), and
Compressed Sparse Column (CSC), direct indexing and step
indexing are relatively easy to implement from the perspective
of hardware design. For example, well used CSR/CSC need
two arrays to store indexes for sparse matrix which will
be costly for storage in the context of sparse NNs whose
sparsity are usually larger than 5% (see Table I). Besides,
CSR/CSR are indexing row and column of matrix while
our deliberated design scheduling in accelerator is indexing
multiple neurons and synapses one-dimensionally in parallel.
Thus we investigate direct indexing and step indexing for
implementing high efficient indexing module.

In direct indexing, neurons are selected from all input
neurons directly based on existed connections (i.e., 1s) in the
binary string. The binary string of a sparse network example is
shown in Figure 10(a). We also present the potential hardware
implementation in Figure 10(b). The indexing process can be
elaborated as follows. First we add each bit in the original
binary string to obtain an accumulated string, and each element
in the accumulated string indicates the location of correspond-
ing connection. After enforcing the “AND” operation between
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Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of
each connected neuron can be obtained.
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Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances
between input neurons with existed synapses. We present the
same network example with step indexing in Figure 11(a)
and the potential hardware implementation in Figure 11(b).
The indexing process can be detailed as follow. First, we add
the numbers in the index table (e.g., “1132” in Figure 11(b))
sequentially to get the indexes of inputs neurons which have
connections with the current output neuron. Then, such indexes
are used for addressing the corresponding input neurons.
Compared against the direct indexing, the indexes in step
indexing are integer numbers whose widths depend on the
sparsity of NNs.

We implement the above two indexing approaches in RTL
and compare corresponding hardware costs in terms of area
and power with synthesized results in Figure 12. Note that
indexes are computed in parallel for both implementations. By
selecting 16 data from an array with a length varying from 32
to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,
we observe that the costs are increasing with the sparsity.

I IM is used for indexing needed neurons of sparse networks with different levels of
sparsities.

I A centralized IM is designed in the buffer controller and only transfer the indexed
neurons to processing engines.

4Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”. In: Proc. MICRO. IEEE, pp. 1–12.
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Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it
is used for indexing needed neurons of sparse neural networks
with different levels of sparsity. Instead of distributing an
indexing module to each PE, we design a centralized indexing
module in the BC and only transfer the indexed neurons to
PEs, which can significantly reduce the bandwidth requirement
between the neural buffer and PEs because the number of data
after indexing is much smaller in sparse networks. In Figure 9,
different input neurons are selected for different PEs based on
stored connections. For PE #0, only two neurons, i.e., n0 and
n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two
commonly-used indexing options, i.e., direct indexing and step
indexing. The direct indexing approach uses a binary string
with one bit per synapse, indicating whether the corresponding
synapse exists, i.e., “1” for existence and “0” for absence. The
step indexing approach further indexes the binary string of
direct indexing by using distances between existed synapses
(“1”s in the binary string), i.e., each element in the index table
indicates the distance between two existed synapses.

Although there exists other indexing methods, such as
Compressed Sparse Row (CSR), Coordinate list (COO), and
Compressed Sparse Column (CSC), direct indexing and step
indexing are relatively easy to implement from the perspective
of hardware design. For example, well used CSR/CSC need
two arrays to store indexes for sparse matrix which will
be costly for storage in the context of sparse NNs whose
sparsity are usually larger than 5% (see Table I). Besides,
CSR/CSR are indexing row and column of matrix while
our deliberated design scheduling in accelerator is indexing
multiple neurons and synapses one-dimensionally in parallel.
Thus we investigate direct indexing and step indexing for
implementing high efficient indexing module.

In direct indexing, neurons are selected from all input
neurons directly based on existed connections (i.e., 1s) in the
binary string. The binary string of a sparse network example is
shown in Figure 10(a). We also present the potential hardware
implementation in Figure 10(b). The indexing process can be
elaborated as follows. First we add each bit in the original
binary string to obtain an accumulated string, and each element
in the accumulated string indicates the location of correspond-
ing connection. After enforcing the “AND” operation between
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Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of
each connected neuron can be obtained.
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Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances
between input neurons with existed synapses. We present the
same network example with step indexing in Figure 11(a)
and the potential hardware implementation in Figure 11(b).
The indexing process can be detailed as follow. First, we add
the numbers in the index table (e.g., “1132” in Figure 11(b))
sequentially to get the indexes of inputs neurons which have
connections with the current output neuron. Then, such indexes
are used for addressing the corresponding input neurons.
Compared against the direct indexing, the indexes in step
indexing are integer numbers whose widths depend on the
sparsity of NNs.

We implement the above two indexing approaches in RTL
and compare corresponding hardware costs in terms of area
and power with synthesized results in Figure 12. Note that
indexes are computed in parallel for both implementations. By
selecting 16 data from an array with a length varying from 32
to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,
we observe that the costs are increasing with the sparsity.

I Neurons are selected from all input neurons directly based on existed connections in
the binary string.
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Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it
is used for indexing needed neurons of sparse neural networks
with different levels of sparsity. Instead of distributing an
indexing module to each PE, we design a centralized indexing
module in the BC and only transfer the indexed neurons to
PEs, which can significantly reduce the bandwidth requirement
between the neural buffer and PEs because the number of data
after indexing is much smaller in sparse networks. In Figure 9,
different input neurons are selected for different PEs based on
stored connections. For PE #0, only two neurons, i.e., n0 and
n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two
commonly-used indexing options, i.e., direct indexing and step
indexing. The direct indexing approach uses a binary string
with one bit per synapse, indicating whether the corresponding
synapse exists, i.e., “1” for existence and “0” for absence. The
step indexing approach further indexes the binary string of
direct indexing by using distances between existed synapses
(“1”s in the binary string), i.e., each element in the index table
indicates the distance between two existed synapses.

Although there exists other indexing methods, such as
Compressed Sparse Row (CSR), Coordinate list (COO), and
Compressed Sparse Column (CSC), direct indexing and step
indexing are relatively easy to implement from the perspective
of hardware design. For example, well used CSR/CSC need
two arrays to store indexes for sparse matrix which will
be costly for storage in the context of sparse NNs whose
sparsity are usually larger than 5% (see Table I). Besides,
CSR/CSR are indexing row and column of matrix while
our deliberated design scheduling in accelerator is indexing
multiple neurons and synapses one-dimensionally in parallel.
Thus we investigate direct indexing and step indexing for
implementing high efficient indexing module.

In direct indexing, neurons are selected from all input
neurons directly based on existed connections (i.e., 1s) in the
binary string. The binary string of a sparse network example is
shown in Figure 10(a). We also present the potential hardware
implementation in Figure 10(b). The indexing process can be
elaborated as follows. First we add each bit in the original
binary string to obtain an accumulated string, and each element
in the accumulated string indicates the location of correspond-
ing connection. After enforcing the “AND” operation between
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Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of
each connected neuron can be obtained.
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Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances
between input neurons with existed synapses. We present the
same network example with step indexing in Figure 11(a)
and the potential hardware implementation in Figure 11(b).
The indexing process can be detailed as follow. First, we add
the numbers in the index table (e.g., “1132” in Figure 11(b))
sequentially to get the indexes of inputs neurons which have
connections with the current output neuron. Then, such indexes
are used for addressing the corresponding input neurons.
Compared against the direct indexing, the indexes in step
indexing are integer numbers whose widths depend on the
sparsity of NNs.

We implement the above two indexing approaches in RTL
and compare corresponding hardware costs in terms of area
and power with synthesized results in Figure 12. Note that
indexes are computed in parallel for both implementations. By
selecting 16 data from an array with a length varying from 32
to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,
we observe that the costs are increasing with the sparsity.

I Neurons are selected based on the distances between input neurons with existed
synapses.
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5Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network computing”. In: ACM SIGARCH
Computer Architecture News 44.3, pp. 1–13.
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Further Discussion: Reading List

I Wenlin Chen et al. (2015). “Compressing neural networks with the hashing trick”. In:
Proc. ICML, pp. 2285–2294

I Huizi Mao et al. (2017). “Exploring the granularity of sparsity in convolutional neural
networks”. In: CVPR Workshop, pp. 13–20

I Zhuang Liu et al. (2017). “Learning efficient convolutional networks through network
slimming”. In: Proc. ICCV, pp. 2736–2744

I Chenglong Zhao et al. (June 2019). “Variational convolutional neural network pruning”.
In: Proc. CVPR

I Junru Wu et al. (2018). “Deep k-Means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions”. In: Proc. ICML
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