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This paper introduces a graphical user interface approach to facilitate an efficient and
timely generation of statistic data from input videos. By means of a carefully-designed
graphical user interface, users can interactively add in various kinds of markers, known

as the statistic inducers, on the screen of an input video to specify the areas of interest
corresponding to the locations of relevant events. These inducers are in the form of

two-dimensional points, lines, polygons, and grids, and can be put on the video screen
with great ease. Using these inducers, we not only can efficiently customize the system
for a given statistic generation task; in addition, we can also precisely constrain the
time-consuming space-time video analysis process (as well as any additional analysis
process like optical flow computation or object recognition) on the user-specified areas.

To demonstrate the efficacy of the proposed approach, we developed a prototypic system
and experimented it in two different statistic generation cases: dormitory light switching

and road traffic. In both cases, we just need a few minutes of UI customization time to
set up the inducers; once this is done, timely statistics can be automatically generated

subsequently.
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1. Introduction

Video is a comprehensive multimedia element widely used in many applications

and electronics. With recent advances in video capture, storage, and transmission

technology, and also with the dropping in the cost of video capturing device, the

use of videos is no longer limited to entertainment industries for film making or

television production; we now have a wide variety of commodity video-based ap-

plications like tele-conferencing, home surveillance, security cameras, and instant

news broadcasting on mobile devices.

Though videos are so popular in everyday life, most conventional video appli-

cations still regard videos as stacks of consecutive images only; video is merely

regarded as a data storage for capture, transmission, and display. Rather, the ap-

plication, or the interpretation, of videos is not limited to this; we can interpret

the contents stored in a video, as a three-dimensional spatio-temporal data volume

documenting both spatial and temporal events (or activities) happened, or being

happened, in a physical environment continuously over a well-defined period of
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Fig. 1. Overview of the “Statistics from Video” framework.

time. From this point of view, we can further bring in high-level video applications

with the help of ingenious image understanding and computer vision techniques,

see Subsection 1.1 for some interesting examples.

Why “Statistics from video”?

Statistic data is a highly valuable resource widely employed in many disciplines

nowadays; from experiments in scientific studies to decision-making in commercial

enterprises, statistic is an objective mean not distorted by personal bias or emotion,

and is based entirely upon observations. However, the situation we commonly have

with statistics is that the effort required to get raw statistic data is usually highly

enormous both in terms of manpower and time.

Regarding this, what this paper focus on is the application of videos in gener-

ating statistic data. Since a video documents both spatial and temporal events, if

we can employ it as a mean to generate raw statistic data (through video analysis),

we not only can greatly save the manpower and time involved in compiling the

statistic data, but can also significantly shorten the time in obtaining the statistic

data as well. Timely statistic data could be immediately available right after the

happening of related events.

What is “Statistics from video”?

The central idea in the proposed “Statistics from video” framework, see Figure 1,

is a graphical user interface design to link the two entities, video and statistics,

together; here, we can capture events through a video, or directly from a live video

stream, and efficiently generate the related statistic data (in the form of time-series

data) by means of some video analysis methods. The user interface is the middleman

for users to efficiently input prior semantic information to customize the system for

a given statistic generation task.

Using this user interface approach, we can tremendously reduce the manpower

involved, and also significantly speedup the statistic generation cycle, which, in turn,

can further facilitate the design of high-level spatio-temporal queries or analysis in

the domain of data mining and information retrieval. In details, to bring this idea

into practice, we introduce two important elements in the proposed approach:

• The first element is a specially-designed user interface for users to efficiently



November 8, 2007

A User Interface Design for Acquiring Statistics from Video 3

mark up regions of interest with respect to relevant events; here we propose

the statistic inducer, as an efficient media for users to do the customization.

• The second element is the attachment of callback functions, so that the

statistic generation process can be specialized for different statistic gener-

ation tasks.

Using this framework, we can efficiently and almost automatically (it only takes

users a few minutes’ time to set up the inducers) obtain statistic data, such as 1) the

traffic condition (e.g., statistics about the number of cars through a certain location

per minute), 2) the sleeping habit in a dormitory, and 3) crowd control or rate of

people flow in a mall, etc. The overview of the framework and the user interface

design are presented in Section 2; the video analysis component is presented in

Section 3, while the implementation details and two statistic generation examples

are reported in Section 4.

1.1. Related work

Computer Graphics and Images In recent research of computer graphics,

there are emergent topics like video-based rendering, and computational photogra-

phy and video. In line with the main idea in this paper, a graphical user interface

(GUI) is designed and provided to the users as an interactive visual computing

environment that takes in user interaction to process and edit video/image data.

One example is the work of Bhat et al.5, where users can employ an interactive GUI

to edit videos of water flows and synthesize novel water flow animations. Agarwala

et al.4 tracked contours in a video sequence for rotoscoping and cartoon animation

creation. Sand and Teller33 proposed an interesting and robust video matching idea,

which innovated some novel video-based applications as well as the development

of various special video effects. The GUI system designed by Wang et al.45 can

transform videos into cartoon animations in a non-photorealistic style. In addition,

Wang et al.43 also developed an interactive video segmentation system for cut-and-

paste of video-based objects among different video sequences. A similar UI system

was reported by Li et al.20. Hengel et al.42 designed a GUI for users to create 3D

models out of videos. Other than using interactive GUIs to process videos, inter-

active GUIs are also designed for applications like: manga colorization27, a photo

clip art system18 for inserting image-based objects into existing photographs, and

a sketch-based UI system47 to specify 3D shapes through normal transfer.

Visualization Pingali et al.25 applied real-time video analysis technique to ex-

tract the motion trajectories of tennis players and the ball, so that we can visualize

the actions taken in the form of a 3D virtual replay, and look at the ball trajec-

tory at any angle. Daniel and Chen10 considered a video as a 3D volume data and

applied volume rendering to visualize the events and activities happened in the cap-

tured video. Román et al.30 made use of a sideways-looking video captured from a

moving vehicle to create a multiperspective view of the scene; this result facilitates

the visualization of urban landscape.
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Multimedia In the area of multimedia research, there are many different kinds

of video-based applications; Cavallaro et al.7 developed an automatic algorithm

for tracking multiple objects in a video sequence; interactions between both low

and high level image analysis results were employed. Ou et al.24 built the DOVE

(Drawing Over Video Environment) collaboration system; users can draw on videos

to share ideas over a video feed. Wu et al.48 detected text on road signs by ana-

lyzing videos captured on a moving vehicle. Xu et al.49 developed an automatic

music video summarization system by simultaneously looking at the extracted cho-

rus from the music track, and the extracted lyrics and shots from the video track

at the same time. He and Zhang16 invented an interesting vision-based multime-

dia application called the Real-Time Whiteboard Capture System (RTWCS); the

video stream captured from a low-cost video camera can be analyzed in real-time to

produce line strokes and drawings, lively shared in a tele-conference environment.

Change Detection Apart from presenting related work on video rendering and

analysis, we would also like to discuss some related work on change detection as

change detection is a major component inside our statistics from video framework.

Basically, Change detection has a long history in the literature of image process-

ing and computer vision. Radke et al.28 presented a systematic survey on change

detection, and here we briefly review some related techniques in this area:

• One straightforward approach to detect changes in a video is by com-

puting the difference between successive frames. The simple differencing

method31,32 thresholds the absolute difference on individual pixels between

consecutive frames and looks for changes. Techniques closely related to this

idea include the linear dependence change detector (LDD)11, the change

vector analysis (CVA) technique22, image ratioing34, and simple difference

on subsampled gradient images36.

• Instead of comparing consecutive images only, we can track intensities of

pixels over time (either pixel-based or block-based), model the background

(and maybe the foreground also), and apply statistical hypothesis to de-

tect changes3,2 when a new image is given. This approach is in general

called background modeling; several modeling methods have been proposed:

a single Gaussian model3,46, a mixture-of-Gaussian model35,26, a predictive

model like the Wiener filter40, the Kalman filter17, the non-parametric ker-

nel density estimation12, the hidden Markov model (HMM)29,37, the Markov

random field2, and the minimum description length (MDL) approach19.

• More than analyzing a given video pixel by pixel, we can also take

into account the spatial domain of the video (and maybe the temporal

domain as well), extract the structural entities such as edges, objects,

or regions, and detect changes spatially. Related techniques include the

morphological filter38, segmentation-based methods36 (such as mean shift

segmentation44,9), detection using color edges6, and the Wallflower hierar-



November 8, 2007

A User Interface Design for Acquiring Statistics from Video 5

chical analysis system40.

• Another stream of research in change detection is to handle the illumi-

nation changes in video so that the change detection process is illumi-

nation independent. This is especially significant when we consider “time

of day” and “shadow” issues in the change detection. Conventional tech-

niques dealing with this issue include intensity normalization21,41, homo-

morphic filtering39,1 for Lambertian surfaces, the generic linear model23

for modeling the radiometric variation, the principal component analysis

(PCA) technique14 for illumination decomposition, and the linear depen-

dence change detector (LDD)11.

Further than that, some researchers combined several techniques above together

in order to implement practical surveillance systems. Haritaoglu et al.15 combined

techniques like thresholding, the morphological filter, etc. in their W 4 surveillance

system, whereas Collins et al.8 also combined a series of change detection methods

in their autonomous video surveillance and monitoring system. In this paper, we

also employ several change detection techniques inside our statistics from video

framework, but since our framework is a high-level design, it is independent of the

change detection algorithms chosen.

2. The User Interface: Statistics from Video

2.1. The User Interface

Figure 2 presents the user interface we implemented in the prototypic system. To

generate statistic data given an input video, the very first step we have to do is to

mark up some regions of interest on the video screen corresponding to the relevant

activities as to the statistic data to be inferred. In the example shown in the figure,

some statistic inducers are marked on the road to watch over the cars crossing them

over time; here, raw statistic data corresponding to this action can be generated

accordingly, and later be compiled.

Fig. 2. The user interface (UI) in our prototypic system.
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In the user interface, the main window on the top left shows the current video

frame, while the control panel on the right (including the video capture, inducer

control, and statistic control subpanels) provides a mean for users to adjust related

parameters. The sub-window on the bottom is the event triggering panel showing

the detected activities at each inducer over time. In practice, here are the steps in

using this user interface:

(1) Initialize a video input, either from a live video stream or a pre-captured video

(using the video capture subpanel);

(2) Create statistic inducers on the video screen by drag and drop, and set related

parameters in the inducer control subpanel;

(3) Lastly, we can adjust related parameters (for each statistic inducer) for the

video analysis component, and also for the statistic generation callbacks using

the statistic control subpanel; after that, we can start statistic generation.

2.2. Statistic Inducers

To flexibly support statistic generation in different scenarios, we proposed four

different types of statistic inducer in the user interface, see Figure 3 for their shapes,

and also the inducer control subpanel in Figure 2. Note that to create an inducer

on the video screen, we just need to click on the inducer type button on the inducer

control subpanel and drop an inducer of the selected type on the video screen; after

that, we can interactively adjust it to fit to the related spatial location on the video

screen.

Point inducer – A point inducer is an omnidirectional inducer useful for detect-

ing non-directional changes (or activities) happening at its location; to define this

inducer, users just need to click on the video screen (after the inducer type button)

to specify one single point and also its size in pixel unit using the inducer control

subpanel.

Line inducer – To define a line inducer, users can specify two locations on the video

screen and input also the width of the line segment; but unlike the point inducer,

this inducer could serve as a directional inducer aiming at detecting changes (or

activities) happening perpendicular to the line segment, for example, cars crossing

it on the road, see Figure 3.

Area inducer – An area inducer is a non-directional inducer like a point inducer,

but could flexibly occupy an area of arbitrary size and shape on the video screen. To

specify this inducer, users can click on the video screen multiple times to define the

corners of an area inducer. In practice, this inducer is useful for detecting changes

(or activities) over a relatively larger and arbitrary area on the video screen.

Grid inducer – A grid inducer can be understood as a two-dimensional array of

area inducers; to define this inducer, users just need to specify the four grid corners

on the video screen and the number of grid subdivisions inside (number of rows
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Fig. 3. Scan conversion (or Rasterization) of the statistic inducers.

and columns). In practice, this inducer is powerful not just because it allows us to

quickly construct a 2D array of area inducers at one time; in addition, by using

this inducer, we can efficiently generate a 2D array of time-series data, spatially

corresponding to the grid cells on the video screen. Just like the example shown

in the last column of Figure 3, we can use the grid inducer to detect illumination

changes (e.g., light switching at night) over a matrix of windows in a dormitory.

Other inducers can only generate one time-series data in nature. Furthermore, note

also that we can in principle combine individual inducers to form aggregate induc-

ers for more complicated statistic generation tasks.

After adding a statistic inducer on the video screen, the system will scan-convert

the screen regions occupied by an inducer into a set of screen pixels (grouped by hor-

izontal scanlines) so as to facilitate the upcoming video analysis process, see Figure 3

for the scan-converted examples. In details, this scan conversion (or rasterization)

process employs standard scan conversion methods in computer graphics13.

2.3. Hierarchical Analysis Scheme

With the statistic inducers, we not only can allow users to input prior semantic

information through the user interface, we can also formulate the statistic genera-

tion process as a hierarchical scheme to facilitate a more effective video analysis.

Our video analysis scheme is a three-level hierarchical analysis scheme as illustrated

in Figure 4: pixel level, inducer level, and temporal level. To analyze an incoming

image frame given in an input video stream (or a pre-captured video), the pixel-

level analysis step focuses on the examination of individual pixels within each in-

ducer, and detects potential changes individually for each of them; the inducer-level

analysis step focuses on the spatial examination of these per-pixel results locally

within each user-specified inducer. It then combines the detected result for each
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inducer; the temporal-level analysis step further compares the combined result (per

inducer) against results in previous time frames and generates related raw statistic

count/trigger, see the next section for details.

Fig. 4. The three-level hierarchical analysis scheme.

Using the hierarchical analysis scheme, we are able to cross-check information

over the spatial (screen) domain as well as the temporal domain. This allows a

more precise and more systematic video analysis when we formulate the statistic

generation framework, and also facilitate a more efficient activity detection process

by means of constraining the detection on the user-specified inducer regions.

3. Video Analysis

Before the statistic generation, a core issue we have to address in the video analysis

is to detect changes happened in each user-specified inducer. This issue is basi-

cally related to the of image processing and computer vision literature, typically in

the areas of change detection or background modeling. In this section, we will first

present the criteria of change detection for implementing the statistics from video

framework, and then present the unified algorithm for video analysis in terms of

the hierarchical analysis scheme.

3.1. Issues in Activity/Change Detection

To support a practical statistics from video system, the video analysis component

has to be able to handle the following cases, see also28,15,8:

(1) Foreground objects in motion

(2) Foreground objects stop and merge into the background

(3) Background objects move out of the background and become foreground objects

(4) Time of day change: gradual and global illumination change

(5) Local illumination changes (such as light switching)

(6) Shadow (by foreground objects or by moving clouds)

(7) Bootstrapping (assumes no training period)

Note that we have to address items 4 and 6 above because a practical statistics

from video system has to handle outdoor scenes; furthermore, we have to assume
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continuous video capturing with adequate frame rate so that the input video can

sufficiently capture object motion and also gradual illumination changes in the

physical environments.

3.2. The Video Analysis Component

In the statistic generation framework, we base the implementation of the video

analysis component on the mixture-of-Gaussian method35,26. Each pixel within the

user-specified inducers maintains k independent Gaussian models; each has the

following parameters:

• A label: Foreground (FG) or Background (BG)

• A mean color and a covariance matrix (representing the color variation in this

Gaussian model)

• Confidence value (how successful this model is when representing the foreground

or background)

• A foreground time counter

where k is chosen as 5 in our experiment; furthermore, to ensure the precision in

pixel detection, we maintain at least 3 background models out of the 5 model slots

per pixel throughout the program runtime.

Figure 5 shows the workflow of the video analysis component. The top entity

labeled with “BG & FG models” denotes the sets of Gaussian models (for all pixels

inside the inducers) maintained for background and foreground modeling, while the

decision making procedures and the data processing procedures are labeled with

numbers in circles. Altogether, there are seven sets of major procedures in the

video analysis component. Procedures marked with ‘b’ (2b, 3b, 6b, and 7b) are for

updating the Gaussian models adaptively with the video stream over time. Here, we

apply the equations in35,26 to initialize and update the Gaussian models, but since

the framework is independent of the modeling approach chosen, we can essentially

replace it by some other techniques.

• Initialization (Procedure 1)

Following26, we initialize the five Gaussian models (for each pixel inside the

user-specified inducers) by using the current frame in the input image stream.

Here, all initial Gaussian models are assumed to be background models with

mean set to be the color at the corresponding pixel in the current frame, while

the variances are set to be a user-specified value; typically, we use 10/255 for

all examples shown. After that, the video analysis component can iteratively

update these Gaussian model parameters using procedures 2b, 3b, 6b, and 7b,

based on the new coming images from the input video stream.

• BG and FG detection (Procedures 2 and 3)

When a new image is given in the next time step, each pixel inside an inducer

will be testified against the existing Gaussian models to see if the incoming color
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Fig. 5. Flowchart: the Video analysis component.

is representable by an existing background or foreground model. In details, the

incoming pixel color is tested against each Gaussian model using the Maha-

lanobis distance (compare against the confidence value) in descending order of

their confidence values:

distance = (x − µt−1)
T Mt−1 (x − µt−1) ,

where µt−1 is the mean color of a Gaussian model at previous time frame, Mt−1

is the corresponding covariance matrix, and x is the color of the incoming pixel.

If procedure 2a or 3a finds that the incoming pixel color is representable by an

existing Gaussian model, the related model will be updated by procedure 2b or

3b accordingly.

• Region growing (Procedure 4)

After we process each pixel in an inducer, we should proceed to the inducer level
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for detections of unclassified pixels and foreground pixels. But before doing so,

we first apply region growing to create connected regions in each inducer so

that unclassified pixels and foreground pixels inside the same inducer could be

connected together to form candidate foreground regions. Then, we can apply

morphological filter38 to examine the shape and size of these candidate regions.

• Noise detection (Procedure 5)

The noise detection module is responsible for removing candidate regions with

haphazard color values (noise) and also regions that are too small or thin, as

reported by the morphological filter; note that users can adjust parameters

(shapes and thresholds) on the filter using the statistic control panel.

• Illumination detection (Procedure 6a)

After noise detection, the candidate foreground regions that are not detectable

by the previous tests could be illumination changes resulted by time of day

change or shadowing. Given a candidate region, the illumination detection

module first converts the related pixel colors (for the unclassified pixels) to

YIQ space, and check to see if the intensity changes are results of gradual illu-

mination change or shadowing. If a certain percentage of connected pixels (by

a user-defined threshold) in a candidate foreground region are found to be a

result of an illumination change with similar amount of intensity changes, we

will consider this candidate region as an illumination change, i.e., background,

and add a new background Gaussian model for each related pixel, see “Adding

a new model” below for details.

• Temporal check (Procedure 7a)

After passing the illumination detection test, a candidate region will be clas-

sified as a foreground object; however, a given candidate region here could

be a new foreground object just entered an inducer, or an object in motion

within an inducer. In the temporal check procedure, we compare each candi-

date region given from procedure 6a against regions previously detected in the

same inducer. Hence, we can estimate (by the percentage of overlapping pix-

els) whether a candidate region corresponds to a new object or not. In this

procedure, we could also compute the related optical flow per pixel (over the

candidate region) if users want to employ optical flow in the statistic generation.

• Adding a new model (Procedures 6b and 7b)

[Route 6a to 6b] In case a candidate region is found to be a result of illumina-

tion change by procedure 6a, the unclassified pixels inside should be classified

as background even they are not representable by any existing background

Gaussian model; a new background Gaussian model has to be added for each

of them. Here, one of the five existing Gaussian models has to be discarded as

each pixel can only hold five Gaussian models at any given time. To select which

model to be discarded, we generally pick up the one with the smallest confi-

dence value, but to ensure a good representation of the background variation,
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we maintain at least three background models per pixel (out of its five models).

Hence, in case the model to be discarded is a background model and we only

have three background models left, we will instead discard the model with the

second smallest confidence value (and so on, in case it is also a background

model). Note that the confidence value is adaptively adjusted by procedures 2b

and 3b, depending on whether the related Gaussian model can represent the

incoming colors in previous time steps. In addition, note also that we follow26

to update the confidence values.

[Route 7a to 7b] On the other hand, in case a candidate region is found

to be a foreground object (the route from 7a to 7b), the unclassified pixels

inside should be classified as foreground even they are not representable by any

existing foreground Gaussian model; here, a new foreground Gaussian model

has to be added for each of them.

In addition, to avoid misclassifying a moving object as a new foreground object,

we assume sufficient frame rate in the video capture so that consecutive candidate

regions of the same object can overlap with sufficient pixels. Furthermore, to allow

a foreground object to merge into the background, we maintain a foreground time

counter per foreground Gaussian model to keep track of the consecutive number

of times a foreground model detects the same foreground object. If the counter

(over the candidate region) exceeds a certain user-defined duration, we can turn

the related foreground model into a background model and the foreground object

(that stopped moving) will then be classified as background in the next time step.

4. Implementation and Results

4.1. The System Architecture

Altogether, we have the following four components in the system architecture we

developed for the prototypic system, see also Figure 6:

• The Video capture component for capturing image frames from the video cam-

era, and also for sending a synchronized video stream to the User interface

component; it is implemented using the MS DirectShow API in the Windows

Media SDK.

Fig. 6. The four major components in the system architecture: Video Capture, User Interface,

Video Analysis, and Statistic Generation.
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• The User interface component for the user interface display and control, so that

users can efficiently set up the statistic inducers, and specify related parameters.

In addition, this component also manages a set of inducer objects and passes

them to the Video analysis component that follows. Note that other than live

video streams, this component can also accept pre-captured videos as its input;

it is implemented using the MS MFC API.

• As presented in Section 3, the Video analysis component takes a video sequence

as its input, and detects changes on the inducers using the mixture-of-Gaussian

model.

• Finally, the Statistic generation component will examine the detections gener-

ated from the video analysis component and produce statistical triggers and/or

time-series data.

4.2. The Statistic Generation component

With the Video analysis component implemented as it is according to Section 3,

we can attach to it a number of callback functions (per inducer), so that we can

quantitatively and also procedurally customize the Video analysis component for

statistic generation. In our current system architecture, there are two kinds of

callback function provided by the Statistic generation component:

• The inducer-level callback allows us to thoroughly examine the detected fore-

ground (and/or background) pixels, and quantitatively define how a raw statis-

tic count can be triggered with respect to the corresponding inducer. In practice,

we, users, can also customize this callback to analyze the quality of individual

pixels in the inducer, and thoroughly examine the candidate foreground region

as well. In terms of the Video analysis component, this callback is attached to

the inducer level, and is executed (per candidate region) at the end of it, see

Figure 5.

• In addition, we have the temporal-level callback to examine successive candidate

regions (detected foreground objects), and evaluate whether the raw statistic

count from the inducer-level is valid or not. One obvious application of it is to

avoid repeated triggers on the same detection, e.g., a moving foreground object,

after its first successful trigger over time. Furthermore, like the inducer-level

callback, users can add in their own code to customize the raw statistic triggers

for different statistic generation scenarios, e.g., an optical flow analysis or a

simple intensity thresholding. In our current system architecture, the temporal-

level callback is attached to the temporal check procedure in the Video analysis

component, and is executed at the end of it.

Using this callback mechanism, we can gain customizable controls on the in-

ducer and temporal levels of the Video analysis component, and quantitatively,

and also procedurally, define how raw statistic counts can be triggered. By this

means, we can quickly tailor-make the system for specific statistic generation tasks.
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In addition, note also that each user-attached callback has a unique ID, and can

be attached to one or more inducers on the video screen. Furthermore, users can

also format the time-series result that streams out of each temporal-level callback

in the Statistic generation component, and output it with related parameters like

the time of triggering, screen pixel location, etc.

4.3. The Hardware Setup

Here we list the hardware equipment we employed, see Figure 7 for snapshots.

• A desktop computer: A Pentium IV PC

(2.4GHz CPU and 512MB memory)

• A low-cost webcam: Logitech Notebook Pro

(640 × 480 pixels at 15fps)

Fig. 7. The hardware setup: the whole setup (left) and the webcam (right).

Note that the connection between the PC and webcam is a standard USB 2.0

connection. With the Video capture, Video analysis, and Statistic Generation com-

ponents all running at the same time on the above setup, we can process a video

stream at 8-10 fps, which demonstrated to be sufficient in the following two testing

cases: Dormitory light switching and Road traffic.

4.4. Usability Study – Case 1: Dormitory light switching

In the first testing case, we look at light switching events in two student dormitories,

from 7pm to 6am, on Tuesday, Saturday, and Sunday nights. Here, we demonstrate

the effectiveness in using grid inducers to gather statistics over matrices of windows;

using the proposed graphical user interface (GUI), one can efficiently setup inducers

and the related parameters. In this testing case, we only take around three minutes

to set up the inducers, and the statistic generation can be started immediately

afterwards.



November 8, 2007

A User Interface Design for Acquiring Statistics from Video 15

Fig. 8. The GUI setup for gathering statistics of light switching events.

Figure 8 displays the overall GUI and the inducers employed. Here, we have

four grid inducers, namely Grid1, Grid2, Grid3, and Grid4, over four matrices

of dormitory windows. The bottom part of the GUI is the event triggering panel

(over time) showing the triggers for the active inducers, while the red line on it (right

hand side) indicates the current frame being analyzed; note that the corresponding

frame number is shown on top of it. Furthermore, the inducer-level triggers are

depicted as horizontal yellow bars on the event triggering panel, while the numbers

colored in yellow (on the right hand side) indicate the overall number of temporal-

level triggers over the previous 50 time frames, for example, the label “16 ch(s)/50

frms” on the top row of the event triggering panel in Figure 8 shows that there were

16 detected changes over the previous 50 time frames. Furthermore, note also that

when using grid inducer, we can automatically sum up all events per time frame

Fig. 9. An example light switching event being triggered: a light was switched on at 8:58pm (left)

and then switched off at 9:29pm (right). In the event triggering panel, the horizontal axis marks

the time, where one time interval refers to one minute in this testing case; on the other hand, the

vertical axis shows the number of triggers per time interval.
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over the entire inducer, and show them as a whole on the event triggering panel (as

well as in the final statistic generation).

Figure 9 shows a particular example in this testing case. The two subfigures

on the left shows a light being switched on (second window from the top left) at

8:58pm (frame ID: 139), and a corresponding trigger (the first trigger) on the event

triggering panel. After a short period of time, the light was turned off at 9:29pm

(frame ID: 201); the switching was detectable, and displayed on the event triggering

panel (the second trigger).

Table 1. Statistics generated – Dormitory light switching.

Table 1 summarizes the statistics we obtained; the table on the top presents the

number of light switching events per hour over the four grid inducers on Tuesday,

Saturday, and Sunday nights, while the last row in the table presents the total

number of switching events. Since most students returned home on Saturday and

Sunday nights, the dormitory utilization is relatively lower during the weekend, as

experimentally shown in the table.

Furthermore, we also compute the mean light switching time for Tuesday, Sat-
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urday, and Sunday nights, and depict the results in the graph below Table 1. Here

we found that the mean light switching time for Tuesday, Saturday, and Sunday

nights are 11:09pm, 12:01pm, and 12:12pm, respectively; thus, we believe that on

average, students tend to sleep later on Saturday and Sunday nights. In addition, it

is worth to note that this experiment can be further customized to generate many

different kinds of interesting statistics, for example, we can modify the callback

function to trigger only lights being switched off (or lights being switched on); us-

ing the proposed GUI design, we are able to efficiently generate timely statistics

with great ease.

4.5. Usability Study – Case 2: Road traffic statistics

The second testing case looks at road traffic, and generates statistics about the

cars passing through an array of area inducers. The testing period is from 11:00am

to 14:30pm, and four inducers, namely Area1, Area2, Area3, and Area4, are

created on the video screen, see Figure 10 for a short image sequence extracted

from the video stream; it shows a particular car moving from left to right. The

car appeared in the first sub-figure at 12:56pm (frame ID: 27294); when it moved

into the region of Area1 (frame ID: 27299), a change was triggered and shown

correspondingly as a yellow bar on the event triggering panel of Area1. When

the car reached the second inducer (Area2) (frame ID: 27305), another change

was triggered at Area2, see the third sub-figure. The statistic triggering continued

until the car moved to the rightmost side, see the last three sub-figures.

Fig. 10. A statistics from video example: studying road traffic using a series of four area inducers,

see also Figure 2 for the entire view of the physical environment being captured.

Furthermore, over a long period of testing time, some cars may just stop at an

inducer and park inside. In this case, the car has to be merged into the background

to avoid excessive triggers. Figure 11 demonstrates a moving car parked inside

inducer Area4. When the car entered inducer Area4, a change was triggered,

see the middle sub-figure. After that, the car stayed in it and the (inducer-level)

trigger continued. Shortly after the time period (recorded by the foreground time
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Fig. 11. A car stopped and merged into the background.

counter) exceeded a certain user-specified duration, the trigger stopped because of

the foreground adaptation mechanism. Note that in the temporal-level callback,

we produce only one (temporal-level) statistic trigger for a series of consecutive

inducer-level triggers because all these inducer-level triggers (the yellow bar shown

on the event triggering panel) are resulted by the same foreground object.

Fig. 12. Illumination detection: a moving cloud in the scene.

In outdoor environments, the illumination condition could change gradually

with time, or shadowed by some moving clouds; the video analysis component has

to adapt to this so as to avoid false detection. Figure 12 shows a red car crossing

inducer Area4. Changes were triggered only when the car overlapped with Area4;

after the car passed through the inducer, no more trigger was produced at Area4

even though the road was shadowed by a cloud moving from right to left.

Table 2 presents the related statistic results. We can see from the table that

the number of cars detected at all inducers are nearly the same except for inducer

Area4. There are two reasons we observed. Firstly, noting that the road in this
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Table 2. Statistics – Road Traffic.

testing case is just one-way to the car park shown in Figure 2, some drivers just

made U-turns around Area4 without going through the other inducers. Secondly,

some cars could be counted twice because of the foreground adaptation; a car is

counted for the first time when it enters an inducer, and could be counted again

when it moves away after a long period of parking. In our current system, we can

memorize connected foreground objects that adapted to be background, so that

when a new detection is found, we can compare the related pixel regions for the

new detection against the memorized foreground objects and avoid double counting.

In addition, user can also specify a time duration threshold to define how long we

should memorize these adapted foreground objects in our system. Experimentally,

the success rates we found for using line inducers and area inducers in this case

study are around 93% and 96%, respectively. The detection failure is mostly due

to: 1) some cars moved across the inducers at a very fast speed and they did not

even overlap with the inducers (in particular, line inducers), 2) some pedestrians

moved across the road at the inducer location and generated triggers, and 3) the

color of some cars (grey or light black) were too similar to that of the road and

these cars were missed in the detection.

[As the paper can only present static images, reviewers are invited to

look at the companion video for a more natural inspection on the user

interface control and the statistic generation results.]

5. Conclusion and Discussion

This paper introduced a user interface approach for efficiently generating timely

statistics from video. Through the carefully-designed graphical user interface, users

can readily input prior semantic information by using the statistic inducers to mark

up relevant activities in the corresponding physical environment. Then, we can pre-

cisely direct and constrain the video analysis process on the user-marked areas, and

efficiently customize the system to generate related statistics accordingly. Here in
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the proposed system, it only takes users a few minutes of time to set up the statistic

inducers; and once it is done, timely statistic data can be immediately generated

by the system in a fully automatic manner. To demonstrate the effectiveness of

this idea, we implemented the prototypic system shown in Section 4, and exper-

imented two testing cases: Dormitory light switching and Road traffic. These two

cases demonstrated that timely statistics can be readily generated from the input

videos in a highly user friendly manner.

Future work The mechanism of generating statistics from videos opens a wide

range of research and development opportunities. First, we can investigate the use of

multiple synchronized video streams for generating inter-related statistics, spatially

referenced to different locations in the physical environment. On the other hand, we

can explore the use of generated statistics to design high-level spatial data queries

from the perspective of database research. Furthermore, we can also investigate

various kinds of system customizations for different potential applications, such as,

sports, shopping pattern, and marketing.
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