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Motivation

Source: P. Harris et al., ”An overview of massive MIMO research at the University of Bristol,” Radio
Propagation and Technologies for 5G (2016), Durham, UK, 2016, pp. 1-5.

• MIMO is expected to scale large in future gen. of comm. sys.

• premise of spatial mux. benefits in faster tx. rate, wider coverage, better QoS

• comes at a price: increasing hardware complexity and cost
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Classical MIMO Up-link
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• with ideal assumptions on PA/DACs, up-link signal model:

y = Hx+ noise

where y ∈ CN is the rx. signal at the BS; H is the channel response; x = s ∈ SK

are the information-carrying signals shot by the users

• detection: given the channel state information H, estimate s from the noisy
observation vector y

• classical problem, well studied in the literature; but...
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BS Side: Up-link Receiver with Cheap ADCs

digital basebandanalog RF

• high res. ADC marks the major power burden in rx. implementation

• recent trend is to replace them with cheaper converters, e.g. one-bit ADCs; allows
cheaper PAs at the rx. implementation too

• setback: heavy quantization error...
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UE Side: Non-linear PA Effect

• non-linear PAs may destroy the signal constellation structure
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Binary MIMO Up-link with PA effects at UE
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• signal model with one-bit DACs at BS and non-ideal PA at UE: y = Hx+noise;
– r = sgn(y) ∈ {±1,±j}N and x = Ψ(s) ∈ CK ; Ψ(·) is the PA effect

• challenge: conventional detectors (such as ZF, SDR, sphere decoding etc.) do
not work because the problem structure is destroyed by PA/DACs

• recent trend: apply machine learning/ deep learning/ deep unfolding
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Existing Works

• conventional SP-comm. methods to handle the quantization error at DACs [MKN07,
RPL14, CMH16]

• use model-driven machine learning for MIMO detection [SDW19, HWJL20,
NNT+23]

• deep unfolding — which is to build a DNN with inspirations taken from an iterative
algo. customised for MIMO detection [MLE21, NSN21, SM21]
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Extreme Learning Machines: A Heuristic Solver

• idea: consider the functional approximater, with g(·) being an activation:

f(r;Θ) = g(Wr + b) A

where Θ = (W , b) are randomly initialized (fixed); the only var. for opt. is A

• learning target: given the pilot symbols and the received signals {s(i), r(i)}mi=1

find A s.t. f(r(i);Θ) ≈ s(i) ∀i = 1, . . . ,m

which is easily obtained by the Moore-Penrose inverse

• an old idea in functional approx.; dates back to 1995 under the name of random
vector functional-link network [IP95]

• ELM has been applied to large MIMO up-link, e.g. [GGE21, CDCC21, CCD+22];
but it is the first time for the one-bit case
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Parallel ELM Detector — Yet Another Heuristic

B
it-by-bit M

ajority Voting
• since the init. Θ is random, it is expected that the resultant f is not optimum

• our heuristic attempt: initialize P parallel Θp’s and train Ap’s individually, and
perform majority voting on each element of s

ŝ = dec
(∑P

p=1 f(r,Ap;Θp)
)
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Simulation Result: Bit Error Rate
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• settings: N = 30 rx. antenna at BS; K = 8 tx. UEs; 2048 hidden units; P = 7
parallel ELMs;

• the benchmark of ZF (both quant. and unquant.) is performed by estimating
Hest using the full res. rx. signals
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Parameter Reduction by Circulant Matrix Initialization

W =


w1 w2 · · · wV 0 0 · · · 0
0 w1 w2 · · · wV 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 0 · · · 0 w1 w2 · · · wV


• reduce parameters needed to be stored in f(·,Θ,A) by using this structure

Units Metrics Full Sparse Conv.

128
Parameters 15.35 3.67 3.68

Training Error 0.1462% 0.3285% 0.1494%

512
Parameters 58.62 11.94 12.25

Training Error 0.0246% 0.3358% 0.0400%

2048
Parameters 231.73 45 46.52

Training Error 0.0027% 0.2932% 0.0027%

Table: Parameters needed (in million) and the training error of different init
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Simulation Result: Bit Error Rate
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N = 20,K = 4, P = 17, 1024 hidden units
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Take-home Points

• large BS appears to be the trend for future generation of comm. sys.

• using one-bit ADCs at the BS helps to improve power efficiency for the overall sys

• we proposed to apply ELM in the context of one-bit MIMO detection, offering a
computationally friendly approach for the challenging task

Thank you!
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