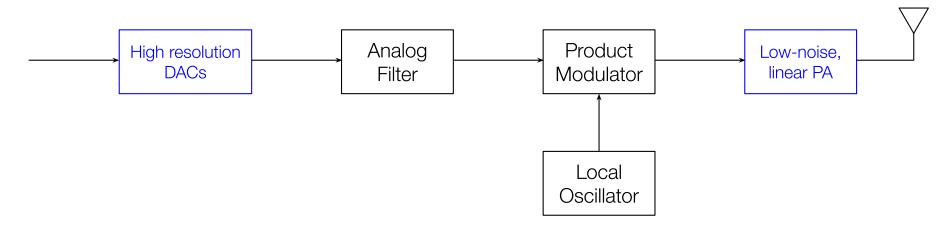
Spatial Sigma Delta Modulation for Quantized MIMO Precoding

Wai-Yiu Keung

The Chinese University of Hong Kong

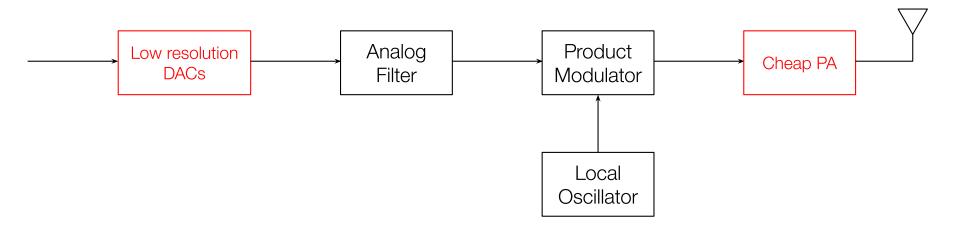
August 7, 2023

Motivation — The RF Chain in Massive MIMO Downlink



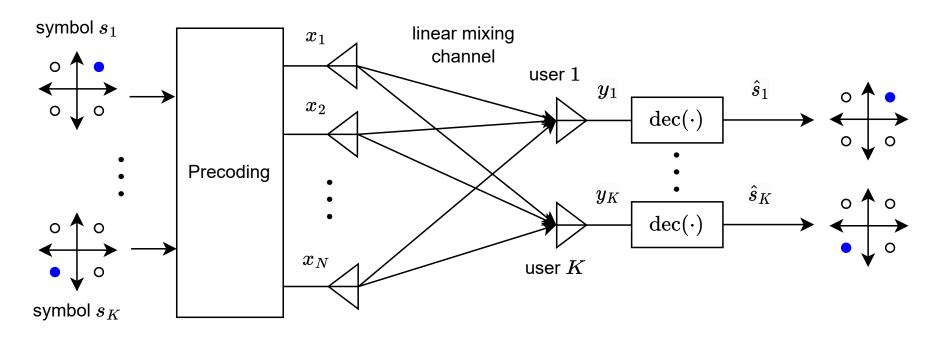
- conventional MIMO precoding assumes the BS to emit a free-space signal vector
- but it is costly to implement such high resolution digital-to-analog converters, particularly in the context of **massive** MIMO
- and you need a massive amount of power to operate with them in massive MIMO...

Motivation — The RF Chain in Massive MIMO Downlink



- cheap replacement: use low resolution DACs to allow the use of cheaper power amp.;
 this allows an economic build of the massive MIMO transmitter
- this calls for researches in quantized MIMO precoding
 - linear method: apply direct quant. on existing/conventional precoders (e.g. ZF);
 computationally efficient but ineffective performance-wise [MGN09, SFS17, DCJM+19]
 - non-linear method: re-design the signal vector using opt.; generally has better data accuracy but requires much more computation [SSMF17, LMLS18]
- $\Sigma\Delta$ precoding: a linear method that offers reasonable performance! [SMLS19]

Scenario: One-Bit Quantized Precoding



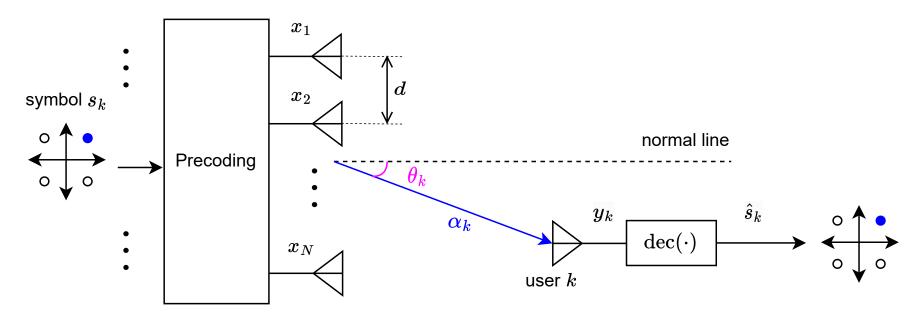
we consider multiuser MISO downlink system where

$$y_k = \boldsymbol{h}_k^{\top} \boldsymbol{x} + v_k, \qquad k = 1, \dots, K,$$

is the received symbol; h_k is the channel gain vector; v_k is AWGN with power σ^2

- problem: given h_k and a dedicated transmission symbol s_k at the base station, design a signal vector $\mathbf{x} \in \mathcal{X}^N = \{\pm 1 \pm \mathfrak{j}\}^N$ such that the received symbol $y_k \approx c_k \cdot s_k$
- ullet we will extend ${\mathcal X}$ to general case later on

Assumption: Uniform Linear Array



we will assume a specific channel model — the uniform linear array (ULA):

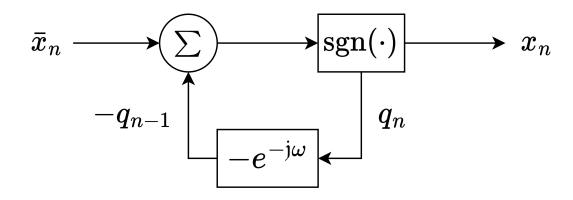
$$\boldsymbol{h}_k = \alpha_k \boldsymbol{a}_k, \qquad \boldsymbol{a}_k = (0, e^{-j\omega_k}, \dots, e^{-j\omega_k(N-1)}), \qquad \omega_k = \frac{2\pi d}{\lambda} \sin(\theta_k)$$

where α_k is the channel gain, a_k is the steering vector, θ_k is the angle of departure, and ω_k is the spatial frequency; d is the antenna dist. and λ is the wavelength used

observation: the rx signal model turns into a discrete time Fourier transform like form

$$y_k = \alpha_k \cdot \boldsymbol{a}_k^{\top} \boldsymbol{x} = \alpha_k \sum_{n=0}^{N-1} x_n e^{-j\omega_k n}$$

Temporal Sigma Delta Modulation



- to begin with, we take one step back to study a classical DAC: $\Sigma\Delta$ modulator [ASVDS96]
- ullet principle: given a high resolution sequence $ar{x}_n$, generate one-bit sequence x_n by

$$x_n = \operatorname{sgn}(\bar{x}_n - q_{n-1}) = \bar{x}_n - q_{n-1} + q_n$$

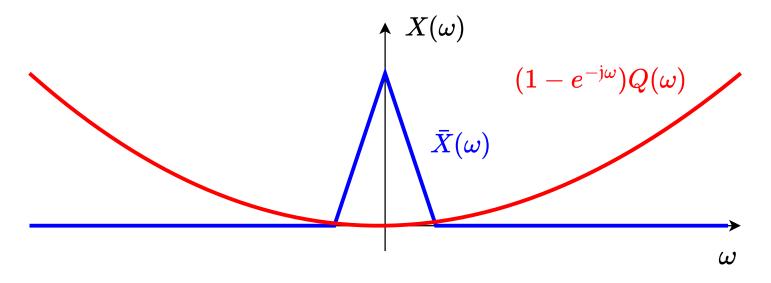
where q_n is the quant. error incurred by the one-bit quantizer $\operatorname{sgn}(\cdot)$

• observation: the DTFT of x_n follows:

$$\underbrace{X(\omega)}_{\text{one-bit output}} = \underbrace{\bar{X}(\omega)}_{\text{full res. input}} + \underbrace{(1-e^{-\mathrm{j}\omega})}_{\text{HPF}} \underbrace{Q(\omega)}_{\text{quant. error}}$$

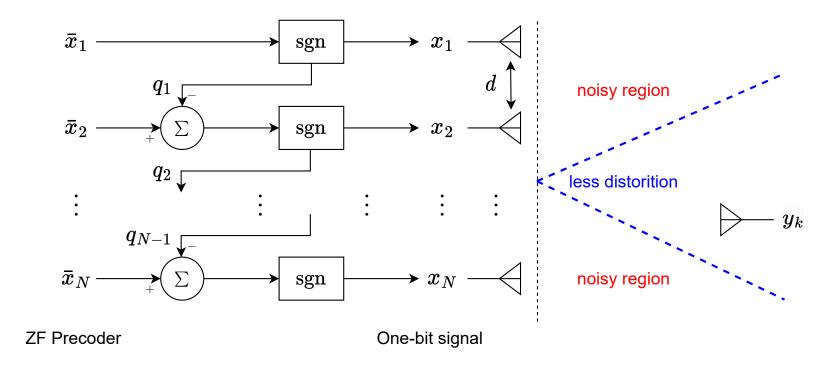
$\Sigma\Delta$ Principle: A Spectrum Illustration

$$\underbrace{X(\omega)}_{\text{one-bit output}} = \underbrace{\bar{X}(\omega)}_{\text{full res. input}} + \underbrace{(1-e^{-\mathrm{j}\omega})}_{\text{Q}(\omega)} \underbrace{Q(\omega)}_{\text{quant. error}}$$



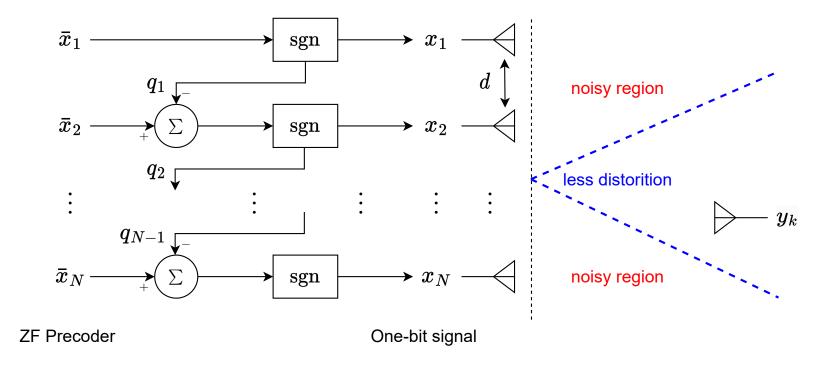
- ullet assumptions: i) $ar{X}(\omega)$ is low-pass and ii) $Q(\omega)$ is bounded and flat
- observation: quant. noise is shaped toward the high-pass region
- ullet implication: apply low-pass filter to recover the full res. $ar{x}_n$ from the one-bit signal x_n

Spatial $\Sigma\Delta$ Modulator in MIMO Precoding [SMLS19]



- putting $\Sigma\Delta$ to MIMO precoding we observe the following duality
 - signal at the time index n = tx. signal at the n-th antenna element
 - error feedback in temp. $\Sigma\Delta=$ passing quant. error to the next antenna element
 - LPF in temp. $\Sigma\Delta$ = restrict users to lie in low angular region

Spatial $\Sigma\Delta$ Modulator in MIMO Precoding [SMLS19]



• received signal model (when $\alpha_k = 1$):

$$y_{k} = \sum_{n=0}^{N-1} (\bar{x}_{n} + q_{n} - q_{n-1})e^{-j\omega_{k}n}$$

$$= \left[\sum_{n=0}^{N-1} \bar{x}_{n}e^{-j\omega_{k}n}\right] + \left[\sum_{n=0}^{N-1} (q_{n} - q_{n-1})e^{-j\omega_{k}n}\right]$$

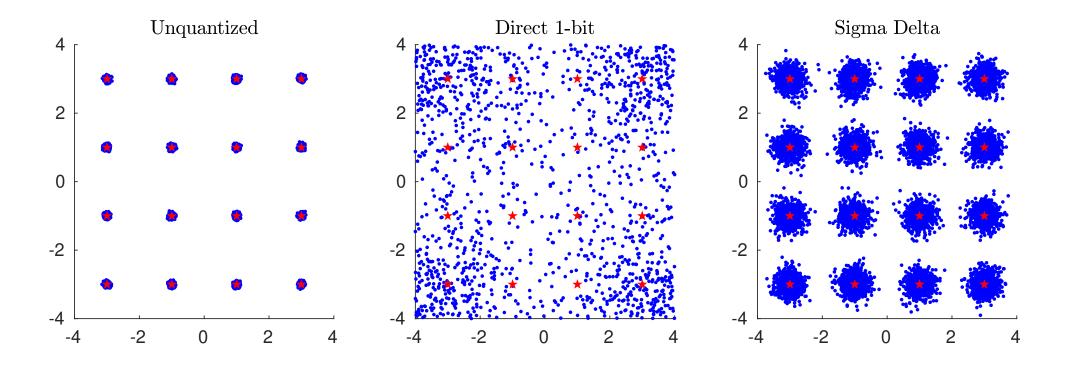
$$\approx \bar{X}(\omega) + (1 - e^{-j\omega_{k}})Q(\omega)$$
 (holds when N is large)

• recall $\omega_k = \frac{2\pi d}{\lambda}\sin(\theta_k)$, this means the red term zeros out when $\theta_k = 0^\circ$

Some Technical Remarks

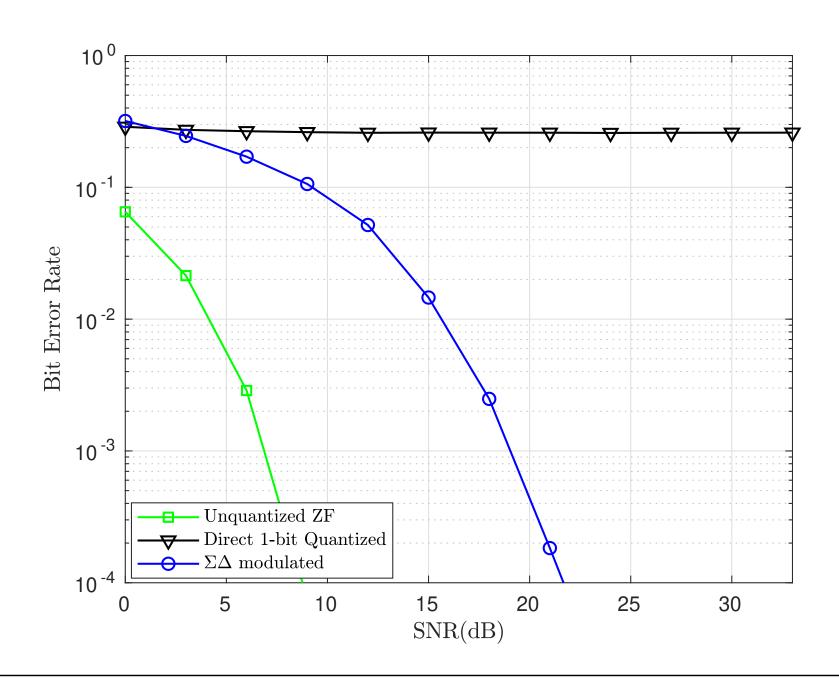
- recall that we made two assumptions on slide 7, namely, i) $\bar{X}(\omega)$ is low-pass and ii) $Q(\omega)$ is bounded and flat
- simply put, i) is done by restricting $|\theta_k|$ in a small angular region that is close to 0° , so that $\omega_k = \frac{2\pi d}{\lambda}\sin(\theta_k)$ will also be small
- as for ii), we use
 - no-overload condition: avoid $q_n \to \infty$ by limiting $|\bar{x}_n| \le 1$ (which is easily done by normalization); as a result we have $|q_n| \le 1$, i.e. $Q(\omega)$ is bounded
 - assumption: under the above condition, we further assume q_n is uniformly i.i.d. over [-1,1] and is independent of \bar{x}_n , i.e. $Q(\omega)$ is flat
- technically speaking the assumption is wrong because q_n is dependent on \bar{x}_n ; one way to overcome this violation is to use dithering

Simulation: Scatter Plot



- ullet we demonstrate the effectiveness of $\Sigma\Delta$ precoding by observing the scatter plot
- red stars \star are the 16-QAM constellation points; blue dots are the normalized received symbols prior to being put forth to the detector y_k/α_k
- settings: N=512 Tx antenna; K=12 users with $\theta_k \in [-30^\circ, 30^\circ]$; the antenna spacing is set as $d=\lambda/8$; the background SNR is fixed to 20dB

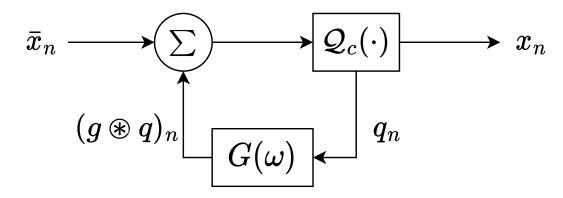
Simulation: Bit Error Rate Performance



Inspirations Taken

- what we already know:
 - spatial $\Sigma\Delta$ modulation is a suitable candidate for 1-bit massive MIMO
 - if the BS adopts an uniform linear array, $\Sigma\Delta$ mod. pushes the quan. noise to the end-fire so that users near the broadside are less affected
- what we still don't know:
 - can we alter the noise-shaping effect to suit our need?
 - any systematical framework for the design of $\Sigma\Delta$ mod, even for multi-bit quantizer?
- we set out to continue our study on how to bake a design framework for $\Sigma\Delta$ precoder design (which turns out to be Chebyshev-like!)

A General $\Sigma\Delta$ Modulator

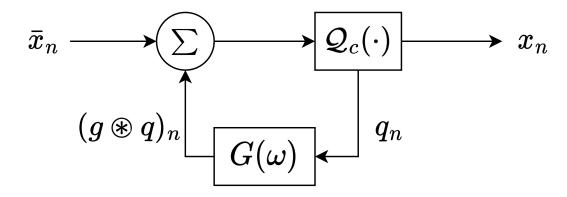


- $\Sigma\Delta$ modulator can be generalized in two senses:
 - the quantizer Q_c is a multi-level one, e.g. let M=4 levels of quan., then the output domain is $x_n \in \mathcal{X} = \{\pm 1 \pm 1\mathfrak{j}, \pm 1 \pm 3\mathfrak{j}, \pm 3 \pm 1\mathfrak{j}, \pm 3 \pm 3\mathfrak{j}\}$
 - the noise-shaping filter $G(\omega)$ can be altered by choosing the filter tap coefficient vector $\mathbf{g} \in \mathbb{C}^D$, whereas D is the filter order
- end-to-end relation: $x_n = \bar{x}_n + \sum_{i=0}^D g_i q_{n-i}$, where we defined $g_0 = 1$.
- noise shaping effect: consider the DTFT

$$X(\omega) = \bar{X}(\omega) + (1 + G(\omega))Q(\omega)$$

is governed by the choice of $\{g_i\}_{i=1}^D$; i.e. we shape the quan. noise, according to our desire, using an order D FIR filter

A General $\Sigma\Delta$ Modulator: No-Overload Condition

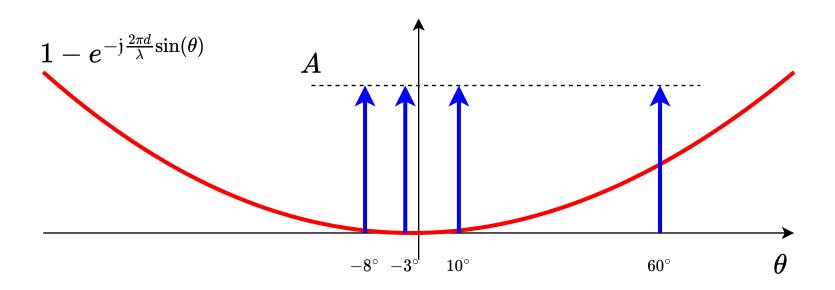


no-overload condition: (partly inspired by [SS91])

$$A + \sum_{i=1}^{D} |\Re(g_i)| + |\Im(g_i)| \le M$$

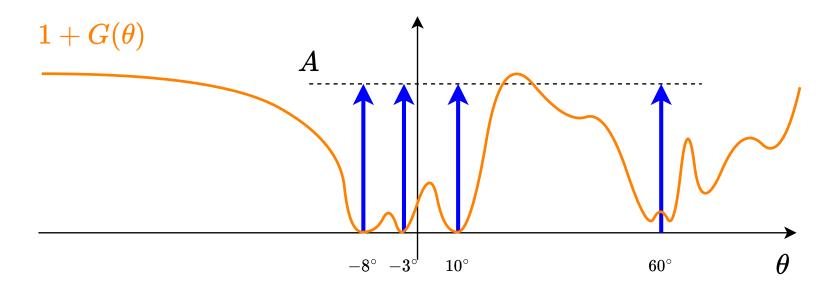
- $-A = \max_n \{|\Re(\bar{x}_n)|, |\Im(\bar{x}_n)|\}$ is the maximum input signal amplitude
- M is the number of quantization levels of \mathcal{Q}_c
- example (first-order $\Sigma\Delta$ mod.): when $G(\omega)=-e^{-j\omega}$, we have D=1, and $g_1=-1$; this implies $A\leq M-1$ must hold in order to satisfy the no-overload criterion

Design Strategy: Illustration of the Idea



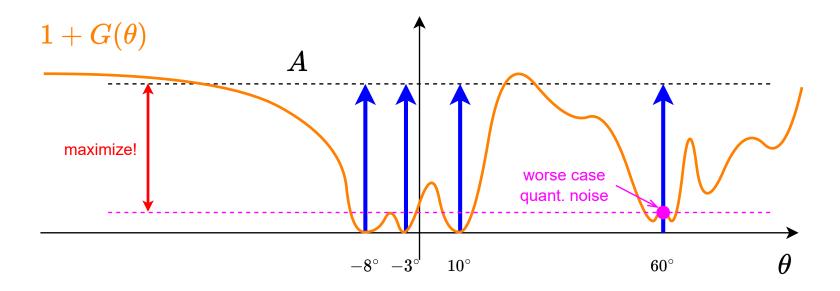
- consider the K=4 users locating in $[-8^\circ, -3^\circ, 10^\circ, 60^\circ]$ respectively
- first order $\Sigma\Delta$ mod. will work fine in suppressing quant. noise for the users at the low angle region; but the one locating at 60° suffers from a huge quant. noise
- question: can we customise the error filter to target our users?

Design Strategy: Illustration of the Idea



- consider the K=4 users locating in $[-8^{\circ}, -3^{\circ}, 10^{\circ}, 60^{\circ}]$ respectively
- first order $\Sigma\Delta$ mod. will work fine in suppressing quant. noise for the users at the low angle region; but the one locating at 60° suffers from a huge quant. noise
- question: can we customise the error filter to target our users?
- idea: design $G(\theta)$ by picking the error filter's coefficient $g \in \mathbb{C}^D$ such that the signal-to-quantization-plus-noise ratio (SQNR) is maximized

Proposed Design

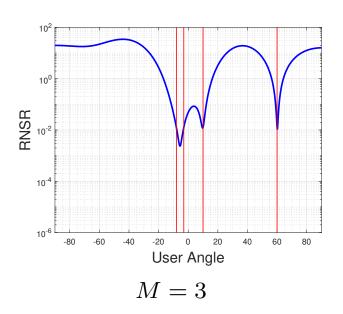


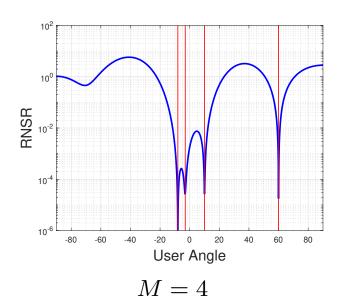
- the SQNR can be characterized as $SQNR(\theta) = \frac{A^2}{c_1|1+G(\theta)|^2+c_0}$, where c_0, c_1 are const.
- we maximize $SQNR(\theta)$ with g and A jointly

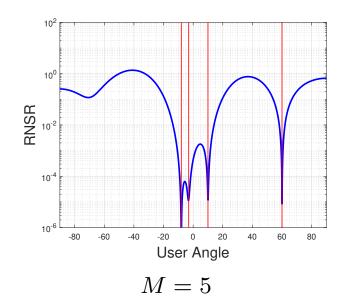
$$\begin{split} (\boldsymbol{g}^{\star}, A^{\star}) &= \underset{\boldsymbol{g} \in \mathbb{C}^{D}, A \in \mathbb{R}_{+}}{\arg\max} & \underset{\boldsymbol{\theta} \in \text{user's angle}}{\min} & \text{SQNR}(\boldsymbol{\theta}) \\ & \text{subject to} & \text{no overloading} \end{split}$$

 best part: given the time constraint I can only ask for your trust that the problem can be transformed into a convex programme

Simulation: Resulting Noise-Shaping Response





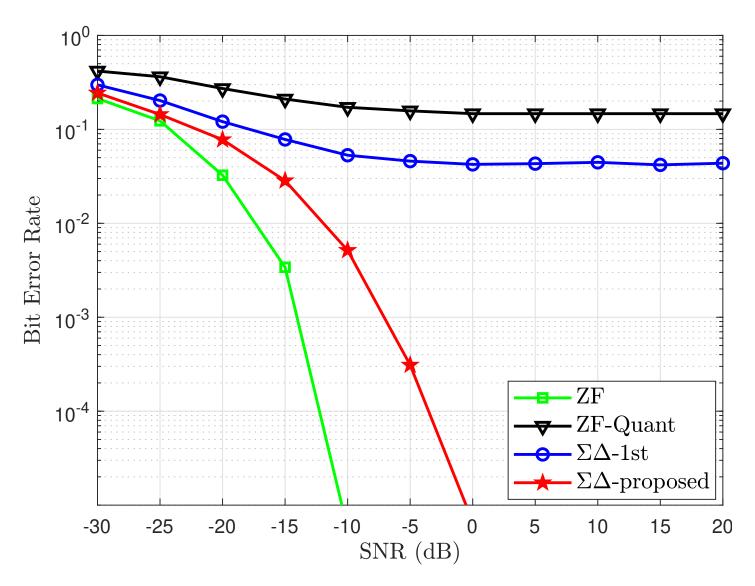


- problem size N=512, K=4, filter order $D=8, d=\lambda/4$, all channel gains α_k 's are fixed at unit gain; users are located in $[-8^\circ, -3^\circ, 10^\circ, 60^\circ]$
- we observe that the relative noise shaping response

$$RNSR = \frac{|1 + G(\theta)|^2}{A^2}$$

we see that more level of quantization gives better RNSR

Simulation: Bit Error Rate Performance



problem size (N,K)=(1024,6), filter order D=24, M=4 quant. levels, antenna spacing $d=\lambda/2$, channel gains are randomly generated, $\theta\in[-70^\circ,70^\circ]$

Conclusions

- ullet spatial $\Sigma\Delta$ modulation can be fitted into massive MIMO precoding efficiently and effectively
- ullet the design of $\Sigma\Delta$ modulator in massive MIMO precoding can be turned into a filter design problem which is convex
- simulation results showcase the advantage of our proposed design

That's all. Thank you!

Key References

- [ASVDS96] Pervez M Aziz, Henrik V Sorensen, and Jan Van Der Spiegel, *An overview of Sigma-Delta converters: How a 1-bit ADC achieves more than 16-bit resolution*, IEEE Sig. Proc. Mag. 13 (1996), no. 1, 61–84.
- [DCJM⁺19] Oliver De Candido, Hela Jedda, Amine Mezghani, A. Lee Swindlehurst, and Josef A. Nossek, Reconsidering linear transmit sig. proc.ing in 1-bit quantized multi-user MISO systems, IEEE Trans. on Wireless Comm. 18 (2019), no. 1, 254–267.
- [LMLS18] Ang Li, Christos Masouros, Fan Liu, and A. Lee Swindlehurst, *Massive MIMO 1-bit DAC transmission: A low-complexity symbol scaling approach*, IEEE Trans. on Wireless Comm. 17 (2018), no. 11, 7559–7575.
- [MGN09] A. Mezghani, R. Ghiat, and J. A. Nossek, *Transmit processing with low resolution* D/A-converters, Proc. 16th IEEE Int. Conf. Electron., Circuits, Syst., Dec 2009, pp. 683–686.
- [SFS17] Amodh Kant Saxena, Inbar Fijalkow, and A. Lee Swindlehurst, *Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink*, IEEE Trans. on Sig. Proc.ing **65** (2017), no. 17, 4624–4634.
- [SMLS19] Mingjie Shao, Wing-Kin Ma, Qiang Li, and A Lee Swindlehurst, *One-bit Sigma-Delta MIMO precoding*, IEEE J. Sel. Topics Sig. Proc. **13** (2019), no. 5, 1046–1061.
- [SS91] Richard Schreier and Martin Snelgrove, Stability in a general Sigma Delta modulator, IEEE ICASSP 1999, 1991, pp. 1769–1772.
- [SSMF17] A. Swindlehurst, A. Saxena, A. Mezghani, and I. Fijalkow, *Minimum probability-of-error* perturbation precoding for the one-bit massive MIMO downlink, 2017 IEEE ICASSP, 2017, pp. 6483–6487.