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I What you see 6= what you get.

I Diffraction information loss.

I RET: Optical Proximity Correction (OPC), Scatter Bar and Multiple Patterning
Lithography.

Classic OPC

Requires iterative call of lithography simulation engine.

I Model/Rule-based OPC [Kuang+,DATE’15][Awad+,DAC’16] [Su+,ICCAD’16]

1. Fragmentation of shape edges;
2. Move fragments for better printability.

I Inverse Lithography [Gao+,DAC’14][Poonawala+,TIP’07] [Ma+,ICCAD’17]

1. Efficient model that maps mask to aerial image;
2. Continuously update mask through descending the gradient of contour error.

Machine Learning OPC

Masks are updated segment-by-segment and cannot be done in one inference step.
[Matsunawa+,JM3’16][Choi+,SPIE’16] [Xu+,ISPD’16][Shim+,APCCAS’16]

1. Edge fragmentation;

2. Feature extraction;

3. Model training.

Preliminaries

Lithography Model

I SVD Approximation of Partial Coherent System [Cobb,1998]

I =
N2∑
k=1

wk|M⊗ hk|2. (1)

I Reduced Model [Gao+,DAC’14]

I =

Nh∑
k=1

wk|M⊗ hk|2. (2)

I Etch Model

Z(x , y) =

{
1, if I(x , y) ≥ Ith,
0, if I(x , y) < Ith.

(3)

Lithography Defects

Bad EPE Good EPE 

Bridge

Neck

I EPE measures horizontal or vertical distances from given points (i.e. OPC control
points) on target edges to lithography contours.

I Neck detector checks the error of critical dimensions of lithography contours
compared to target patterns.

I Bridge detector aims to find unexpected short of wires.

Inverse Lithography

The main objective in ILT is minimizing the lithography error through gradient descent.

E = ||Zt − Z||22, (4)

where Zt is the target and Z is the wafer image of a given mask.
Apply translated sigmoid functions to make the pixel values close to either 0 or 1.

Z =
1

1 + exp[−α× (I− Ith)]
, (5)

Mb =
1

1 + exp(−β ×M)
. (6)

Combine Equations (1)–(6) and the analysis in [Poonawala,TIP’07],
∂E

∂M
=2αβ ×Mb � (1−Mb)�

(((Z− Zt)� Z� (1− Z)� (Mb ⊗H∗))⊗H+

((Z− Zt)� Z� (1− Z)� (Mb ⊗H))⊗H∗). (7)

Mask can then be updated by descending the gradient derived in Equation (7),

M = M− γ ∂E
∂M

. (8)

Generative Adversarial Nets (GAN)

GAN Basis

I x: Sample from the distribution of target dataset; z: Input of G

I Generator G (z; θg): Differentiable function represented by a multilayer perceptron
with parameters θg .

I Discriminator D(x; θd): Represents the probability that x came from the data
rather than G .

1. Train D to maximize the probability of assigning the correct label to both training
examples and samples from G .

2. Train G to minimize log(1− D(G (z))), i.e. generate faked samples that are drawn
from similar distributions as pdata(x).

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G (z)))]. (9)

GAN Architecture

…

0.2     0.8

Fake Real

D
iscrim

inator

1.62 3.83 … 3.15

…

G
enerator

GAN-OPC

Generator Design
I Auto-encoder based generator which consists of an encoder and a decoder subnets.

I An encoder is a stacked convolutional architecture that performs hierarchical
layout feature abstraction.

I A decoder operates in an opposite way that predicts the pixel-based mask
correction with respect to the target.

Discriminator Design
I Take target-mask tuple as inputs: (Zt,G(Z)t) or (Zt,M∗).

GAN-OPC Architecture
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GAN-OPC Training

Based on the OPC-oriented GAN architecture in our framework, we tweak the objectives
of G and D accordingly,

maxEZt∼Z[log(D(Zt,G(Zt)))], (10)

maxEZt∼Z[log(D(Zt,M
∗))] + EZt∼Z[1− log(D(Zt,G(Zt)))]. (11)

In addition to facilitate the training procedure, we minimize the differences between
generated masks and reference masks when updating the generator as in Equation (12).

minEZt∼Z||M∗ − G(Zt)||n, (12)

where || · ||n denotes the ln norm. Combining (10), (11) and (12), the objective of our
GAN model becomes

min
G

max
D

EZt∼Z[1− log(D(Zt,G(Zt))) + ||M∗ − G(Zt)||nn]
+ EZt∼Z[log(D(Zt,M

∗))]. (13)

The generator and the discriminator are trained alternatively as follows.

The GAN-OPC Training Algorithm

1: for number of training iterations do
2: Sample m target clips Z ← {Zt,1,Zt,2, . . . ,Zt,m};
3: ∆Wg ← 0,∆Wd ← 0;
4: for each Zt ∈ Z do
5: M← G(Zt; Wg);
6: M∗← Groundtruth mask of Zt;
7: lg ← − log(D(Zt,M)) + α||M∗ −M||22;
8: ld ← log(D(Zt,M))− log(D(Zt,M∗));

9: ∆Wg ← ∆Wg +
∂lg
∂Wg

; ∆Wd ← ∆Wd +
∂ld
∂Wg

;

10: end for

11: Wg ←Wg −
λ

m
∆Wg ; Wd ←Wd −

λ

m
∆Wd ;

12: end for

ILT-guided Pretraining

Why Pretraining?
I ILT and neural networks optimization share similar gradient descent procedure.

I Let the generator get prior knowledge from the lithography engine.

Generator Real
Fake

  Feed-forward  Back-propagetion

Discriminator

(a)

Litho-
SimulatorGenerator

(b)

ILT-guided Pretraining
Equation (8) is naturally compatible with mini-batch gradient descent, if we create
a link between the generator and ILT engine, the wafer image error can be back-
propagated directly to the generator as illustrated above.

ILT-guided Pretraining

1: for number of pre-training iterations do
2: Sample m target clips Z ← {Zt,1,Zt,2, . . . ,Zt,m};
3: ∆Wg ← 0;
4: for each Zt ∈ Z do
5: M← G(Zt; Wg);
6: Z← LithoSim(M) . Equations (2)–(3)
7: E ← ||Z− Zt||22;

8: ∆Wg ← ∆Wg +
∂E

∂M

∂M

∂Wg
; . Equation (7)

9: end for

10: Wg ←Wg −
λ

m
∆Wg ; . Equation (8)

11: end for

Training Behavior:
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Experimental Results

The Dataset

I The lithography engine is based on the lithosim v4 package from ICCAD 2013
CAD Contest.

I Manually generated 4000 instances based on the design specfication from existing
32nm M1 layouts.

Mask Optimization Results
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Visualizing PGAN-OPC and ILT:

(a) masks of [Gao+,DAC’14]; (b) masks of PGAN-OPC; (c) wafer images by masks
of [Gao+,DAC’14]; (d) wafer images by masks of PGAN-OPC; (e) target patterns.
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