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Abstract—Automatic heuristic design through reinforcement
learning opens a promising direction for solving computationally
difficult problems. Unlike most previous works that aimed at
solution construction, we explore the possibility of acquiring
local search heuristics through massive search experiments. To
illustrate the applicability, an agent is trained to perform a walk
in the search space by selecting a candidate neighbor solution
at each step. Specifically, we target the floorplanning problem,
where a neighbor solution is generated through perturbing the
sequence pair encoding of a floorplan. Experimental results
demonstrate the efficacy of the acquired heuristics as well as
the potential of automatic heuristic design.

Index Terms—Floorplanning, sequence pair, reinforcement
learning.

I. INTRODUCTION

Electronic Design Automation (EDA) lies at the heart of
modern computer science technologies. Various computation-
ally challenging (viz. NP-hard) problems gave birth to the ex-
citing progress in solving techniques, most among which are
hand-crafted heuristics that are carefully designed by domain
experts and scientists. Yet, the fantasy of automatic algorithm
design for difficult problems has never been shattered.

Reinforcement learning has recently offered a promising
direction for such a dream. By interacting with the environ-
ment and training an agent to survive, a learning system can
in principle create new knowledge about the space which
the agent live in. In addition to the breakthroughs in game
playing [1] and robotic control [2], the community also spent
efforts in the discipline of combinatorial optimizations. An
end-to-end actor-critic training framework [3] based on the
pointer network architecture (a variant of recurrent neural net-
work) is proposed to tackle the Travelling Salesman Problem
(TSP). Later on, structure2vec (a graph embedding network)
and the off-policy Q-learning are utilized [4] to solve TSP
and other optimization problems over graph. Apart from
TSP, researchers have also achieved significant results on
Vehicle Routing Problem (VRP) [5], Job Scheduling [6], and
Satisfiability Problem (SAT) [7]. There has been literature on
applying reinforcement learning techniques to EDA problems.
An RL agent is trained through Proximal Policy Optimization
(PPO) to place macro blocks in a canvas [8]. In their settings,
the netlist graph and other input features are encoded through
an embedding network that is trained in a supervised manner,
then the policy network generates the placement position of
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the macro blocks in their descending order of size, followed
by conventional standard cell placement and legalization; the
weighted design cost including wirelength and congestion
are used as the reward signal. There are also attempts to
global routing [9], detailed routing [10], and Network-on-Chip
design [11].

In this paper we consider the problem of floorplanning,
the first step in physical synthesis, which aims to roughly
determine geometric relationship among circuit modules and
to estimate the cost of the design. Various data structures are
introduced for the representation of the geometric relation. A
slicing floorplan, where the whole design can be recursively
divided horizontally or vertically until each part contains only
one module, is naturally encoded by a binary tree, whose
internal nodes are for the horizontal or vertical cuts and the
leaves denote the modules. Equivalently, polish expression
is used [12] to encode the postfix of the same binary tree.
As for general floorplans without a slicing structure (i. non-
slicing), many other elegant representations are invented, e.g.,
O-tree [13], B*-tree [14], Sequence Pair [15], and Twin Binary
Sequences [16]. With a flexible and effective representation,
good floorplan results could be achieved through constructing
or perturbing a data structure in a systematic way [13], by
heuristics [17], or by some means of meta-heuristics like
genetic algorithms [18] or simulated annealing [19]. Despite
of that, specialized knowledge is a must for a successful
design, as well as a considerable amount of trial-and-errors,
prohibiting the development of new algorithms in some sense.
Besides, as the transistor technology node scaling down, mod-
ern circuit design has become much more complicated, and
the ever-increasing number of modules in a chip brings about
the scalability issue, emphasizing the demand for effective
algorithms that work well on large-scale cases. All the above
problems motivate us to utilize reinforcement learning for
automatic algorithm design.

The idea of enhancing local search heuristics with rein-
forcement learning is not that new. Researchers seek to boost
the local search by selecting a good starting point [20], [21],
by tuning search parameters [22], by scaling a regularization
term [23], or by switching between heuristics on the fly [24].
Basically, all these work adopt an existing local search al-
gorithm, and improve a few settings of that algorithm with
reinforcement learning. Our work takes one step forward: we
aim to acquire a local search algorithm from the scratch,
i.e., we avoid to introduce too much prior human knowledge
during the search that might mislead the learning.
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Fig. 1 (a) The oblique grid [25] shows the relative position
between blocks for sequence pair (<4 3 1 6 2 5>, <6 3 5
4 1 2>); (b) The corresponding packing. The dimensions for
the 6 blocks are: 1(4×6), 2(3×7), 3(3×3), 4(2×3), 5(4×3),
6(6×4).

The remainder of the paper is organized as the following.
Section II recaps the preliminaries. Section III illustrates the
selection of features and the model. Section IV discusses the
training pipeline of the model. Section V is for experimental
results, and Section VI concludes the paper.

II. PRELIMINARIES

A. Floorplan

In general, floorplanning is to generate relative locations
for modules. Given a set of n rectangular blocks B =
{b1, b2, · · · , bn} and a netlist N specifying their connections,
a floorplan F seeks a planar location assignment (x,y) of B,
providing no module overlap, to minimize the total chip area
and to reduce the total wirelength.

Based on area function A(·) and wirelength function W (·),
the optimization problem is formulated as follows

min
F

A(F ) + αW (F )

s.t. F is a legal solution.
(1)

Definition 1 (Sequence Pair Representation). A sequence pair
(Γ+,Γ−) is a pair of sequences of n elements that imposes
the relationship between each pair of blocks as follows [25]:

(< ..bi..bj .. >,< ..bi..bj .. >) =⇒ bi is to the left of bj ;

(< ..bj ..bi.. >,< ..bi..bj .. >) =⇒ bi is below bj .

As an example, Fig. 1 shows the imposed relationship by
the sequence pair (<4 3 1 6 2 5>,<6 3 5 4 1 2>) in an
oblique grid. It can be inferred from the figure that all the
imposed relationship constraints are satisfiable, see [15] for
the prove.

In fact, given any sequence pair, one of the area-optimal
packing subject to the constraints can be obtained in
O(n log log n) time [25] based on a fast longest common
subsequence computation.

B. Local Search

Local search is a popular heuristic method for solving
combinatorial optimization problems. Roughly speaking, a
local search algorithm starts off with an initial solution and
then continually tries to find better solutions by searching
neighbourhoods [26].

Simulated annealing (SA) [27] is a probabilistic technique
inspired from annealing in metallurgy. Formally, let S be the
finite set of all complete solutions, E : S → R be an energy
function defined on S, and N : S → S be a neighbor function.
Note that for each s ∈ S,N(s) ⊂ S − {s}. SA starts at a
state s ∈ S. At each step, SA considers some neighboring
state s′ ∈ N(s) of the current state s, and decides between
moving the system to state s′ or staying in state s based on
the acceptance probability given as follows:

P (s′, s, T ) = exp [
1

T
max (0,E(s′)− E(s))], (2)

where T ∈ R is the temperature to control how ‘bad’ moves
are accepted. These probabilities ultimately lead the system
to move to states of lower energy.

C. Reinforcement Learning

Reinforcement learning learns the mapping from states to
actions, so as to maximize a numerical reward signal [28].
We use the agent-environment interface [28] to describe it
specifically: at each time step t, the agent receives state st
that represents the current state of the environment, and on
that basis selects an action at. One time step later, the agent
receives a numerical reward Rt+1 ∈ R, and finds itself in a
new state st+1. This framework is a considerable abstraction
of the goal-directed learning problem from interaction.

A Markov Decision Process (MDP) is a fundamental for-
malization for reinforcement learning in stochastic domain.
A typical Markov decision process contains the following
components:
• States S: a finite set of representations of the environment

state.
• Actions A: a finite set of responses to the stimulus an

agent can take.
• Transition Model T(s, a, s′): the transition probability

from state s to s′ under action a.
• Rewards R: the reward signal.

Given an MDP (S,A, T,R), a policy is a mapping from state
space to action space π : S → A. For any given MDP, our goal
is to find a best policy π∗ that receives the highest expected
reward.

III. ALGORITHM

The purpose of this work is to acquire an effective local
search heuristic, with which good floorplans could be obtained
through local search. In this section, we will first formulate
the above problem as a reinforcement learning problem, and
then we discuss how to select features to represent the states,
and how to construct an agent that makes decision.



A. Local Search as a Reinforcement Learning Problem

We first formally define the MDP for our local search
problem.

a) State Space: As introduced in Section II-B, a state s
is a complete solution. Here a complete solution includes both
sequences Γ+,Γ−, as well as the orientation of each block.

b) Action Space: Several perturbations are defined on
a solution s to generate N(s). At each step, a subset of
neighbours s′ ⊂ N(s) are sampled, and the agent decides
to accept one of the neighbours or reject to move. Therefore,
the action space size is the number of sampled neighbours
plus one (for the reject). We allow 6 types of perturbation on
a solution:

1) Exchange two blocks in Γ+.
2) Exchange two blocks in Γ−.
3) Exchange two blocks in both Γ+ and Γ−.
4) Delete one block and insert back to a random position

in both Γ+ and Γ−.
5) Rotate one block by 90◦.
6) Flip one block.

c) Transition: The transition model of our MDP is
deterministic, viz., no randomness is involved once the state
and the action are given. For this reason, we reload the
transition model with signature T : S × A → S. Hereafter,
we use s′ ← T(s, a) to denote a state transition.

d) Reward: Assigning rewards to the actions is critical in
reinforcement learning. Since the agent seeks to maximize the
total reward, the action of maximizing total rewards should
be consistent with the target of the problem. Basically, the
rewards are assigned whenever a global better solution is
found. We use the reduction of energy (i.e., ∆E) as the reward,
so that maximizing the total reward

∑
∆E is equivalent to

minimizing the cost. The reward is normalized to [0, 1] by
comparing with the energy of the initial state:

R =
∆E

baseline
. (3)

Intuitively, the reward encourages the design with lower cost,
which aligns with our target of reducing area and wirelength.

To accelerate training, we empirically add two adversarial
rewards to discourage useless explorations. First, if the agent
decides to reject, while one of the sampled neighbour has
lower energy than the current state, a negative reward of
−0.01 is given. In other words, the agent is always encouraged
to move to a neighbor state with lower energy. Second, if the
agent accepts a state, whose energy is higher than 1.2 times
of the lowest energy neighbor, a negative reward of −0.01 is
given. This is to discourage the agent to search a high energy
region that can hardly contain a good solution.

B. Features

As mentioned above, neighbour solutions are sampled from
all the 6 types of perturbation. To help the agent make better
decisions, providing helpful features to guide the local search
is critical. Here three sets of features are included:

TABLE I Features for decision making. All the items are
normalized to [−1, 1] or [0, 1].

Index Item Range Description
0 E(s) [-1, 1] Current energy
1 E(s′) [-1, 1] Neighbor energy
2 E(s∗) [-1, 1] Lowest energy so far
3 E [-1, 1] Average energy
4 E∗ [-1, 1] Average energy since s∗

5 E′∗ [-1, 1] Lowest energy of sampled neighbours
6 Area(bi) [0, 1] Size of the perturbed block
7 aff [0, 1] Number of effected blocks
8 t [0, 1] Search progress

• Energy: The central goal of the local search is to find
a state with minimal energy, which is defined as the
negative cost given by Equation (1) after packing all the
blocks. In simulated annealing, accepting or rejecting a
move is based on current state energy E(s) and the neigh-
bor state energy E(s′). Besides that, we provide a set of
other energy-related statistical information, including the
lowest and average energy through the search path (E(s∗)
and E), the average energy on the search path since the
lowest energy state (E∗), and the lowest energy among
the sampled neighbors (E′∗).

• Effect: How does a move affect the whole floorplan
solution? We identify the effect by both the size of the
perturbed block(s), as well as the number of blocks that
are affected. A block is considered affected if and only
if the location of the block is related to the perturbed
block(s). For example, if we rotate one block, those
blocks above or on the right of this block will be
affected. Other situations are also analyzed according to
the packing of sequence pair.

• Progress: Intuitively, the search progress has a similar
role to the temperature scheduling. Therefore we in-
cluded the search progress as a feature. Although we
also included an early-stop mechanism, the progress of
early-stopping is not visible to the agent because it is
considered irrelevant to the local search.

We list in TABLE I the detailed features, which we concate-
nate into a vector to feed the agent. Note that all the features
are normalized for easier training. For this purpose, we denote
the energy of the initial state as e0, and normalize all the
energy related entries by min (1,E/e0 − 1).

In practice, we realize that including noisy features does
harm to, or at least slows down training. For example, we
tried to include an indicator to tag the perturbation type, which
turns out to be a noise as an input feature.

C. Neural Network as the Agent

Recall that the policy π of an agent is a mapping from
the state space to the action space. A straightforward way
to construct such a policy is to store the best action of each
possible state. However, a quick estimation shows that for
n blocks, there are totally (n!)2 × 8n different states (two
permutation and rotation/flip of the blocks), which makes
the tabular method infeasible. Therefore, we utilize a neural



network as the policy approximator. Since the input features
are concatenated into an 1D vector, a simple multi-layer
perceptron (MLP) should be good in our case, where the input
dimension equals to the feature dimension, and the output
dimension is always 1 for the value prediction. A ReLU layer
is inserted after all but the last layers as the activation. The
neural network is trained with back-propagation, as will be
illustrated in detail in Section IV.

IV. TRAINING

A. Dealing with Large Action Spaces

Reasoning in an environment with a large number of
possible discrete actions is always challenging, as exploring
a large action space will be unstable and inefficient, and thus
requires much more training efforts. As concrete examples,
there will be totally 16575 possible actions in each state for
a floorplan problem on 25 blocks, and 1015050 actions for
100 blocks. Prior work proposed several strategies to improve
learning in large action spaces. Factorizing the action space
into binary subspaces [29] is natural for the cases with many
action variables or with a finely discretized continuous action
space. However the method requires a fixed size action space,
while our action space size is a polynomial of the size of
the problem. Other paper suggested embedding the discrete
actions into a continuous space [30] and eliminating actions
with an extra training signal [31], both of which aim to prune
irrelevant solutions to improve the speed and the quality of
training. Despite of that, evaluating an action is extremely
costly in our local search formulation, since both the energy
of a state and the estimated value of the action need to
be calculated, making the above solutions still intractable.
Inevitably, we have to sample actions during both training
and testing.

B. Deep Q-Learning

We use deep Q-learning [32] (DQN) to estimate the value
of each move. Following the common practice, we define the
value q of taking action a at state s under policy π as the
expected return starting from that state:

qπ(s, a) := Eπ

[ ∞∑
k=0

γkrt+k+1

∣∣St = s,At = a

]
, (4)

where t is the timestamp and γ is the discounting factor.
The optimal action value is therefore given by q∗(s, a) :=
maxπ q(s, a). As discussed in III-C, we use a neural network
to approximate the action value, Q(s, a; θ) ≈ q∗(s, a). The
loss function is defined according to the bellman equation:

L(θi) = Es,a∼ρ(·)
[
(yi −Q(s, a; θi))

2
]

= E(·)

[(
r + γmax

a′
Q(s′, a′; θi−1)−Q(s, a; θi)

)2]
,

(5)

where ρ(·) is the behaviour distribution over s and a, and
yi is called the target of the update. Then we can update
the model through back-propogating the loss with respect
to the weights (∇θiL(θi)). DQN is considered as off-policy

because it estimates the greedy policy (maxa(Q(s, a; θ)),
while samples the state space following a behaviour policy.
The overall algorithm is listed as Algorithm 1.

Algorithm 1 DQN for Floorplan Local Search

1: function Train()
2: Initialize replay memory D;
3: Initialize Q with random weights;
4: Initialize ε;
5: for episode ← 1, . . . ,M do
6: Reset s← s1;
7: for t← 1, . . . , T do
8: if ε > u ∼ U(0, 1) then
9: Sample a random action at;

10: else
11: Select at ← maxaQ(st, at; θ);
12: end if
13: st+1 ← T(at, st);
14: Save experience (st, at, rt+1, st+1) to D;
15: UpdateModel();
16: Update ε;
17: end for
18: end for
19: end function

20: procedure UpdateModel()
21: Sample a batch of (sj , aj , rj+1, sj+1) from D;
22: if sj+1 is a terminal state then
23: yj ← rj+1;
24: else
25: yj ← rj+1 + γmaxa′ Q(sj+1, a

′; θ);
26: end if
27: Calculate L← (yj −Q(sj , aj ; θ))

2;
28: Update θ with back-propagation;
29: end procedure

We select to use an off-policy algorithm for the following
reasons:

1) A local search episode is typically very long (e.g. 10k
steps). The consecutive moves are highly correlated,
which does harm to training. Instead, in an off-policy
algorithm we sample experiences from the replay mem-
ory to break the strong correlations and thus reduce the
variance.

2) Sampling is not free. Packing and calculating wirelength
is somehow time-consuming compared to running a
model. With the replay memory, each data sample is
potentially used many times in training, which increase
data efficiency.

3) Exploration is necessary. If we learn online a greedy
policy that picks the action with the largest expected
return, then we always select the same action during
training. An off-policy algorithm naturally decouples
sampling behaviour and the learnt policy, allowing more
random exploration in training while still being greedy
in testing.



C. Convergence Analysis

With the MDP defined (S,A, T,R) in Section III, the Q-
learning algorithm is given by the iteration rule

Qt+1(st, at)←− Qt(st, at)

+ α(st, at)

[
rt + γmax

b∈At

Qt(st+1, b)−Qt(st, at)
]
,

(6)

where At is a subset of the original action space A after
random sampling, γ < 1. Considering that the action space
A is extremely large and intractable for efficient training,
intuitively we randomly sample the action space in each
iteration.

Obviously, maxb∈At Qt(st+1, b) ≤ maxb∈AQt(st+1, b),
and thus iteration rule (6) will not return us the same Q-
function if the action space differs, even if it converges. We
will prove that the random iterative process (6) converges to
a Q-function which is different from the optimal one Q∗.

Theorem 1. Given the MDP defined (S,A, T,R) in Sec-
tion III, the iteration rule (6) converges with probability 1,
as long as constraints∑

t

αt(s, a) =∞
∑
t

α2
t (s, a) <∞ (7)

are satisfied for all (s, a) ∈ S ×A.

To establish this theorem some mathematical results from
stochastic approximation are required. The following theorem
is much more powerful and general than Theorem 1. We
present it as a lemma and the proof can be found in [33].

Theorem 2. The random process ∆t+1(x) = (1 −
αt(x))∆t(x) +βt(x)Ft(x) converges to zero with probability
1 (w.p.1) under the following assumptions:

1) The state space is finite.
2) The following constraints are satisfied.∑

t

αt(x) =∞
∑
t

α2
t (x) <∞∑

t

βt(x) =∞
∑
t

β2
t (x) <∞

(8)

and E[βt(x)|Pt] ≤ E[αt(x)|Pt] uniformly w.p.1.
3) ‖E[Ft(x)|Pt]‖W < γ ‖∆t‖W , where γ ∈ (0, 1).
4) Var[Ft(x)|Pt] ≤ C(1 + ‖∆t‖W )2, where C is a

constant.

Here Pt = {∆t,∆t−1, · · · , Ft−1, · · · , αt−1, · · · , βt−1, · · · }
stands for the past at step t. Ft(x), αt(x) and β(x) are
allowed to depend on the past insofar as the above conditions
remain valid. The notation ‖·‖W refers to some weighted
maximum norm.

The full proof of Theorem 2 is complicated and out of the
scope of this paper. With the help of Theorem 2, we are able
to prove Theorem 1.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Setup

We implemented the proposed solution in python, while
trained the neural model with PyTorch [34]. We use
Adam [35] as the optimizer with an initial learning rate of
5 ∗ 10−4.

To encourage exploration, the exploration factor ε is ini-
tially set to be 1. Then it is linearly annealed to 0.1 in the first
15000 steps and fixed afterwards. We use a replay memory
of size 20000 that stores the most recent experiences. During
training, a batch of 128 experiences are sampled from the
replay memory. The discount factor is set to be 0.995. To
stabilize training, we fix the target network and synchronize
the trained policy network to it every 10 episodes.

B. Data Generation

Random netlists are generated as training samples. Due to
the great difference in problem sizes, we train two models,
one of which (the lite one) is for MCNC and the other (the
large one) is for GCRS benchmarks. Each netlist for training
the lite model consists of 50 blocks with integer width and
height in the range of [10, 100]. Each block has 3 pins at
random locations, and 50 signals are randomly generated,
each of which connects 3 random pins. The large network
is trained with netist consisting of 250 blocks, 10 pins for
each block, and 250 signals. The rest settings are the same.

C. Baseline Tuning

Parameters of simulated annealing greatly affect the perfor-
mance of the algorithm. For example, a low initial temperature
may have the search stuck at a poor local minima, while an
over-high temperature just accepts all the moves, walking in
the search space in vain. Therefore, we first ran a batch of
experiments to tune the parameters of simulated annealing, as
listed in TABLE II. Best obtained result for each case appears
in different settings, while in general higher initial temperature
and higher number of inner loops yield better results, which is
intuitively very reasonable. To this regard, we will use setting
8 in subsequent experiments, where the initial temperature is
set to be 107, end temperature to be 10−10, inner loop of 200,
and an exponential cooling factor of 0.97.

D. MCNC Benchmark

We tested our agent on the MCNC netlist [36] benchmark.
1) Area Minimization: We first investigate the problem

of area minimization. Since we trained our model on area
and wirelength minimization, we directly use the area of the
resulted solution to compare. We compare the results of our
agent and Simulated Annealing (SA). The results are listed in
TABLE III.

2) Area and Wirelength Minimization: Then we switch
to the problem of minimizing both area and wirelength.
The multi-objectives actually make the problem much more
difficult. In area minimization, it is often the case that we
switch two internal blocks and the area does not change at
all. With wirelength minimization, however, a bad swap may



TABLE II Tuning Simulated Annealing parameters, including initial temperature, end temperature, number of inner loop, and
cooling schedule. Best result (in bold) for each case is obtained in different settings.

Setting
Parameters Area (mm2)

Init T End T Inner loop Cooling apte xerox hp ami33 ami49

1 106 10−10 50 0.97 48.28 21.77 9.72 1.24 38.87
2 107 10−10 25 0.97 47.08 20.54 9.38 1.31 39.65
3 107 10−10 50 0.95 47.56 20.40 9.63 1.30 39.29
4 107 10−9 50 0.97 47.56 20.36 9.33 1.26 40.84
5 107 10−10 50 0.97 47.56 20.36 9.33 1.25 40.84
6 107 10−11 50 0.97 47.56 20.36 9.33 1.25 40.70
7 107 10−10 100 0.97 48.71 21.10 9.21 1.20 38.38
8 107 10−10 200 0.97 47.08 20.31 9.26 1.22 38.10
9 108 10−10 50 0.97 47.52 21.23 9.17 1.28 38.72
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Fig. 2 Neighbor solution distribution for (a) area minimization; (b) wirelength minimization; (c) area and wirelength
minimization.

TABLE III Area Minimization on MCNC Benchmark. Our
results are directly from minimizing area and wirelength
together, while the two other columns are area minimization
only. Better results are emphasized in bold.

Circuit module #
Area (×105)

Ours SA FAST-SP [25]

apte 9 47.08 47.08 46.92
xerox 10 20.42 20.31 19.80

hp 11 9.21 9.26 8.95
ami33 33 1.24 1.22 1.21
ami49 49 38.65 38.10 36.50

greatly increase the wirelength, and thus the overall cost. To
verify this idea, we invested a random state in ami33 and the
distribution of the neighbor solution are shown in Fig. 2.

TABLE IV shows the results for area and wirelength
minimization. Our agent outperforms the simulated annealing
algorithm in all the 5 cases.

E. GCRS Benchmark

We further conducted experiments on the GCRS bench-
mark [37] with larger instances of hundreds of blocks. We
tested area and interconnect optimization and listed the results
in TABLE V. Due to the long runtime of the instances,
we carefully tune the early-stop criteria on both simulated
annealing and our agent. In simulated annealing, the search

will finish if no move was accepted in the last 20 temperatures.
In our agent, the search will finish if no better solution was
found in the last 100 steps.

F. Result Visualizations and Discussions

1) Search Progress Visualization: We recorded the search
progress of Simulate Annealing and our agent, and visualized
them in Fig. 3. From the figure, we observe that Simulated
Annealing explores the action space during searching while
our agent searches much smoother. We believe this is because
our agent acquires a rather greedy and deterministic heuristic.

2) Floorplan Visualization: We visualized the floorplans
generated by Simulated Annealing and our agent on the n100
netlist of GCRS Benchmark in Fig. 4. The dead space of
floorplan by our agent is only 7.95% compared to 8.88% dead
space by Simulated Annealing.

3) Runtime Profiling: Where is the runtime spent? Instead
of roughly showing a total runtime, we profiled both our
agent and the simulated annealing algorithm to make better
comparisons. Profiling results are in Fig. 5. According to the
profiling, more than half of the runtime (63.1% and 52.3%,
respectively) are spent on wirelength calculation. Packing is
the second largest consumer (26.1% and 23.0%), and in other
words solution evaluation takes most (89.2% and 75.3%,
respectively) of the runtime. Random sampling only takes a
little portion of time (2.1% and 1.2%).



TABLE IV Area and Wirelength Minimization on MCNC Benchmark. Better results are emphasized in bold.

Circuit
Statistics Area (×106) Wirelength (×105) Cost (×106) Runtime (s)

module # net # Ours SA Ours SA Ours SA Ours SA

apte 9 97 47.08 47.31 4.03 3.43 28.41 28.53 15.9 38.1
xerox 10 203 20.42 20.64 6.33 6.62 12.51 12.65 17.2 98.8

hp 11 83 9.21 9.40 1.95 2.62 5.60 5.74 11.6 44.3
ami33 33 123 1.24 1.25 0.69 0.46 0.77 0.77 43.1 82.2
ami49 49 408 38.65 39.47 17.24 12.31 23.88 24.18 66.8 165.0

TABLE V Area and Wirelength Minimization on GCRS Benchmark. Better results are emphasized in bold.

Circuit
Statistics Area (×105) Wirelength (×105) Cost (×105) Runtime (s)

module # net # Ours SA Ours SA Ours SA Ours SA

n100 100 576 1.95 1.97 1.55 1.54 1.79 1.80 389.4 396.2
n200 200 1274 2.15 2.01 3.48 3.34 2.68 2.54 784.9 1101.9
n300 300 1632 3.40 3.29 5.25 5.44 4.14 4.15 3766.9 2062.3
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Fig. 3 Search progress visualizations on the n300 netlist of
GCRS benchmark: (a) Simulated Annealing; (b) Our Agent.
Our agent searches in a smoother way, indicating a more
greedy and deterministic heuristic.

VI. CONCLUSION

In this work, we investigated the possibility of leveraging
reinforcement learning to acquire a floorplanner. The key
motivation of our work is to ‘learn’ new algorithms for
difficult combinatorial problems without human expert knowl-
edge. Specifically, we explored the possibility of acquiring
local search heuristics through numerous search experiments.
To illustrate the applicability, an agent has been trained to
perform a walk in the search space by selecting a candidate
neighbor solution at each step. We trained the agent using a
novel deep Q-learning algorithm with action sampling, and

(a) (b)

Fig. 4 Floorplan visualizations of the n100 netlist of GCRS
benchmark: (a) n100 floorplan by simulated annealing; (b)
n100 floorplan by our agent. The dead space of the floorplan
by our agent is lower (7.95%) compared to that (8.88%) by
Simulated Annealing.

the experimental results have demonstrated the effectiveness
of our proposed methods. This work represents the first
systematic attempt on leveraging the idea of reinforcement
learning to floorplanning. We expect more research along this
line due to the importance of floorplanning/placement amidst
the physical design flow.
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