
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021 1995

Deep Learning Analysis for Split-Manufactured
Layouts With Routing Perturbation

Haocheng Li , Satwik Patnaik , Member, IEEE, Mohammed Ashraf, Haoyu Yang , Member, IEEE,

Johann Knechtel , Member, IEEE, Bei Yu , Member, IEEE, Ozgur Sinanoglu, Senior Member, IEEE,
and Evangeline F.Y. Young, Senior Member, IEEE

Abstract—Split manufacturing of integrated circuits means
to delegate the front-end-of-line (FEOL) and back-end-of-line
(BEOL) parts to different foundries, in order to prevent overpro-
duction, intellectual property (IP) piracy, or targeted insertion
of hardware Trojans (i.e., threats arising from adversaries in
the FEOL foundry). This article challenges the security promise
of split manufacturing by formulating various layout-level place-
ment and routing hints as vector-based and image-based features
that enable a sophisticated deep neural network (DNN), which
can infer the missing BEOL connections with high accuracy.
Compared with the network-flow attack (Wang et al., 2018), we
achieve on average 1.21× and 1.12× of their correct connection
rate (CCR; the higher, the better) when splitting after M1 and
M3, respectively, with less than 1% of their runtime (across the
same set of ISCAS-85 and ITC-99 benchmarks). Compared with
Zeng et al. (2019), ours reduces the candidate list (the smaller,
the better) by 47% with only 1% loss of accuracy, and we fur-
ther achieve an average CCR of 2.2× of that of Zeng et al.
(2019). Aside from these superior results, we propose a ran-
domized, routing-blockage-centric defense strategy to escalate
the resilience against our and other attacks. Our defense strat-
egy, which can be integrated into any commercial design flow,
leads on average to 22.78 pp (percentage points) degradation in
CCR when compared with unprotected layouts, while inducing
only 3.3% and 3.2% overheads on power and timing, respec-
tively, within the same die outlines (i.e., zero area cost). The
source code of our heterogeneous feature extraction is available at
https://github.com/cuhk-eda/split-extract, and the source code of
our DNN is available at https://github.com/cuhk-eda/split-attack.

Manuscript received March 11, 2020; revised June 19, 2020 and September
12, 2020; accepted October 17, 2020. Date of publication November 11, 2020;
date of current version September 20, 2021. This work was supported in part
by the Research Grants Council of the Hong Kong Special Administrative
Region, China, under Project CUHK14202218; in part by the Center for
Cyber Security at New York University Abu Dhabi (NYUAD); in part by
the NYUAD REF Program; and in part by the HPC Facility at NYUAD.
The work of Satwik Patnaik was supported by the Global Ph.D. Fellowship
at NYU/NYUAD. This work is an extension of [1]. This article was rec-
ommended by Associate Editor I. H. R. Jiang. (Corresponding authors:
Haocheng Li; Satwik Patnaik.)

Haocheng Li, Haoyu Yang, Bei Yu, and Evangeline F.Y. Young are
with the Department of Computer Science and Engineering, Chinese
University of Hong Kong, Hong Kong (e-mail: hcli@cse.cuhk.edu.hk;
hyyang@cse.cuhk.edu.hk; byu@cse.cuhk.edu.hk; fyyoung@cse.cuhk.edu.hk).

Satwik Patnaik was with the Department of Electrical and Computer
Engineering, Tandon School of Engineering, New York University, Brooklyn,
NY 11201 USA. He is now with the Department of Electrical and Computer
Engineering, Texas A&M University, College Station, TX 77843 USA (e-mail:
satwik.patnaik@tamu.edu).

Mohammed Ashraf, Johann Knechtel, and Ozgur Sinanoglu are with the
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
(e-mail: ma199@nyu.edu; johann@nyu.edu; ozgursin@nyu.edu).

Digital Object Identifier 10.1109/TCAD.2020.3037297

Index Terms—Deep learning (DL), feature extraction,
hardware security, intellectual property (IP) protection,
routing perturbation, split manufacturing, very large scale
integration (VLSI).

I. INTRODUCTION

HARDWARE becomes as vulnerable as software with
the widespread globalization of design, synthesis, fab-

rication, and distribution of integrated circuits (ICs). Fabless
design houses rely on offshore foundries for cost-effective
access to advanced technology nodes, which enables various
attack avenues on the intellectual property (IP) for those out-
sourced foundries [4]. For example, malicious suppliers with
complete knowledge of the exposed GDSII layouts can steal
the designs and the underlying IP [5]. Attackers may also
counterfeit defective ICs [6] or modify designs maliciously [7].

The IARPA agency advocated split manufacturing to safe-
guard chip designs from potentially malicious foundries [8].
An untrusted, high-end foundry fabricates the front-end-of-
line (FEOL) (i.e., the device layer and a few lower metal
layers), whereas a trusted facility, which is low-end and pos-
sibly even in-house, integrates the back-end-of-line (BEOL)
(i.e., the higher metal layers) on top of the FEOL, all with-
out noticeable impact on circuit performance [8], [9]. The
untrusted foundries cannot get control of the full design while
the fabless design houses can still benefit from access to the
latest technology node.

However, splitting physical-design layouts as-is into FEOL
and BEOL parts may fall short in terms of security. Traditional,
security-oblivious design tools tend to place interconnected
components close to each other in the FEOL layers and
further wire them up through the BEOL layers using short
paths [10], [11]. While delivering effective designs in terms of
power, performance, and area (PPA), such an approach leads
to some information leakage for the scenario of split manu-
facturing, where the structural information gathered from the
FEOL layers can be utilized to infer the missing BEOL con-
nections. This concept is known as proximity attack [12] and
selected prior art for attacks and defense strategies is reviewed
in Section II-A.

We believe (and demonstrate) that deep learning
(DL) is a good match for attacking split manufactur-
ing. Among other applications, DL has been used to
increase the effectiveness and efficiency in gaming [13],
object recognition [14], routability prediction [15], and

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3254-3259
https://orcid.org/0000-0002-8975-2414
https://orcid.org/0000-0002-4709-0061
https://orcid.org/0000-0001-5093-2939
https://orcid.org/0000-0001-6406-4810

1996 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

design-for-manufacturability [16]. However, we caution that
DL would have to handle a large variety of data for attacking
split manufacturing. More specifically, vector-based data are
ranging, e.g., from signed gate displacements to unsigned
wirelengths and from integral pin counts to floating-point
pin capacitances. Additionally, layout images can be used
to encode routing segments and their directions as well as
congestions. Such image-based data naturally constitute rich
information that can be useful for an advanced attack. A
limitation of current neural network architectures is that they
can only handle either vector-based or image-based features,
but not both types together. Accordingly, one challenge
for our work is to combine vector-based and image-based
features in a unified framework. Another limitation is that
traditional two-class classifiers would only predict each
possible BEOL connection’s probability but not represent
the physical-design reality that each sink pin is assigned
to exactly one driver/source. Accordingly, when selecting
the source with the largest predicted connection probability,
traditional classifiers can be easily misled by outlying negative
samples’ predictions.

In this article, we leverage DL to learn the characteris-
tics of IC layouts thoroughly, exemplarily synthesized using
the NanGate 45-nm Open Cell Library [17]. To the best
of our knowledge, this is the first DL-based attack on split
manufacturing that provides better results than the state-of-the-
art, nonlearning-based attacks [2]. Our methods also resolve
the imbalance problem encountered by another learning-based
attack [3], which has to use the same number of negative and
positive samples. The primary contributions of our work are
summarized as follows.

1) We leverage DL for attacking split manufacturing. Using
TensorFlow 2.1, we design and train a sophisticated
DNN architecture, which can predict the missing BEOL
connections for an unknown FEOL layout with high
accuracy.

2) Our neural network makes use of vector-based and
image-based layout features simultaneously. The feature
structure is compatible with a wide range of designs
while saving memory consumption and runtime.

3) The proposed softmax regression loss allows our attack
to directly and effectively select the most probable
BEOL connection among the relevant candidates with-
out suffering from an imbalance between positive and
negative samples (as traditional classifiers would do).

4) We further propose a randomized, routing-blockage-
centric defense strategy which can be easily integrated
into commercial design flows. The notion of this defense
strategy is to prevent attackers from learning it, which
we demonstrate, and we also demonstrate that it is
effective against nonlearning-based attacks.

The remainder of this article is organized as follows.
Section II reviews the selected prior art, outlines the threat
model, and provides the problem formulation. Section III
describes our features for the DL attack. In Section IV,
we illustrate the architecture and configuration of the
proposed DNN, followed by the obfuscation strategy described
in Section V. The effectiveness of both attack and defense

is verified in Section VI. Section VII concludes this
article.

II. PRELIMINARIES

A. Prior Art and Limitations

Rajendran et al. [12] demonstrated the first naïve proximity
attack, where they leveraged the fact that interconnected mod-
ules are typically placed closed to each other and nonformation
of combinational loops. The attack performed reasonably well
for hierarchical designs with a few nets between the mod-
ules but showed limited success for flat designs and large
layouts. Wang et al. [2] proposed an enhanced proximity
attack based on a network-flow model. While constructing
a flow graph, they set the weighted sum of the proximity
on preferred and nonpreferred routing directions as the edge
cost and adopt the driver capacitance as the edge capacity.
However, the network-flow formulation is relaxed to the naïve
proximity attack once cell libraries have loose capacitance
constraints. The attack also performs iterative edge removal
when combinational loops occurred during recovery of the
BEOL connections; this iterative work mode causes significant
runtime. Zeng et al. [3] analyzed the security of split manu-
facturing on industrial designs with random-forest classifiers.
However, their classifiers do not predict the BEOL connec-
tions directly, but generate only a list of candidates (LoCs),
which is often of considerable size. For instance, when attack-
ing layouts split after metal layer 4 (M4 for short), their most
successful classifier provides, on average, several hundreds or
even thousands of candidates for each broken connection; it
can become practically impossible to retrieve all correct con-
nections among those candidates. Additional details for prior
work can be found in [4].

According to the various attack methods, several defense
algorithms were proposed to escalate the security of split
designs. Most defenses are focused on creating more candi-
dates in the neighborhood of broken connections to complicate
the proximity attack. Sengupta et al. [18] colored cells by
connection or by type and placed cells with the same color
into the same fence, seeking to decorrelate placement and
connectivity. Magaña et al. [19] first added artificial routing
blockages to the designated split layer after global routing
and then performed global routing again, to make the routing
tools elevate more wires over the split layer. However, their
scheme can control the length/size of blockages only at the
lower-left corner of each routing-grid bin, limiting the solu-
tion space for routing perturbation. Wang et al. [2] developed
a security-driven placement-perturbation algorithm by obfus-
cating the cell placement based on the layer assignment after
global routing. However, their placement perturbation caused
large wirelength overheads.

B. Threat Model

Consistent with prior art [2], [3], we assume that the attacker
has access to the full design information of the FEOL layers.
Hence, the attacker can identify the gates and pins, the related
FEOL routing, and the resulting but incomplete netlist. The
attacker also knows the maximum load capacitances (from the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT-MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 1997

Fig. 1. Terms for learning on split manufacturing layouts. Examples of
VPPs are shown by dashed arrows pointing from sink fragments to source
fragments.

cell library) and can estimate an upper bound for the delay.
Furthermore, consistent with most prior works, we assume
that the attack occurs while chips are being fabricated. We
acknowledge [20], where an oracle was leveraged to assist the
attack on split manufacturing, but here, we adopt the classi-
cal, stronger threat model where the chip is not available yet.
Hence, oracle access is not available for the attacker. Finally,
the attacker has a database of layouts generated similarly to
the one under attack.

An attacker’s objective in the untrusted FEOL foundry
is to decipher the missing BEOL interconnects solely from
the available FEOL information. The corresponding goal is
to reconstruct the design and ultimately pirate the chip IP,
overproduce the chip, or insert targeted hardware Trojans.

C. Terminology and Problem Formulation

The split layer refers to the top-most FEOL layer, while
virtual pins are vias manufactured to connect the FEOL with
the BEOL [3]. During split manufacturing, fragments are con-
nected parts of FEOL wires, holding at least one virtual pin
in the split layer. There are two different types of fragments,
as shown in Fig. 1.

1) Source Fragment: A driver/source along with fragments
which are routed up until and within the split layer.

2) Sink Fragment: A fragment routed within the split layer
and down toward sink pin(s). For multifanout nets, the
sink pins may be routed together in the FEOL as one
sink fragment or separately as several sink fragments.

Given are a set of m sink fragments, each of which has
c1, c2, . . . , cm sink pins, and a set of source fragments; all
are easy to extract from the FEOL layout. VPPs are map-
pings between virtual pins in sink fragments and virtual pins in
source fragments. A VPP that is truly connected in the BEOL
is called a positive VPP, whereas one that is not connected is
called a negative VPP. The connection prediction problem is
to select a VPP for each sink fragment maximizing the CCR
which is the rate of sink pins that are successfully restored [2]

CCR =
∑m

i=1 cixi
∑m

i=1 ci
(1)

where xi = 1 (0) when a positive (negative) VPP is selected
for the ith sink fragment. Note that sink pins that do not belong
to any sink fragment are excluded from consideration by defi-
nition, as this part of the design is already fully exposed in the
FEOL. Accordingly, CCR serves well as a measure for attack
effectiveness, but not so much for IP protection.

III. FEATURE EXTRACTION

The BEOL part is only available at training time, where
the true connectivity is extracted to label VPPs as positive
or negative ones. The FEOL part is available for both train-
ing and testing/attacking phases. Hence, all features have
to be extracted from the FEOL part. We propose two fea-
ture categories for our DL attack, namely, vector-based and
image-based features. The source code of our feature extrac-
tion is available at https://github.com/cuhk-eda/split-extract.
We explain how to integrate these heterogeneous features into
a unified DNN architecture in Section IV.

A. Vector-Based Features

1) Distances for VPPs: These features are inspired by the
working essence of design tools, where gates to be connected
are typically placed closer to each other and related wires are
typically routed along the shortest available path [10], [11].
Still, by the virtues of: 1) being able to learn on various lay-
outs and 2) the joint working of these and all other features
proposed in this work, any deviation patterns from this essence
can be captured as well. This is because all features have
been devised to represent a physical layout in reasonable detail
while remaining agnostic to particular design characteristics.

Following routing principles, the distances for VPPs arising
along the preferred and nonpreferred routing directions are
considered separately. To mitigate scaling issues across dif-
ferent layouts used for the same model, instead of measuring
distances by the database unit, distances are normalized by the
pitch of the metal tracks in the split layer. All distances are also
duplicated and normalized separately by encoding in the ratios
of the chip width or height, respectively. Therefore, designs
based on different technology nodes and exhibiting different
floorplan shapes and dimensions are made compatible with
joint training as well as testing/attack.

2) Number of Sink Pins and Load Capacitance: These fea-
tures track the number and total load of sink pins for each
VPP. As we are handling split or incomplete layouts, the load
capacitances can only be defined by two bounds, namely, by
the following.

1) Upper Bound: The maximum capacitance of the driver,
as derived from the cell library (which is available to
the attacker) and

2) Lower Bound: The capacitance of the sink pins con-
nected within the sink fragment, plus wire capacitances
of the two related source and sink fragments.

3) FEOL Layer Wirelengths and Vias: These features cap-
ture the wirelength contribution in each FEOL metal layer
individually. Contributions are tracked separately for the two
fragments of a VPP. Within each layer, all wire paths of a
fragment are summed up. The number of vias in each FEOL
cut layer is also considered.

4) Driver Delay: For each VPP, we track the driver delay
based on the underlying timing paths. Note that timing paths
obtained from split layouts can only provide lower bounds
for delays, as the paths may be incomplete. Thus, this feature
tends to become more meaningful for higher split layers when
more of the paths are already completed in the FEOL.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

1998 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

Fig. 2. Layout image scaling.

Fig. 3. Layout image representation.

B. Image-Based Features

For each virtual pin, we represent the routing in the vicinity
as gray-scale layout images. To be able to capture routing
detours, we consider three different scales with the same image
shape but different precisions, as shown in Fig. 2.

There are two properties of the routed wires which will be
encoded in the layout images of a virtual pin: the nets they
belong to and the layers they are routed within. Let m be
the number of metal layers in the FEOL. The total number
of bits in a pixel to represent the layout information is 2m,
and we call these bits layer bits. The 2m layer bits are needed
because wires of the same fragment as the virtual pin and wires
from all other fragments are to be represented by different
layer bits; the first m most significant bits represent the routed
wires of the virtual pin’s fragment while the remaining m least
significant bits represent the wires of other fragments. Since
wires closer to the BEOL carry more information about the
missing connection, those in higher metal layers are encoded
in more significant bits while those in lower metal layers are
encoded in less significant bits. Vias connecting two layers
are represented in both layer bits. More specifically, “1” is
assigned to the bth bit with b = m, . . ., 2m − 1 in a pixel if
the virtual pin’s fragment is routed in metal layer b − m + 1
in that region. Similarly, a 1 is assigned to the bth bit with
b = 0, . . . , m−1 in a pixel if there is some wire or via arising
from other fragments in metal layer b + 1 of that region.

Fig. 3 shows an example with parts of the image data for a
layout split after M3, i.e., wires in three different FEOL layers.
Routed wires in the six consecutive regions bounded by the
dashed lines are encoded into 2 × 3 pixels. Note that here
we only show the values of the sixth, fifth, and fourth layer
bits at the corner of each region, which together represent an
exemplary virtual pin’s fragment.

This image-based feature extraction for large designs with,
e.g., more than a million fragments, will be time-consuming.

Considering a fragment f , note that constructing a layout
image of fragments other than f means to check which of
all these other fragments hold wires in the nearby regions.
Also note that the information carried by a layout image of
fragment f and the image of fragments other than f is equiv-
alent to the information carried by the layout image of f and
the layout image of all fragments. Hence, to manage the com-
putational efforts, we let the m least significant bits represent
the wires of all fragments instead of other fragments, i.e., a
1 is assigned to the bth layer bit when the b + mth bit is 1
where b = 0, . . . , m − 1. Thus, to construct the image-based
features efficiently, we construct a large layout image for all
nets covering the whole die area at the beginning. Thereafter,
when generating a layout image centering any particular net,
we only need to crop that large layout image to save most of
the computational efforts incurred otherwise. Besides, for fea-
ture extraction using t threads, t large layout images can be
constructed simultaneously and in parallel and then merged
together.

IV. DEEP LEARNING FRAMEWORK

In this section, we first describe our strategy of VPP sample
selection for data cleaning. We then elaborate on the DNN
architecture and discuss our proposed SoftMax regression loss
and its advantages. The source code of our DNN is available
at https://github.com/cuhk-eda/split-attack.

A. Sample Selection

Due to an underlying tendency toward imbalanced datasets
and long inference runtime, it is not practical to consider all
possible VPPs, mainly because the correct connections are
very few among all possible ones, which leads to a biased
or inaccurate ML model. For N nets, even in the simplest sce-
nario where: 1) each FEOL wiring fragment holds only one
virtual pin in the split layer and 2) each net is split into exactly
one source and one sink fragment, the sampling size is already
N2, whereas only (1/N) samples are true positives.

Thus, based on three criteria discussed next, we select
the n most relevant candidate VPPs for each sink fragment,
irrespective of the number of sink pins in the fragment.

The first is the direction criterion. We apply a looser crite-
rion than [2] to avoid neglecting some positive VPPs, based on
our observation that wires with nonpreferred routing direction
are relatively common in congested designs. For a VPP (p, q),
where p is a virtual pin located at (xp, yp) and q is a virtual
pin located at (xq, yq), if there is a wire segment between p
and (x′

p, y′
p), and q satisfies

{
(xq − xp)(x′

p − xp) ≤ 0, y′
p = yp

(yq − yp)(y′
p − yp) ≤ 0, x′

p = xp
(2)

we then say the virtual pin p does not rule out virtual pin q,
meaning that the two related fragments might be connected in
the BEOL. Our direction criterion is that a VPP is not consid-
ered as a candidate if and only if the above condition is not
met individually for both of the virtual pins. In other words,
a VPP is only disregarded if we find that neither the source

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT-MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 1999

Fig. 4. Examples for the direction criterion. Except VPP (B, C), all other
VPPs are considered as candidates.

TABLE I
DIRECTION CRITERION FOR VPPS IN FIG. 4

fragment might be connected to the sink fragment nor vice
versa. As indicated, this is a rather loose criterion, and partic-
ularly helpful to avoid neglecting some positive VPPs where
parts of the related fragments are routed along nonpreferred
directions. Note that in case multiple virtual pins are present
within a fragment, the condition is to be evaluated separately
for each virtual pin. Also note that the final outcome of the
direction criterion is independent of the order between virtual
pins p and q; the criterion is symmetric.

For illustration of this criterion, the exemplary VPPs
in Fig. 4 are evaluated in Table I. For example, the wire of
the source fragment connecting to the virtual pin C is pointing
from right to left, while the virtual pin A of the sink fragment
resides further to the right of C, so the condition in 2 is not
met and we cannot say that the source fragment might be con-
nected to the sink fragment. For the counterpart evaluation,
required to decide on the criterion, note that the wire of the
sink fragmenting connecting to A is pointing upward, while
the virtual pin C is on the same height as A (i.e., C is just not
below A), and the condition is met. Therefore, the direction
criterion is fulfilled, and VPP (A, C) is still considered as a
candidate.

The second criterion is relevance. If the sink and source
fragments have multiple virtual pins, only the VPP(s) with
the shortest distance apart in the routing direction orthogonal
to the preferred direction of the split layer is (are) consid-
ered as candidate(s). This is because metal stacks exhibit an
alternating order for routing preferences and net wirelengths
are restricted to meet timing closure. For example, consider
the preferred routing direction in the split layer is horizontal,
then the preferred direction for the next layer above the split
layer—which is the first layer of the BEOL—is vertical. We
assume that the first layer of the BEOL plays a significant role
for the remaining wiring and, thus, the shortest distances in
its preferred direction are leveraged in this criterion.

The third criterion is the distance itself. If the number of
VPPs remaining after considering the relevance criterion is still
greater than n, the VPPs with shorter distance in the preferred
direction of the first BEOL layer have a higher priority to be
selected. Furthermore, if multiple VPPs are tied, the distance
in the nonpreferred routing direction is considered as a tie-
breaker for the selection.

Fig. 5. Neural network architecture.

B. Model Architecture

For a batch of n VPPs selected for a sink fragment, the input
data for the neural network include the vector-based features of
n selected VPPs, the image-based features of n source frag-
ments in the related VPPs, and the image-based features of
the sink fragment itself. The output data are scores for every
VPPs in the batch. To handle vector- and image-based features
in the same network, the proposed neural network illustrated
in Fig. 5 first extracts underlying features from heterogeneous
input by processing vector-based features (shown in the upper
left) and image-based features (shown in the upper middle)
individually, and then processing them together (shown in the
lower left) after concatenating the output of the vector and
image part together.

For the image part of the network, note that the image-based
features of the sink fragment are the same in the batch, so we
only process them once, to save runtime, and its output is
distributed to the output of every source images. Besides, all
the image-based features go through the same shared network
because the same set of information is needed to be extracted.
Thus, each image-based feature is first processed individu-
ally through a shared convolutional neural network to reduce
runtime. Processing image-based features from source frag-
ments and sink fragments through the same network can also
make better use of all layout images. The shared network
contains twelve convolution layers (red colored, labeled as
conv) and two fully connected layers (blue colored, labeled
as fc). The output from the sink image is then concatenated
with every output from the source images and the combina-
tion passes through one more 128-way fully connected layer.
For the vector part of the network, vector-based features are
first transformed by a 128-way fully connected layer. Then,
there are four residual networks (ResNets) blocks (purple

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

2000 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

TABLE II
NEURAL NETWORK CONFIGURATION

colored, labeled as res) which can resolve the gradient van-
ishing problem while training very DNNs [21]. The output
of a ResNet block is the sum of its input and the output of
three fully connected layers as shown in the middle subfigure
of Fig. 5. After that, the output from the image part is concate-
nated with the output from the vector-based features. There is
one 128-way fully connected layer to downsize the combi-
nation. The network ends with three ResNet blocks and two
more fully connected layers. The filter and parameter config-
uration of the neural network is listed in Table II. Both fully
connected layers and convolutional layers are followed by a
leaky rectified linear unit (LReLU) with y = max(0.01x, x) as
activation, where x is the input and y is the output [22].

C. SoftMax Regression Loss

Given a query of a batch of n VPPs with at most one
positive VPP, the network predicts the connection probability
s1, s2, . . . , sn for each VPP. The task for connection prediction
is to determine the index of the correct VPP to be connected

arg max
i

si (3)

as there can only be one source in a net.
While prior work handles similar problems as multiclass

classification or two-class classification (see [3]), we note that
conventional multiclass classification approaches are in lack
of two important properties for our work. In fact, exponen-
tial effort would be required to conduct data augmentation if
we were to use conventional multiclass classification methods.
First, the classification result for prior approaches depends on
the order of classes, whereas for this work, the connection
prediction should be independent of the order. Second, and
more importantly, none of the prior methods can handle a
variable number of classes, which is natural for the VPP con-
nection prediction in our work, as this prediction is subject to
a variable number of candidates.

Simply modeling the VPP connection problem as a two-
class classification problem is not appropriate either. The
main difference between our problem and classical regression
problems is that we only care about the relative predicted prob-
ability between the only one positive VPP and the remaining
negative ones, instead of their absolute values. Consequently,

only the VPP with the largest predicted probability matters
in the result. Moreover, an outlying negative VPP prediction
would easily mislead the matching. Assuming a traditional
two-class classification formulation, where the input of the
neural network contains n VPPs with the same sink fragment,
the loss of the two-class classification is

lr = −1

n

⎛

⎝log
es+t

es−t + es+t
+

∑

j �=t

log
es−j

es−j + es+j

⎞

⎠ (4)

whose partial derivative with respect to (w.r.t.) each score of
either class is

∂lr
∂s+

j

= − ∂lr
∂s−

j

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− es−j

n
(

es−j + es+j
) if j = t,

es+j

n
(

es−j + es+j
) otherwise

(5)

where s+
j and s−

j are the scores of connection and nonconnec-
tion for the jth source fragment with 1 ≤ j ≤ n and t is the
index of the true connection. The partial derivative w.r.t. the
ith weight of either neuron in the last fully connected layer is

∂lr
∂w+

i

= − ∂lr
∂w−

i

= 1

n

⎛

⎝
n∑

j=1

es+j xi,j

es−j + es+j
− xi,t

⎞

⎠ (6)

where xi,j is the ith input value of the last fully connected layer
for the jth source fragment. Therefore, the score of each source
fragment acts independently on the gradient. The coefficient of
the positive part of the gradient, which is due to the negative
samples, is limited to 1 so that the VPP with even the largest
connection probability will not dominate the gradient. As a
result, misprediction of one VPP, which would significantly
influence our desired output as in 3, barely affects the average
loss. Additionally, the numbers of positive and negative VPPs
are imbalanced as most of the VPPs are negative samples.
The negative part of the gradient, which is due to the only
positive sample, is divided by the number of VPPs in the batch.
Therefore, such a two-class classification model has a serious
imbalance problem as it can easily gain a high accuracy by
simply classifying all VPPs as negative, which is meaningless.

To resolve these problems, we consider only one score sj

for the jth source fragment with 1 ≤ j ≤ n. We propose the
following SoftMax regression loss:

lc = − log
est

∑n
j=1 esj

(7)

whose partial derivative w.r.t. each score of connection is

∂lc
∂sj

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

esj

∑n
j=1 esj

− 1 if j = t,

esj

∑n
j=1 esj

otherwise.
(8)

The partial derivative of our proposed loss w.r.t. the ith weight
of the only neuron in the last fully connected layer is

∂lc
∂wi

=
∑n

j=1 esj xi,j
∑n

j=1 esj
− xi,t (9)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT-MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 2001

in which the shortcomings of conventional two-class and mul-
ticlass classification models are resolved as follows. First, the
source fragment with higher score contributes more signifi-
cantly in the gradient with an exponential factor. Let jmax be
the index of the largest sj. As the positive part of the loss
is dominated by xi,jmax , we have ∂lc

∂wi
≈ xi,jmax − xi,t. Second,

the summation of the coefficients in the positive part equals to
that of the negative part, so there is no imbalance issue. Third,
given any permutation of source fragments, the most probable
source fragment is consistently selected. Fourth, the network
can handle any number of source fragments as input.

With these four advantages considered, the proposed
SoftMax regression loss better reflects our way of computing
the output as in 3, which is also supported by the empirical
results.

V. DEFENSE AGAINST DEEP LEARNING ATTACK

Routing perturbations represent an effective means for
security-aware physical design to protect split-manufactured
layouts from proximity attacks [19]. In contrast, placement
perturbations can incur large overheads and the perturbations
are eventually offset by routing, rendering designs vulnerable,
especially when split after higher layers [23], [24].

In this work, we seek to defend split-manufactured lay-
outs by randomly inserting routing blockages within the
FEOL metal layers. Since commercial tools from leading ven-
dors employ deterministic physical-design algorithms, a DNN
which is trained on a sufficiently large database of physi-
cal layouts can help capturing the essence of the behavior
of those tools. Therefore, to ensure that advanced DL-based
attacks (or any other attack) cannot easily circumvent the
security promises offered by our defense, we shall introduce
sufficient randomness during the layout generation. Given the
same inputs and constraints, multiple design runs should pro-
vide sufficiently different solutions, to prevent attackers from
learning the defense strategy. Still, all solutions have to remain
fully compliant with design and manufacturing rules, which is
achieved by employing commercial-grade tools.

It is understood that randomized routing-level perturbations
will have an impact on the PPA of the design and, hence,
the degree of randomness should also remain controllable.
Therefore, during the first step of our defense strategy, the
designer has to provide the percentage of g-cells which shall
be blocked at various layers. For example, assuming a split
layer of M6, the designer should insert blockages through-
out any layer(s) of choice below M6. Next, we identify the
die and core boundary of the design and the size of a g-
cell. The total number of g-cells is derived accordingly for
all the layers where the designer seeks to insert blockages.
Then, an iterative process is conducted as follows: a random
layout location (x, y, z), snapped to the nearest g-cell loca-
tion, is chosen, and a routing blockage of the same size as the
g-cell is introduced into the design. This process is repeated
until the blockage requirements specified by the designer are
fulfilled. Note that we keep track of the number of block-
ages already added across the metal layers, also accounting
for the preferred routing directions of those layers. We do so

Fig. 6. Example of routing blockages inserted in ITC-99 benchmark b22_C.
(Left) Routing blockages in green are randomly inserted for M3, in yellow for
M4, and in red for M5, respectively. Note that colors for the background and
for pins at the core boundary are value-inverted for better visibility. (Right)
Rerouted layout after blockage insertion.

to guide the iterative process such that no bias is introduced
(by random chance) toward a particular metal layer and/or a
specific routing direction.

Once all routing blockages have been introduced into
the design, the global router is invoked again, rerouting the
blocked parts of all affected nets. Note that we freeze the
placement, to support a fair PPA comparison and a fair secu-
rity evaluation. Next, we perform a design rule check (DRC)
for the rerouted solution and, once the design is devoid of any
DRC violations, the routing blockages are removed again and
the design exchange format (DEF) is generated and streamed
out for attack analysis. In case DRC violations are reported,
which is expressed by an overflow of routing resources intro-
duced by some particular blockages, we select among those
violating blockages and iteratively remove some of them until
a DRC-clean layout can be obtained. Exemplary layout snap-
shots for randomly inserted routing blockages and the rerouted,
DRC-clean layout for the ITC-99 benchmark b22_C are
shown in Fig. 6.

VI. EXPERIMENTAL INVESTIGATION

We conduct six sets of experiments as follows. In the first
set, we evaluate the effectiveness of our proposed DL attack
and compare it with the state-of-the-art network-flow attack [2]
and the machine-learning attack [3]. In the second set, we
compare the performance of our attack against the network-
flow attack for a particular congested design. In the third set,
we illustrate the impact of randomized insertion of routing
blockages on the aforementioned attacks [2], [3]. In the fourth
set, we evaluate the impact of blockages on timing-critical and
congested designs. In the fifth and sixth sets of experiments,
we analyze the layout cost as induced by routing blockages on
regular ITC-99 benchmarks with timing-critical and congested
versions, respectively.

We implement our feature extraction with C++ and train
the model with Python and TensorFlow [25]. Without loss
of generality, we select 31 VPPs for each sink fragment as
the input of our DL attack based on the proposed criteria
in Section IV-A. The learning rate is set as 0.001 and decayed
to 60% for every ten epochs. We execute all DL experiments
on a 64-b Linux machine with Intel Xeon 2.2-GHz CPUs and
an NVIDIA Titan V GPU. We set the maximum runtime as
100 000 s (more than 24 h) for all attacks and report CCR

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

2002 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

TABLE III
COMPARISON WITH [2] ON SELECTED ISCAS-85 AND ITC-99 BENCHMARKS

(1) as the primary metric. Recall that CCR serves well as a
measure for attack effectiveness, but not so much for IP pro-
tection. Besides, all the network-flow attacks are executed on a
high-performance computing (HPC) facility where each com-
putational node has two 14-core Intel Broadwell processors
(Xeon E5-2680), running at 2.4 GHz. Furthermore, each node
has 128-GB RAM in total and 4-GB RAM are guaranteed (by
the Slurm HPC scheduler) for each attack.

A. Evaluation and Comparison With State-of-the-Art Attacks

1) Setup: In the first set of experiments, we derive a total
of nine training and five validation designs (all combinational
ones) from the ISCAS-85 [26], MCNC [27], and ITC-99
benchmark suite [28]. Concerning testing layouts, we use the
same benchmarks as mentioned in [2] to ensure a fair com-
parison. We guarantee that the training, validation, and testing
layouts are derived from different designs.

We use the academic NanGate 45 nm Open Cell
Library [17] with ten metal layers. Synopsys Design Compiler
M-2016.12-SP2 is used for synthesis; Cadence Innovus 17.1
is used for placement and routing. All training, validation, and
testing layouts are devoid of any DRC violations. Once a lay-
out is generated, we export the DEF file and split the layout
after M1 or M3, respectively, providing two sets to evaluate
the attacks for different split layers. We also use this setup for
all other sets of experiments, unless specified otherwise.

2) Results: We list the CCR for our proposed attack and the
state-of-the-art attack [2] in Table III, where the results vary
across the different designs. In general, the fewer nets are split,
the fewer candidates are to consider for each fragment, and
the higher the CCR tends to be. Besides, we note that design
rules, timing constraints, and core utilization may also affect
CCR, but for ours, interpreting the working of the DL attack
in more detail would not be straightforward, as is the case with
most DL models. We evaluate the success of the network-flow

attack ourselves using the binary released in [29]. We note
that the runtime of [29] exceeds the limit on several large
designs (due to repetitive trials for removal of combinational
loops). Our DL attack outperforms the state-of-the-art attack
by 1.21× and 1.12× CCR when splitting after M1 and M3,
respectively. Our inference time (including feature extraction)
is significantly shorter, namely, only 0.001×.

We further verify the effectiveness of our proposed softmax
regression loss and image-based features. For these experi-
ments, the baseline is using only the vector-based features with
the loss (4) for simple two-class classification. With the soft-
max regression loss in (7), the average CCR is 1.07× that of
the baseline. When additionally employing the image-based
features, the average CCR further improves to 1.09×. We
note that using the softmax regression loss also marginally
improves the runtime. Thanks to the efficient layout encoding
and network structure, the runtime for further using the image-
based features remains comparable to that of only using the
vector-based features.

We also compare our method with another machine-learning
attack [3]. Originally, the attack [3] provides only LoCs for
every fragment, no matter whether it is a source or sink frag-
ment. We modify the code provided by Zeng et al. [3] to
only report the LoCs for sink fragments since an attacker can
readily distinguish sink fragments from source fragments; this
is relevant as an attacker needs to select a source for each
sink fragment. We consider the three metrics proposed in [3]:
1) |LoC| designates the average size of the identified LoCs
for each testing benchmark; 2) classification accuracy mea-
sures the number of times that the actual match of a fragment
is included in its LoC; and 3) success rate of proximity attack,
which is identical to CCR. We introduce a fourth metric, called
precision, which is the fraction of actual matching among
LoC, calculated as accuracy over |LoC|. Table IV provides the
results for [3] and for our proposed attack. For ours, note that
we select every VPP into the LoC whose score is higher than

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT-MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 2003

TABLE IV
COMPARISON WITH [3] ON SELECTED ISCAS-85 AND ITC-99

BENCHMARKS SPLIT AFTER METAL 3

a reference value s0; s0 = −8 across all benchmarks. While
achieving very similar accuracy, our |LoC| is on average just
0.53×, meaning that we can correctly infer the actual match
using much smaller LoCs. On average, we achieve 1.24× the
precision and even 2.20× the CCR compared to [3].

Besides, we have also synthesized the designs considered
in this section using an advanced technology node. We have
conducted the first-ever attack on split manufacturing in the
context of the 7-nm node, using the ASAP7 library [30]. Here,
we like to caution that it is not meaningful to directly compare
the final CCR results across two nodes; the related technolo-
gies are quite different in many ways, including the cell types,
numbers of metal layers, resistance and capacitance for each
layer, design rules, etc., resulting in considerably different
physical layouts. For example, the layouts obtained using the
ASAP7 library exhibit, on average, around 5× the number
of source pins and 4× the number of sink pins, when com-
pared to the layouts obtained using the NanGate 45-nm Open
Cell Library [17]. Accordingly, we observe that CCR efficacy
tends to be more limited. Still, for larger designs, such as
the ITC-99 benchmark b18_C, our results obtained for the
advanced node [30] even outperform those obtained for the
mature node [17], which indicates that our DL framework is
capable of handling large-scale, advanced, and more complex
layouts. More results on attacking split-manufactured layouts
of advanced nodes will be presented in future work.

B. Evaluation on Congested Design

1) Setup: In the second set of experiments, we execute our
DL attack on the low-density parity check (LDPC) bench-
mark from [31], which is an inherently wire-dominated design
and thus suitable for exploring the impact of congestion on
our attack. We synthesize with a timing constraint of 5 ns
(200 MHz) and place and route with the utilization of 15%.

While performing initial experiments, we noticed that the
LDPC benchmark was unroutable, with around 17k DRC
violations and many congestion hotspots forming only after
the detailed placement stage. Upon investigation, we could
attribute this to large counts of AOI22 cells, which are char-
acterized by high pin densities, thereby not only inducing

congestion but even hindering routing in the vicinity of many
instances. Thus, we next employed a setup change as follows:
AOI22 cells are disabled during synthesis, but no such restric-
tion is imposed on Cadence Innovus during place and route.
Doing so restored routability, resulted in DRC-clean layouts,
all while allowing for some AOI22 instances to be introduced
by layout optimization. Importantly, for this set of experi-
ments, the design remained congested, as confirmed per the
congestion maps examined after placement.

We further perform iterative synthesis runs to generate ten
different netlists, which are functionally equivalent but exhibit
different gate-level implementations. We perform placement
and routing for all eleven layouts, and arrange the lay-
outs into ten for training and cross-validation, and one for
testing.

2) Results: We execute the network-flow attack [2] on the
LDPC benchmark considering M8 as the split layer; this par-
ticular layer had to be considered since the attack [2] already
ran into time-out for the split layer of M6. The CCR obtained
for the network-flow attack is 28.92%. Recall that, to han-
dle heavily congested layouts, our image-based features are
specifically devised to capture routing detours. Accordingly,
our attack achieves a CCR of 39.63%, which is a notable
improvement over the network-flow attack.

C. Routing Perturbation as Defense

1) Setup: In the third set of experiments, we derive six
combinational designs from the ITC-99 benchmark suite [28].
The essence for layout generation and the DL setup is
described in Section VI-A1. Furthermore, the procedures for
routing perturbation (Section V) are implemented as custom
TCL scripts working with Cadence Innovus 17.1. We consider
splitting after M6 and, hence, insert routing blockages in M3,
M4, and M5, respectively. In case a different split layer is
chosen by the designer, blockages can be added accordingly.
Since we divide the number of blockages across three metal
layers, out of which M3 and M5 are horizontal metal layers,
and M4 is a vertical layer, more blockages are assigned to
M4, while the remaining blockages are distributed uniformly
across the horizontal layers. For the first batch of experiments,
labeled as Fewer Blks, we block 12%, 22%, and 12% of the
g-cells in M3, M4, and M5, respectively, while in the second
batch (More Blks) we block 17%, 25%, and 17% g-cells for
the same layers. In general, we add blockages such that tim-
ing overheads do not exceed 5% much, and all layouts are
clocked at iso-performance of 5 ns. For each design in these
two batches, we generate 100 layouts with routing blockages
inserted randomly following our proposed defense strategy.
As indicated, we ensure that the final layouts remain routable
after our perturbation procedures and are devoid of any DRC
violations. We release our protected layouts in [32].

We perform a comparative analysis on the randomized inser-
tion of routing blockages leveraging the proposed DL attack
and the network-flow attack [2]. For our DL attack, we con-
sider two different training approaches as follows. In the first
approach, we pick 40 of the 100 layouts to train the DL model,
cross-validate the model using ten other layouts, and attack

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

2004 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

TABLE V
COMPARISON WITH [2] ON SELECTED ITC-99 BENCHMARKS SPLIT

AFTER M6

the remaining 50 unseen layouts; all layouts arising from one
design. For each benchmark under attack, a corresponding
model is trained individually and that particular model is used
only for attacking its respective benchmark. We refer to this as
the robust approach; it represents the most rigorous approach
for evaluating the strength of the defense, which can only be
conducted by the security-enforcing designers itself, not by an
actual attacker. In our second approach, we leverage a leave-
one-out scheme as follows. Given six designs in total, we use
five designs (with ten layouts each) to train a model that is then
used to attack the one remaining, unseen design. Accordingly,
a model is created for each design under attack, with 50 lay-
outs available for learning. Note that an attacker can take such
an approach.

2) Results: For both the network-flow attack [2] and our
DL attack, we present the CCR results for layouts split after
M6 in Table V. In the presence of the defense, our attack
outperforms the network-flow attack in all cases. Next, we
describe the findings in more detail.

First, we discuss the results for the robust learning approach.
Again, we are considering this approach to thoroughly evaluate
the strength of our routing-perturbation defense scheme. The
corresponding CCR results are illustrated in Table V and Fig. 7.
The average CCR results for the layouts with less blocked g-
cells (“Fewer Blks,” gray bars) are 53.61%, 34.5%, 25.12%,
35.67%, 44.53%, and 34.73%, respectively. This corresponds
to an average reduction of CCR by 22.78 percentage points
(i.e., the arithmetic difference of percentage values, pp for
short) across all benchmarks when compared to the original,
unprotected designs. Once we block even more g-cells (“More
Blks,” blue bars), the CCR accuracy drops further: average CCR
values are 37.26%, 29.84%, 25.4%, 32%, 34.15%, and 31.62%,
respectively. This corresponds to an average reduction of CCR
by 29.09 pp across all benchmarks, indicating the strength of
the proposed defense even for this robust evaluation mode.

Next, we consider the regular leave-one-out learning
approach where we assume that the design to be attacked
is not available for training. The results for both batches
of g-cell blockages are illustrated in Fig. 7(b). The average
CCR results for Fewer Blks (gray bars) are 52.24%, 30.58%,
17.91%, 33.45%, 41.55%, and 34.67%, respectively. This cor-
responds to a CCR reduction of 25.74 pp on average across all
benchmarks. Increasing the number of blockages has a notice-
able impact; the average CCR results for More Blks (blue
bars) are 36.13%, 23.92%, 17.68%, 27.81%, 33.52%, and

Fig. 7. CCR results for our DL attack when splitting after M6, consider-
ing selected ITC-99 benchmarks, which are protected with randomly inserted
routing blockages. For each benchmark and for each configuration/scenario,
we have independently conducted 50 runs; all the results are summarized in
boxplots. The upper and lower boundaries of each box span from the 5th to
the 95th percentile for the respective data set, while the whiskers represent the
minimal and maximal values, the bars inside the boxes represent the median,
and the gray dots reflect outliers; all concerning the 50 runs for the respective
configuration. Besides, red dots represent the attack results for the respective
original, unprotected layouts.

Fig. 8. CCR results for the network-flow attack [2] when splitting after M6,
considering selected ITC-99 benchmarks, which are protected with randomly
inserted routing blockages. Each scenario for each benchmark considered
covers 50 runs. The interpretation of the boxplot is the same as Fig. 7.

24.55%, respectively, which corresponds to a CCR reduction
of 33.53 pp across all benchmarks on average.

Overall, we note that the CCR can be reduced significantly
by our randomized routing-perturbation defense. We also note
that there is no significant difference for CCR results between
the robust and the leave-one-out learning approach, which con-
firms the generality and efficacy of the models learned across
different designs. For larger designs like b17_C, however,
which are more difficult to attack in general (give the many
fragments to be considered), we note that more blockages are
more challenging to attack under the leave-one-out approach in
particular. This demonstrates the effectiveness of our defense
for large designs under the realistic attack/learning model.

We also perform similar experiments for the network-flow
attack [2]. The corresponding CCR results are illustrated
in Fig. 8. For the Fewer Blks batch (gray bars), the average

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT-MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 2005

TABLE VI
INCREASE IN VIA COUNTS FOR OUR PROPOSED DEFENSE ON SELECTED ITC-99 BENCHMARKS

CCR values are 55.58%, 31.88%, 20.11%, 36.12%, 41.94%,
and 32.92%, respectively. Comparing these with the CCR val-
ues observed for original, unprotected layouts, we observe
reductions by 13.02 pp on average across all benchmarks.
Note that there is no significant reduction for benchmark
b14_C; this is because the CCR result for the unprotected
layout came out lower than expected, to begin with, i.e., when
considering expectations arising from our DL attack (Fig. 7).
For the More Blks batch (blue bars), as expected, the CCR
numbers are further reduced: average CCR results are 40.1%,
25.59%, 20.91%, 29.78%, 32.98%, and 27.36%, respectively.
Compared to the original layouts, this setup of blocking more
g-cells provides better protection by enforcing lower CCR by
20.00 pp on average across all benchmarks. When compar-
ing the network-flow attack with our proposed DL attack, our
method outperforms in all cases, as also shown in Table V.

D. Routing Perturbation as Defense on Congested and
Timing-Critical Designs

1) Setup: In the fourth set of experiments, we evaluate
the impact of randomized insertion of routing blockages on
the security of timing-critical and congested designs, respec-
tively. To mimic timing-critical designs, we synthesize the
selected ITC-99 benchmarks for a 4-ns constraint (250-MHz
frequency); we note that constraining at even faster tim-
ing (e.g., for 3 ns) violated some paths during synthesis.
Concerning the congested design, we leverage the LDPC
design following the same setup explained in Section VI-B1.
We consider splitting after M6 for timing-critical ITC-99
benchmarks and insert routing blockages in M3, M4, and M5.
In contrast, we consider splitting after M8 for LDPC and
accordingly insert blockages in M4, M5, M6, and M7. We
block 12%, 22%, and 12% of the g-cells in M3, M4, and M5,
respectively, for timing-critical ITC-99 benchmarks, whereas
we block 5%, 6%, 6%, and 5% g-cells for M4, M5, M6, and
M7, respectively, for the congested LDPC benchmark. These
numbers of blockages are without loss of generality but chosen
carefully after multiple runs to ensure DRC-clean.

2) Results: The baseline CCR for unprotected layouts is
71.64%, 65.21%, 63.16%, and 56.35% for b14_C, b15_C,
b20_C, and b22_C, respectively. Upon inserting the ran-
domized routing blockages, we observe an average reduction
of 30.37, 35.6, 25.69, and 26.63 pp, respectively, when com-
pared to these CCR baselines. The CCR for the unprotected

LDPC benchmark is 28.92%, and invoking our defense strat-
egy reduces the CCR to 25.42%. Although the drop in CCR
is only at 3.50 pp, our defense helps to increase the abso-
lute number of wrongly inferred connections significantly, and
thereby increases the scale of IP protection. For example, split-
ting the original LDPC benchmark after M8 results in 2743
cut nets, while for our defense technique, we note 3629 cut
nets, i.e., an increase of 32.3%.

E. Layout Costs Induced by Routing-Perturbation Defense

1) Setup: As demonstrated, the proposed defense is effec-
tive in hindering both the network-flow attack [2] and the our
DL attack. In this fifth set of experiments, we investigate the
timing and power costs incurred by this defense. Recall that
we do not incur any overheads for die area. The analysis is
carried out for the slow process corner, using a supply voltage
of 0.95 V. To ensure fairness for this layout evaluation (and
the above security evaluation), we did “freeze” the placement
of all the designs and introduced randomized routing block-
ages only to affect the routing of the layouts. Also, we add
blockages such that the timing overheads do not exceed 5%
much and such that no DRC violations occur. All layouts are
clocked at iso-performance of 5 ns.

2) Results: The timing and power overheads for the
selected ITC-99 benchmarks are shown in Fig. 9. For the
Fewer Blks batch, the power overheads are on average 2.24%,
4.21%, 4.29%, 3.27%, 2.43%, and 3.35%, respectively, for
b14_C, b15_C, b17_C, b20_C, b21_C, and b22_C over
original, unprotected layouts. The average timing overheads
for the same batch and same set of benchmarks are 2.71%,
3.97%, 2.16%, 3.61%, 2.7%, and 3.76%, respectively. Upon
increasing the number of blockages (More Blks), we observe
a steady increase in power: the average overheads are now
3.32%, 6.78%, 9.91%, 7.46%, 3.95%, and 6.15%, respec-
tively. This increase is, as expected, particularly pronounced
for larger designs like b17_C. The timing overheads, how-
ever, increase only marginally, to on average 3.67%, 4.32%,
2.21%, 3.97%, 3.42%, and 4.26%.

Since the insertion of routing blockages forces the router to
lift the nets above the split layer and/or detour nets through
regions where there are no blockages, an increase in the total
count of vias (due to lifting of nets) and wirelength (due to
detouring of nets) is expected. We confirm this by contrasting
these metrics for the unprotected layouts without blockages
versus our protected layouts with blockages.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

2006 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

TABLE VII
INCREASE IN METAL WIRELENGTH FOR OUR PROPOSED DEFENSE ON SELECTED ITC-99 BENCHMARKS

Fig. 9. Timing and power overheads for selected ITC-99 benchmarks for
zero die-area overhead. Each scenario for each benchmark considered covers
50 runs. The interpretation of the boxplots is the same as Fig. 7.

In Table VI, we note an increase in vias for selected ITC-
99 benchmarks. For the Fewer Blks batch, the increase in
total vias are on average 9.37%, 16.38%, 21.7%, 14.28%,
10.82%, and 13.88%, respectively, for b14_C, b15_C,
b17_C, b20_C, b21_C, and b22_C over original, unpro-
tected layouts. Upon increasing the number of blockages
(More Blks), the total increase in total vias for the same set
of benchmarks are 14%, 22.42%, 25.52%, 19.79%, 15.78%,
and 19.83%, respectively. These numbers attest to the fact
that more nets have been lifted above the split layer for both
configurations of the proposed routing-perturbation scheme.

Furthermore, the increases in wirelength are shown
in Table VII. With Fewer Blks, the average increase in
total wirelength for the same set of benchmarks are 10.95%,
12.36%, 16.65%, 18.69%, 11.84%, and 11%, respectively. As
the number of blockages are increased with More Blks, the
average increase rises to 15.5%, 20.07%, 17.9%, 27.55%,
17.94%, and 19.01%, respectively, which shows that larger
parts of the nets reside in the higher layers.

F. Layout Costs Induced by Routing-Perturbation Defense on
Congested and Timing-Critical Designs

1) Setup: In the sixth set of experiments, we evaluate lay-
out costs for the ITC-99 benchmarks (where timing closure
is performed at 4 ns to mimic timing-critical designs) and for

the congested LDPC benchmark. For the ITC-99 benchmarks,
all designs are generated considering an initial utilization of
70%. For the LDPC benchmark, setup details are the same as
in Section VI-B1. For both benchmarks, blockages are iter-
atively added such that timing overheads do not exceed 5%
much and such that no DRC violations occur.

2) Results: First, we discuss the timing and power over-
heads for ITC-99 benchmarks considering the aggressive
timing closure. The power overheads are on average 2.82%,
5.39%, 8.25%, 2.59%, 2.48%, and 3.42%, respectively, for
b14_C, b15_C, b17_C, b20_C, b21_C, and b22_C
over original, unprotected layouts. The average timing over-
heads for the same batch and same set of benchmarks are
1.96%, 3.72%, 0.46%, 2.31%, 2.32%, and 2.77%, respectively.
Second, we discuss the overheads incurred for the congested
LDPC benchmark. We observe an instance increase of 2.07%,
which translates to an increase in standard-cell area of 4.5%;
note that this additional standard-cell area does not impact the
die area. This increase in instance count and the increase in
wirelength (4.49%) leads to a power overhead of 7.1%, albeit
at a minimal timing overhead of 0.72%.

Thus, we conclude that our proposed routing-perturbation
technique is feasible even for timing-critical and congested
designs, and that the rerouting required after insertion of rout-
ing blockages is naturally imposing power overheads, by virtue
of using additional buffer(s) and/or upsizing of standard cells,
under the traditional objective of maintaining timing.

VII. CONCLUSION

In this work, we presented an effective and efficient attack
on split manufacturing using DL. First, we proposed suit-
able vector-based and image-based features, as well as a
neural network architecture that simultaneously processes
these heterogeneous features. We further proposed a SoftMax
regression loss that directly reflects on the accuracy for the
VPP matching problem of split manufacturing and eliminates
imbalance issues found in the prior art. Compared with the
state-of-the-art network-flow attack [2], the CCR is improved
by 21% and 12% when splitting after metal layers M1 and
M3, respectively. Moreover, our attack’s runtime is signifi-
cantly better, namely, less than 1% when compared to [2].
We extended our comparison to [3], considering the size and
accuracy for their notion of lists of candidates; for ours, the
average size is significantly reduced, namely, by 47%, while
the accuracy is sacrificed only marginally, namely, by 1%.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DEEP LEARNING ANALYSIS FOR SPLIT-MANUFACTURED LAYOUTS WITH ROUTING PERTURBATION 2007

Furthermore, our CCR is on average 2.2× that of [3]. For
the first time, we also studied the prospects of attacking lay-
outs split for an advanced node, where we found that our
proposed attack performed relatively well for larger designs.
Taking this motivating finding further will be the scope for
future work. Finally, we proposed a randomized strategy for
routing-blockage insertion, which degrades the effectiveness
(expressed by CCR) for the network-flow attack and our deep-
learning attack, with an acceptable impact on power and timing
and zero overhead for die area.

REFERENCES

[1] H. Li et al., “Attacking split manufacturing from a deep learning per-
spective,” in Proc. 56th Annu. Design Autom. Conf. (DAC), 2019,
pp. 1–6.

[2] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran, “The cat and mouse in
split manufacturing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 26, no. 5, pp. 805–817, May 2018.

[3] W. Zeng, B. Zhang, and A. Davoodi, “Analysis of security of split manu-
facturing using machine learning,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 27, no. 12, pp. 2767–2780, Dec. 2019.

[4] J. Knechtel, S. Patnaik, and O. Sinanoglu, “Protect your chip design
intellectual property: An overview,” in Proc. Int. Conf. Omni Layer
Intell. Syst., 2019, pp. 211–216.

[5] S. Patnaik, M. Ashraf, O. Sinanoglu, and J. Knechtel, “Obfuscating
the interconnects: Low-cost and resilient full-chip layout camouflaging,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4466–4481, Dec. 2020.

[6] G. L. Zhang et al., “TimingCamouflage+: Netlist security enhancement
with unconventional timing,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 12, pp. 4482–4495, Dec. 2020.

[7] Y. Jin and D. Pan, “Quantitative metric and automated toolset for obfus-
cated logic security evaluation,” Dept. Comput. Syst. Manag. Stand.,
Univ. Florida, Gainesville, FL, USA, Rep. AFRL-RY-WP-TR-2020-
0250, 2020.

[8] C. McCants. (2016). Trusted Integrated Chips (TIC) Program. [Online].
Available: https://www.ndia.org/-/media/sites/ndia/meetings-and-events/
divisions/systems-engineering/past-events/trusted-micro/2016-august/
mccants-carl.ashx

[9] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building
trusted ICs using split fabrication,” in Proc. IEEE Int. Symp. Hardw.
Orient. Security Trust (HOST), Arlington, VA, USA, 2014, pp. 1–6.

[10] H. Li, W.-K. Chow, G. Chen, E. F. Young, and B. Yu, “Routability-
driven and fence-aware legalization for mixed-cell-height circuits,”
in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC), San
Francisco, CA, USA, 2018, pp. 1–6.

[11] H. Li, G. Chen, B. Jiang, J. Chen, and E. F. Young, “Dr. CU 2.0: A
scalable detailed routing framework with correct-by-construction design
rule satisfaction,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Westminster, CO, USA, 2019, pp. 1–7.

[12] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proc. Design Autom. Test Eur. Conf. Exhibit. (DATE),
Grenoble, France, 2013, pp. 1259–1264.

[13] D. Silver et al., “A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play,” Science, vol. 362, no. 6419,
pp. 1140–1144, 2018.

[14] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3D point clouds: A survey,” early access, Jun. 29, 2020,
doi: 10.1109/TPAMI.2020.3005434.

[15] J. Chen, J. Kuang, G. Zhao, D. J.-H. Huang, and E. F. Young, “PROS:
A plug-in for routability optimization applied in the state-of-the-art com-
mercial EDA tool using deep learning,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2020, pp. 1–8.

[16] B. Jiang, L. Liu, Y. Ma, H. Zhang, B. Yu, and E. F. Young, “Neural-ILT:
Migrating ILT to neural networks for mask printability and complexity
co-optimization,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2020, pp. 1–9.

[17] J. Knudsen, “Nangate 45nm open cell library,” in CDNLive, EMEA,
Amsterdam, The Netherlands, 2008.

[18] A. Sengupta, S. Patnaik, J. Knechtel, M. Ashraf, S. Garg, and
O. Sinanoglu, “Rethinking split manufacturing: An information-theoretic
approach with secure layout techniques,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Irvine, CA, USA, 2017, pp. 329–336.

[19] J. Magaña, D. Shi, J. Melchert, and A. Davoodi, “Are proximity attacks
a threat to the security of split manufacturing of integrated circuits?”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 12,
pp. 3406–3419, Dec. 2017.

[20] S. Chen and R. Vemuri, “On the effectiveness of the satisfiability attack
on split manufactured circuits,” in Proc. IFIP/IEEE Int. Conf. Very Large
Scale Integr. (VLSI-SoC), Verona, Italy, 2018, pp. 83–88.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.

[22] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. Int. Conf. Mech.
Learn. (ICML), vol. 30, 2013, p. 3.

[23] S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu, “Concerted
wire lifting: Enabling secure and cost-effective split manufacturing,” in
Proc. 23rd Asia South Pac. Design Autom. Conf. (ASP-DAC), Jeju, South
Korea, 2018, pp. 251–258.

[24] S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, “Raise your
game for split manufacturing: Restoring the true functionality through
BEOL,” in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2018, pp. 1–6.

[25] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Conf. Oper. Syst. Design Implement. (OSDI),
vol. 16, 2016, pp. 265–283.

[26] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: A case study in reverse engineering,” IEEE Design Test
Comput., vol. 16, no. 3, pp. 72–80, Jul. 1999, doi: 10.1109/54.785838.

[27] (1991). MCNC Benchmarks. [Online]. Available: http://vlsicad.cs.
binghamton.edu/benchmarks.html

[28] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Design Test Comput., vol. 17, no. 3,
pp. 44–53, Jul.–Aug. 2000.

[29] L. Feng, Y. Wang, J. Hu, and J. Rajendran. (2018). The Cat and Mouse in
Split Manufacturing. [Online]. Available: https://github.com/seth-tamu/
network_flow_attack

[30] V. Vashishtha and L. T. Clark, “A FinFET-based framework for VLSI
design at the 7 nm node,” in Energy Efficient Computing & Electronics:
Devices to Systems. Boca Raton, FL, USA: CRC Press, 2019, p. 1.

[31] Reference Community for Free and Open Source IP Cores,
Opencores, Amsterdam, The Netherlands, 2020. [Online]. Available:
https://opencores.org

[32] S. Patnaik. (2020). Layouts Resilient Against ML-Based Attacks.
[Online]. Available: https://github.com/DfX-NYUAD/Randomized_
routing_perturbation.

Haocheng Li received the B.Eng. degree from
the School of Information and Communications
Engineering, Xi’an Jiaotong University, Xi’an,
China, in 2016, and the Ph.D. degree from the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong, in
2020.

His research interests include electronic design
automation, hardware security, and combinatorial
optimization.

Dr. Li received the Best Paper Award in ISPD
2017.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2020.3005434
http://dx.doi.org/10.1109/54.785838

2008 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 10, OCTOBER 2021

Satwik Patnaik (Member, IEEE) received the
B.E. degree in electronics and telecommunications
from the University of Pune, India, in 2010, the
M.Tech. degree in computer science and engineer-
ing with a specialization in VLSI design from
the Indian Institute of Information Technology
and Management, Gwalior, India, in 2013, and
the Ph.D. degree in electrical engineering from
the Tandon School of Engineering, New York
University, Brooklyn, NY, USA, in September 2020.

He is currently a Postdoctoral Researcher with the
Department of Electrical and Computer Engineering, Texas A&M University,
College Station, TX, USA. His current research interests include hardware
security, trust, and reliability issues for CMOS and emerging devices with a
particular focus on low-power VLSI Design.

Dr. Patnaik received the Bronze Medal in the Graduate Category at the
ACM/SIGDA Student Research Competition held at ICCAD 2018, and the
Best Paper Award at the Applied Research Competition held in conjunction
with Cyber Security Awareness Week in 2017.

Mohammed Ashraf received the bachelor’s degree
in electronics and telecommunication engineer-
ing from the College of Engineering Trivandrum,
Thiruvananthapuram, India, in 2005.

He is a Senior Physical Design Engineer from
India. He carries an experience of ten years in the
VLSI industry. He has worked with various multi-
national companies like NVIDIA Graphics, Santa
Clara, CA, USA, Advanced Micro Devices, Santa
Clara, and Wipro Technologies, Bengaluru, India.
He worked also with Dubai Circuit Design, Dubai

Silicon Oasis, Dubai, U.A.E. He is currently a Research Engineer with the
Center for Cyber Security, New York University Abu Dhabi, Abu Dhabi. His
work focus on the physical design/implementation of the ARM Cortex M0
processor and its four secure variants.

Haoyu Yang (Member, IEEE) received the
B.E. degree from Qiushi Honors College, Tianjin
University, Tianjin, China, in 2015, and the
Ph.D. degree from the Department of Computer
Science and Engineering, Chinese University of
Hong Kong, Hong Kong, in 2020.

He is currently working as a Postdoctoral Fellow
with the Department of Computer Science and
Engineering, CUHK. His research interests include
machine learning in VLSI design for manufactura-
bility, high-performance VLSI physical design with

parallel computing, and machine learning security.

Johann Knechtel (Member, IEEE) received the
M.Sc. degree in information systems engineering
(Dipl.-Ing.) and the Ph.D. degree in computer engi-
neering (Dr.-Ing., summa cum laude) from TU
Dresden, Dresden, Germany, in 2010 and 2014,
respectively.

He is a Research Scientist with New York
University Abu Dhabi, Abu Dhabi, UAE From 2015
to 2016, he was a Postdoctoral Researcher with the
Masdar Institute of Science and Technology, Abu
Dhabi; from 2010 to 2014, he was a Ph.D. Scholar

with the DFG Graduate School “Nano- and Biotechnologies for Packaging
of Electronic Systems” hosted at TU Dresden; in 2012, he was a Research
Assistant with the Chinese University of Hong Kong, Hong Kong; and in
2010, he was a Visiting Research Student with the University of Michigan at
Ann Arbor, Ann Arbor, MI, USA. He has coauthored around 50 publications.
His research interests cover VLSI physical design automation, with particular
focus on emerging technologies and hardware security.

Bei Yu (Member, IEEE) received the Ph.D. degree
from the University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu received the six Best Paper Awards
from ICTAI 2019, Integration, the VLSI Journal
in 2018, ISPD 2017, SPIE Advanced Lithography
Conference 2016, ICCAD 2013, ASPDAC 2012, and
five ICCAD/ISPD contest awards. He has served as

the TPC Chair of ACM/IEEE Workshop on Machine Learning for CAD, and
in many journal editorial boards and conference committees. He is an Editor
of IEEE TCCPS Newsletter.

Ozgur Sinanoglu (Senior Member, IEEE) received
the Ph.D. degree in computer science and engineer-
ing from the University of California at San Diego,
San Diego, CA, USA, in 2004.

He is a Professor of Electrical and Computer
Engineering with New York University Abu Dhabi,
Abu Dhabi, UAE He has industry experience at
TI, IBM, and Qualcomm, and has been with NYU
Abu Dhabi since 2010, where he is the Director of
the Center for CyberSecurity. His recent research in
hardware security and trust is being funded by U.S.

National Science Foundation, U.S. Department of Defense, Semiconductor
Research Corporation, Intel Corporation, and Mubadala Technology. His
research interests include design-for-test, design-for-security, and design-for-
trust for VLSI circuits, where he has more than 200 conference and journal
papers, and 20 issued and pending U.S. Patents.

Prof. Sinanoglu won the IBM Ph.D. fellowship award twice. He was also a
recipient of the best paper awards at IEEE VLSI Test Symposium 2011, and
the ACM Conference on Computer and Communication Security 2013.

Evangeline F.Y. Young (Senior Member, IEEE)
received the B.Sc. degree in computer science from
the Chinese University of Hong Kong (CUHK),
Hong Kong, and the Ph.D. degree from the
University of Texas at Austin, Austin, TX, USA, in
1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK. Her
research interests include EDA, optimization, algo-
rithms, and AI. Her research focuses on floor-
planning, placement, routing, DFM, and EDA on

physical design in general.
Prof. Young research group has won best paper awards from ICCAD

2017, ISPD 2017, SLIP 2017, and FCCM 2018, and several championships
and prizes in renown EDA contests, including the 2018–2020, 2015–2016,
2012–2013, CAD Contests at ICCAD, DAC 2012, and ISPD 2015–2020 and
2010–2011. She has served on the organization committees of ICCAD, ISPD,
ARC, and FPT and on the program committees of conferences, including
DAC, ICCAD, ISPD, ASP-DAC, SLIP, DATE, and GLSVLSI. She also served
on the Editorial Boards of IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ACM Transactions on
Design Automation of Electronic Systems, and Integration, the VLSI Journal.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 18,2021 at 23:58:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

