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There is substantial interest in the use of machine learning (ML)-based techniques throughout the electronic

computer-aided design (CAD) flow, particularly those based on deep learning. However, while deep learning

methods have surpassed state-of-the-art performance in several applications, they have exhibited intrinsic

susceptibility to adversarial perturbations—small but deliberate alterations to the input of a neural network,

precipitating incorrect predictions. In this article, we seek to investigate whether adversarial perturbations

pose risks to ML-based CAD tools, and if so, how these risks can be mitigated. To this end, we use a mo-

tivating case study of lithographic hotspot detection, for which convolutional neural networks (CNN) have

shown great promise. In this context, we show the first adversarial perturbation attacks on state-of-the-art

CNN-based hotspot detectors; specifically, we show that small (on average 0.5% modified area), functionality

preserving, and design-constraint-satisfying changes to a layout can nonetheless trick a CNN-based hotspot

detector into predicting the modified layout as hotspot free (with up to 99.7% success in finding perturbations

that flip a detector’s output prediction, based on a given set of attack constraints). We propose an adversarial

retraining strategy to improve the robustness of CNN-based hotspot detection and show that this strategy

significantly improves robustness (by a factor of ∼3) against adversarial attacks without compromising clas-

sification accuracy.
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gies → Machine learning;
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1 INTRODUCTION

Electronic system design flows provide several optimization and verification challenges as the
scale and complexity of designs increases, placing a higher pressure on designers to deliver timely
results. There is substantial interest in using machine learning (ML) techniques for solving hard
electronic computer-aided design (CAD) problems ranging from logic synthesis to physical design
and design for manufacturability (DFM) [34]. A promised outcome of deep learning enhanced de-
sign flows is a faster and scalable development cycle, enabled by improvements in time-consuming
steps of design space exploration [16], logic optimization [59], and lithographic analysis [56].

Nonetheless, while deep learning methods have surpassed state-of-of-the-art performance on a
wide range of applications, they have been shown to be brittle against adversarial perturbations
[14]. Adversarial perturbations are small, imperceptible but targeted modifications to the input of
the deep neural network, resulting in incorrect behavior. For example, Figure 1 shows an image
of a horse from the CIFAR-10 dataset [23]—each of the the subsequent four images are adversar-
ially perturbed versions of the first that are classified as airplane, automobile, bird, and cat,
respectively. As noted earlier, the perturbations are so small that they are imperceptible.

Adversarial perturbations have been demonstrated in practically every application in which
deep networks are used [3], and have raised fundamental questions about the ability of deep
neural networks to generalize. This leads to a natural question: What are the implications of

adversarial perturbations on the security, soundness, and robustness of deep learning techniques in

CAD-related problems? While the CAD domain presents a challenge for adversaries, given the
domain-specific knowledge required to perform stealthy (and meaningful) attacks, it is crucial to
investigate whether adversarial perturbations pose a potential concern for this innovation.

As a motivating example, we study the challenging CAD problem of lithographic layout hotspot
detection. In physical design of an integrated circuit (IC), layout patterns are etched into silicon
using optical lithography. Due to lithographic process variations, specific patterns are susceptible
to manufacturing errors; these hotspots need to be detected and fixed early in the IC design flow to
avoid yield loss. The conventional approach to hotspot detection is physics-based optical lithog-
raphy simulations. While accurate, they are time-consuming and computationally expensive for
the full IC. Noting that one can pose hotspot detection as image classification, recent work has
proposed adoption of convolutional neural networks (CNN) for this problem, achieving state-of-
the-art results [56]. Once hotspots are detected, resolution enhancement techniques (RETs) such
as optical proximity correction (OPC) and the insertion of sub-resolution assist features (SRAFs)
can enhance IC layouts. Changes are verified using further lithography simulations, and iterated
upon as required.

Now consider the following scenario where a designer is considering the purchase of a
third-party macro for their IC design. The designer wants to check the quality of the macro
and has the IC layout images for verification. Using a CNN-based hotspot detector, the designer
can quickly ascertain if the IC layout is printable as-is, and gauge the potential effort needed
to correct any design flaws. To pass off a sub-par design as high quality, the third-party vendor
selectively modifies the layout to force the detector to misclassify hotspot regions as non-hotspot.
In other words, the attacker hides hotspots by exploiting properties of the CNN—identifying and
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Fig. 1. A “clean” image of a horse (leftmost) and adversarial images with corresponding prediction labels.
The adversarial perturbations are so minute as to appear imperceptible.

taking advantage of the susceptibility of CNNs to adversarial perturbations. However, malicious
insertion is non-trivial. Unlike image perturbations that involve adding imperceptible noise [3],
the attacker must add semantically meaningful and realistic IC layout features to the design that
pass design rule check (DRC), such as respecting spacing constraints. Successful attacks can have
a significant impact: this sabotage can propagate undetected manufacturability issues, causing
downstream reductions in IC yield and wasted designer effort.

With lithographic hotspot detection as our motivating case study, we investigate, for the first
time, a targeted attack on deep learning-based CAD tools, to demonstrate the feasibility, chal-
lenges, and potential security implications for the CAD community. The main goal of this article
is to establish whether adversarial input perturbation attacks are possible, given a constraint that
perturbations need to be semantically meaningful, thus presenting the first insights into how ad-
versarial machine learning might affect ML-CAD. However, while we frame the discussion in this
study within a security-related setting (where the CAD flow is compromised by a malicious third-
party supplier, as established in prior studies of hardware security threats in the supply chain [40]),
our empirical findings motivate a broader need to study the robustness implications of inte-
grating ML-based tools into the IC design flow. Our contributions are thus:

• The first exploration of the impact of adversarial perturbations on deep neural network-
based CAD tools using IC lithographic hotspot detection as a case study.

• Comprehensive evaluation of two attack scenarios on CNN-based hotspot detectors:
(1) white-box attacks, wherein the attacker has access to the model parameters of the de-
tector and (2) black-box attacks, wherein the attacker has access only to the outputs of the
detector.

• An initial study into the transferability of adversarial perturbations across CNN-based
hotspot detectors with variations of neural network architectures.

• Exploration of adversarial retraining as a defense against adversarial perturbation attacks,
yielding an equally accurate but robustified CNN for hotspot detection.

The rest of the article is organized as follows. We explore the motivations for adopting
deep learning in hotspot detection, outlining the motivations and goals of a potential attacker
(Section 2). This is followed by technical preliminaries to understand the principles of CNNs
and the notion of adversarial perturbations (Section 3). In this work, our study centers around
two CNN-based hotspot detectors, and we detail the architectures and training of these detectors
(Section 4). Following this, we describe the attack methodologies, detailing how adversarial IC
layouts can be generated to effectively hide the presence of hotspots (Section 5). The first attack
is a white-box attack, where the internals of the detector are available to the attacker. We then
consider a more conservative attack, where the attacker can only query a black-box model. We
verify, via lithography simulations, that a vast majority of adversarially perturbed IC layouts are
still hotspots but are not picked up as such by the hotspot detectors (Section 6). Given the high
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Fig. 2. Illustration of lithography simulation results of layouts with vias only, and both vias and SRAFs.

success rate of our attack experiments, we propose robust retraining—a promising defense against
adversarial attacks—presenting encouraging results (Section 7). Our findings pose interesting
questions that we then discuss (Section 8). To contextualize our work, we present related literature
in deep learning for CAD and adversarial attacks (Section 9). Ultimately, we conclude from this
study that one should be aware of the limitations of using deep learning in CAD, and also be
encouraged to investigate and adopt proactive countermeasures (Section 10).

2 MOTIVATION

2.1 Deep Learning for Hotspot Detection

2.1.1 Lithographic Hotspot Detection. In advanced technology nodes the layout feature sizes
are much smaller than the light wavelengths used in the optical lithography systems. As a result,
complex interactions between light patterns in lithography have made printed patterns sensitive to
process variations. This has increased challenges in IC back-end design and sign-off flows. Lithog-
raphy induces defects due to phenomena such as diffraction, resulting in lithographic hotspots

[39, 55, 56].
Consider Figure 2(a), which shows an IC layout containing two vias colored green. If this layout

were printed as is, then the resulting printed output would be unsatisfactory. Only a small region
of the desired vias is printed—shown in light green in Figure 2(b). Thus, resolution enhancement
techniques (RETs) such as sub-resolution assist features (SRAF) [13, 53] and optical proximity cor-
rection (OPC) [54] have been proposed to ease IC layout manufacturability; they aim to compen-
sate for distortion during lithography. Figure 2(c) shows the effect of SRAF insertion. The printed
pattern more accurately reflects the required pattern (Figure 2(d)). However, even when equipped
with rigorous RETs, the layout can have hotspots due to unpredictable lithography process varia-
tions. Therefore, it is vital to spot potential hotspots before manufacturing and correct them either
by using RET or by re-design.

2.1.2 Deep Learning-based Hotspot Detection. In light of the prohibitive run-time of litho-
graphic simulation, recent work has sought to speed-up hotspot detection using pattern matching
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[60] and machine learning [30, 57]. Pattern matching methods find similar or identical hotspot-
causing patterns in a new design from a library of known hotspots. These techniques are both
fast and accurate if the patterns are similar to those in the library, but cannot find previously
unseen hotspot patterns. In contrast, machine learning solutions seek to capture the underlying
physics of lithographic simulation (i.e., the relationships between IC layout features and their
manufacturability) and, as such, generalize to unseen patterns (or at least that has been the hope).
Recent advancements on CNN-based hotspot detection [55, 56] have shown that both shallow
and deep CNNs are more accurate compared to legacy machine learning-based and pattern
matching-based techniques.

2.2 Threat Model

2.2.1 Setting. To motivate our work in examining the security and robustness of deep learning
in CAD, we explore the scenario of a designer considering the purchase of a macro from a third-
party IP vendor, as posed in previous studies of threats to the hardware supply chain [40]. In the
threat model, the third-party IP vendor distributes hard macros in GDSII format [9], where the
circuit is laid out and allegedly enhanced for lithography using RETs. As part of the validation
process, the designer does a “sanity-check” on the macro to establish its quality by using a CNN-
based hotspot detector (which may be a commercial tool in a local or cloud setting).

2.2.2 Attack Goals. The vendor aims to sell low-quality hard macros, either to make a profit
from their design short-cuts or to sabotage the designer (by forcing them to waste time and re-
sources in rectifying poor designs). To achieve this aim, the attacker’s goal is, therefore, to fool

the target CNN-based hardware detector into classifying hotspots as non-hotspots. This should be
achieved by making the smallest changes to the layouts as possible. In this work, we investigate
SRAF insertion as an RET; consequently, the aim of the attacker is to insert as few SRAFs as pos-
sible, to make the whole design appear to be free of hotspots.

2.2.3 Attacker Capabilities. In the context of deep learning, the attacker capabilities can be
defined based on the amount of information they possess about the network under attack. This
includes information about the network’s hyper-parameters: its overall architecture, its weights
and biases, the training algorithms and training data, and so on. For this case study, we consider
two scenarios: (1) an attacker with white-box access, where they have full knowledge of the CNN,
including its network architecture, weights and biases; and (2) an attacker with only black-box
access, where they are able to query the detector, receiving both output classification as well as the
accompanying prediction confidence. Both models have been studied in prior work [3, 14, 27, 38].

3 DEEP LEARNING PRELIMINARIES

To appreciate the potential of deep learning for CAD problems such as hotspot detection, we
present relevant technical preliminaries for CNNs and adversarial perturbations.

3.1 CNN Basics

A CNN features an input layer, a number of hidden layers, and an output layer. The CNN takes in
some input (e.g., an image) and propagates the data through a series of linear and non-linear oper-
ations (akin to convolution and activation of “neurons”). After all the input has been transformed
by each of the hidden layers, the final output produces a classification prediction for the input.
The CNN is “trained” by configuring the parameters of the filters in each layer (the weights).

We can express this formally as follows. A neural network is defined as a function F that takes
input x ∈ RN and gives output z ∈ Rm , such that z = F (x ). For anm-class classifier, we define z as
an array, z = [z1, z2, . . . , zm], where zi is the prediction probability of class i , i = 1, 2, . . . ,m. The
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network output z is subject to the constraints: 0 ≤ zi ≤ 1, and z1 + z2 + · · · + zm = 1. The label y
of input x takes the output class with the highest prediction probability, such that y = label(x ) =
arg maxi z = arg maxi F (x ). A deep neural network classifier has multiple layers of neurons, the
last being a softmax layer. Hence, the neural network can be expressed as

F = input layer ◦ F1 ◦ F2 ◦ · · · ◦ Fk−1 ◦ Fk ◦ softmax, (1)

where

Fi (x ) = fi (wix + bi ), i = 1, 2, . . . ,k . (2)

Here fi is the activation function of layer Fi , and wi is the model weights and bi is the bias. Some
common choices of activation function f include logistic, tanh, and ReLU [36]. In an image clas-
sification neural network, input x is either a grey-scale image with one channel or an RGB image
with three channels, where each channel of pixel xi takes integer values from [0, 255].

3.2 Adversarial Perturbations

The existence of adversarial inputs for classification using neural networks was first described
by Szegedy et al. [43]. They observed a phenomenon whereby neural networks would change
its output prediction based on imperceptible perturbations in the input. In these cases, while the
network would be “fooled,” a human would not be “fooled.” This property can be exploited by an
adversary, whereby inputs can be crafted to fool a target network and cause misclassification.

Formally, let y∗ denote the true label of a clean input x , and y denote the prediction label of x
given by the neural network. The adversary aims to generate an adversarial input x ′ close to x , and
mislead the network to output a target label y ′, while y ′ � y. The difference between x and x ′ is
measured by a distance metric and constrained by a constant δ , such that ‖x − x ′‖ ≤ δ . Normally
δ is so small to be perceptual to human eyes and should not change the prediction label from
y to y ′.

In non-targeted attacks, adversaries search for adversarial inputs x ′ as long as its output label
y ′ � y. In targeted attacks, the target label is pre-defined by the adversary, and y ′ could be quite
distinct than y. There are several schemes for crafting adversarial perturbations. Our work is in-
spired by the following methods that have been explored in a general adversarial perturbation
context.

3.2.1 Basic fast Gradient Sign (FGS) Method. Goodfellow et al. [14] proposed the FGS method
for adversarial input generation. For non-targeted attacks, starting with a clean input x , the ad-
versary moves each pixel in the opposite direction of the gradient of the loss function of the true
label with respect to x . The goal is to mislead the network into outputting any label other than the
true label. The non-targeted FGS attack can be described mathematically as follows:

x ′ ← clip(x + ϵsign(∇�F ,y∗ (x ))). (3)

ϵ is a small constraint scalar, � is the loss function and clip(x ) ensures pixel values fall in the desired
range.

However, in a targeted attack, the adversary seeks to fool the network into misclassifying x as
a specific target label. This is achieved by altering pixels in the direction of the gradient of the loss
function of the target label with respect to x . The attack is described by Equation (4):

x ′ ← clip(x − ϵsign(∇�F ,y′ (x ))). (4)

These two attacks emphasize computational efficiency and speed at the expense of introduc-
ing relatively large perturbations. Sophisticated techniques that seek to find the smallest possible
perturbation, albeit at greater computational expense, have subsequently been proposed [24]—one
such attack is described next.
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3.2.2 Iterative Fast Gradient Sign (IFGS) Methods. IFGS methods operate over multiple iter-
ations, adding relatively small perturbations in each [24]. As such, IFGS methods can generate
adversarial inputs with smaller distortion when compared to basic FGS. Equations (5) and (6) de-
scribe the updates performed by the non-targeted and targeted versions of IFGS in each iteration.
As an example, the adversarial perturbations in Figure 1 were generated by the IFGS method:

x ′0 = x , x ′N+1 ← clipϵ (x ′N + αsign(∇�F ,y∗ (x ))), (5)

x ′0 = x , x ′N+1 ← clipϵ (x ′N − αsign(∇�F ,y′ (x ))). (6)

3.2.3 Semantically Meaningful Perturbations. Another body of work has focused on semanti-
cally meaningful perturbations. For instance, specially crafted stickers affixed to traffic signs can
mislead traffic sign classifiers [12]. These perturbations are not imperceptible, in fact, quite the
opposite, they are easily spotted, but are designed to seem innocuous. For instance, a human is
unlikely to think that a small sticker on a traffic sign indicates an adversarial attack. Our work
crafts such perceptible but semantically meaningful perturbations. However, the notion of what is
semantically meaningful is informed by the underlying domain of lithography and physical layout
design.

4 CASE STUDY: IC LITHOGRAPHIC HOTSPOT DETECTION

In this work, we use two different CNN-based hotspot detectors to explore our proposed attacks.
They are trained using the same dataset and act as targets for adversarial perturbations. This sec-
tion describes details of our dataset, the network architectures, and the training process. Our case
study draws heavily from prior state-of-the-art work [56].

4.1 Layout Dataset

Existing datasets for lithographic hotspot detection, for example, the widely used ICCAD’12 con-
test dataset [46], do not come with much of the information required to verify the success of ad-
versarial attacks. For instance, the ICCAD’12 data specifies neither design rules nor does it specify
lithography simulation parameters. Therefore, for this case study, we prepared our own layout
dataset comprising 10,403 layout clips stored in the GDSII format. We targeted the detection of
lithographic hotspots for via layers using SRAF-based RET. To create the large number of layout
samples, we generated the via patterns in the following manner:

(1) Within each clip region (2 × 2μm), we place lower layer metal gratings with fixed wire
critical dimension (CD) and pitch;

(2) We add an upper metal layer with preset CD and spacing constraints;
(3) The cross regions between two metal layers become candidates for via placement—we

place vias stochastically with a given probability;
(4) Finally, vias that violate design rules are removed. In this dataset, we use vias sized 70 ×

70 nm and enforce a minimum via spacing of 70 nm.

Once the “raw” layouts are produced, we perform optical proximity correction (OPC) and lithog-
raphy simulation using Mentor Calibre [15] to insert SRAFs; we set the allowable SRAF region to
a 100–500 nm city-block distance. It should be noted that we adopt configurations of directprint
DUV technology node for our generated via patterns with soft-annular illumination and the pro-
cess technology is also verified in recent works [13, 53]. An example of a layout clip is shown
in Figure 3(a). Next, we determine the ground truth hotspot/non-hotspot labels for the layouts.
In this work, we use the edge placement error (EPE) as our metric for determining the quality
of the printed patterns. Each via pattern in a layout is associated with four measure points, with
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Fig. 3. (a) Example of a layout with vias (in green), SRAFs (in black), and the forbidden areas (striped region).
(b) Illustration of edge placement error (EPE). Each target via pattern has four measure points (one at the
center of each edge). The EPE is the perpendicular displacement from the measure point to the corresponding
printed image (contour).

one point at the center of each edge. The EPE is defined as the perpendicular displacement from
the measure point to the corresponding printed contour, as illustrated in Figure 3(b). A layout is
identified as a hotspot layout if there exists any measure points with the EPE greater than 2 nm,
as in typical industrial settings.

As shown in Figure 3(a), the layouts we produced have three key features: vias (the desired
pattern to be printed), SRAFs (used to improve printability), and forbidden regions (where SRAFs
should not be placed). Each via is surrounded by a square forbidden region whose edges are 100 nm
from the via’s edges. The GDSII files contain three layers of interest: (1) a via layer, (2) an SRAF
layer, and (3) a forbidden region layer.

4.2 Design of CNN-based Hotspot Detectors

Using the layout dataset, we trained two different CNN-based hotspot detectors to represent net-
works of different complexity, adopting procedures described in prior work [56]. The parameters
are shown in Tables 1 and 2.

• Network A is a smaller 9-layer network that is fast(er) to train and for prediction. We ob-
served that further increasing network depth/complexity did not increase accuracy; i.e.,
Network A is “right-sized” for accuracy.

• Network B is a larger 15-layer network that is slower to train, but is potentially less suscepti-
ble to attack as the complex architecture learns sophisticated features for hotspot detection.
Prior work on adversarial robustness suggests that deeper, complex network are more re-
silient to attack [29].

4.2.1 Data Preprocessing. The dimension of the GDSII layouts is 2,000× 2,000 nm, which can be
represented as 2,000 × 2,000 pixel binary-valued images, where all the layers are flattened. Layout
polygons are represented with pixel intensity of 255 and the background is represented with a
pixel intensity of 0. For training and inference, we scale the layout image by a factor of 255 so that
all the pixel intensities are either 1 or 0.

Training a CNN on large images requires significant computation resources and time. Therefore,
as proposed in Reference [56], we compute a discrete cosine transformation (DCT) on each image
to extract its features as input for the networks. The equation for DCT is shown in Equation (7):

Dk1,k2
=

N1−1∑
n1=0

N2−1∑
n2=0

In1,n2 cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
. (7)
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Table 1. Architecture of Network A

Layer Kernel Size Stride Output Size

input - - (20, 20, 32)

conv1_1 3 1 (20, 20, 16)

conv1_2 3 1 (20, 20, 16)

maxpooling1 2 2 (10 , 10, 16)

conv2_1 3 1 (10, 10, 32)

conv2_2 3 1 (10, 10, 32)

maxpooling2 2 2 (5, 5, 32)

fc1 - - 250

fc2 - - 2

Table 2. Architecture of Network B

Layer Kernel Size Stride Output Size

input - - (20, 20, 36)

conv1_1 3 1 (20, 20, 16)

conv1_2 3 1 (20, 20, 16)

conv1_3 3 1 (20, 20, 16)

maxpooling1 2 2 (10, 10, 16)

conv2_1 3 1 (10, 10, 32)

conv2_2 3 1 (10, 10, 32)

conv2_3 3 1 (10, 10, 32)

maxpooling2 2 2 (5, 5, 32)

conv3_1 3 1 (5, 5, 64)

conv3_2 3 1 (5, 5, 64)

conv3_3 3 1 (5, 5, 64)

maxpooling3 2 2 (3, 3, 64)

fc1 - - 500

fc2 - - 2

Table 3. Confusion Matrix of Networks A and B

Prediction
Network A Network B

non-hotspot hotspot non-hotspot hotspot

Condition
non-hotspot 0.72 0.28 0.72 0.28
hotspot 0.29 0.71 0.28 0.72

Here n1 and n2 are the horizontal and vertical coordinates of the image pixels, and N1 and N2 are
the width and height of the image.k1 andk2 represent the horizontal and vertical coordinates of the
DCT coefficients. To reduce the image dimensions, we perform DCT on non-overlapping 100 pixel
× 100 pixel sub-blocks on each layout image (with a 100 pixel stride), and then keep a selection of
DCT coefficients. For Network A, we keep the coefficients of the 32 lowest frequencies, producing
inputs of size (20, 20, 32). For Network B, we keep the coefficients of the 36 lowest frequencies
(i.e., more information for the larger network), producing inputs of size (20, 20, 36). This speeds
up training with low loss of information without affecting network performance.

4.2.2 Training. We train both networks using the same layout dataset. We randomly split 10,403
layout images into 8,000 training images and 2,403 test images, where the training data consists of
2,774 hotspot and 5,226 non-hotspot images, and test data has 841 hotspot and 1,562 non-hotspot
images. To compensate for data imbalance, we incorporate class weights to weigh the loss func-
tion during training, which tells the model to “pay more attention” to samples from an under-
represented class [18]. This is done for both networks to achieve a balanced hotspot and non-
hotspot detection accuracy. We implement network training with the Keras library [8], and use
the ADAM optimizer [21] for loss minimization. The confusion matrix is shown in Table 3. Our
training of the baseline networks follows the same methodology as in prior work [56]. Although
Network A and Network B have the same overall1 and hotspot prediction accuracy, we seek to
explore the robustness of both networks with different depths/complexity.

1Overall accuracy is defined as the average of non-hotspot classification accuracy and hotspot classification accuracy.
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The techniques used to train the hotspot detectors are comparable to prior works in lithographic
hotspot detection; we used the state-of-the-art architecture, data processing, and training proce-
dures as detailed in Reference [56]. The baseline accuracy that one can achieve depends on a
mixture of factors, including the nature of the dataset and how the designer may choose to bias
their network (for example, hotspot detection accuracy could be prioritized, possibly at the ex-
pense of high false positives or poorer non-hotspot accuracy). Thus, in this work, we aimed for
balanced overall (i.e., both hotspot and non-hotspot classification) accuracy. While our detectors
have lower hotspot detection accuracy compared to the results presented in Reference [56], we use
a completely different dataset (enabling us to perform lithography simulation after performing the
adversarial attack). When compared to other prior work, our detectors have better overall accuracy
compared to the “SOTA” (without data augmentation) as reported in Reference [39] (we achieve
∼72% accuracy, while their reporting of the SOTA performance on their dataset was ∼70.6%), and
achieve better “non-hotspot hit rate” (we achieve∼72% non-hotspot accuracy vs. their 41.50%). The
difference between training and test data accuracy is <3%, suggesting no overfitting. In this work,
our main focus is on investigating whether the phenomenon of adversarial perturbations exists in
a CAD-domain problem—experimental evaluation of other DL architectures remains future work.

5 PROPOSED ATTACK METHODOLOGIES

5.1 Overview

We propose attack methodologies for modifying layouts with hotspots such that they fool the
CNN-based hotspot detector into misclassifing layouts as non-hotspot. We experiment with two
attack types: a white-box attack, where the attacker has full access to the internal details (weights,
architecture, etc.) of the hotspot detector, and a black-box attack, where the attacker can only
query the detector to receive the output prediction and associated confidence. During the attack,
the attacker aims to fool the target detector by modifying layouts in a semantically meaningful

way. This means that the attacker cannot alter the IC layout by moving via locations as this may
change design functionality; in this attack, we only add SRAFs to the layout. Further, the mod-
ifications must be small and innocuous, for instance, by only using shapes that already exist in
the layout dataset. Finally, the perturbations should not introduce DRC violations. Based on these
considerations, our perturbations must satisfy the following constraints:

(1) Insertion Constraint: Maliciously-inserted SRAFs can only be added to the SRAF layer.
(2) Shape Constraint: Maliciously-inserted SRAFs should be rectangles, with a fixed width of

40 nm. The height can be selected within 40–90 nm, at a resolution of 1 nm. The SRAF
can be placed either horizontally or vertically.

(3) Spacing Constraint: The Euclidean distance between any two SRAFs should be at least
40 nm.

(4) Forbidden Zone Constraint: Maliciously-inserted SRAFs cannot overlap with the forbid-
den region in a layout.

For simplicity, the our attack evaluation involves adding 40 nm wide SRAFs with the following
height options: 40, 50, 60, 70, 80, or 90 nm, all placed horizontally. These design rules are compatible
with legacy 32∼45 nm nodes. A similar public layout example can be found in the Nangate 45 nm
Open Cell Library [22].

5.2 White-box Attack

In the white-box attack, the attacker knows the internal details of the target CNN-based hotspot
detector, and exploits this as part of the attack. We propose a gradient-guided approach to generate
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Fig. 4. Illustration of end-to-end hotspot detection with DCT implemented as a convolutional layer.

adversarial layouts, inspired by the fast gradient sign approach [14] (explained in Section 3). Since
the baseline hotspot detection networks (in Section 4.2) take DCT coefficients as inputs, a naïve
attack would need to modify these coefficients and then perform inverse-DCT to produce adver-
sarially perturbed layouts. There are at least three reasons why this naïve approach is infeasible:

(1) There is not enough data to reconstruct any layout without information loss, since the
input DCT coefficients used for inference are only the low frequency components.

(2) There is no guarantee that modifications of DCT coefficients, when reflected back to layout
images, satisfy the attack constraints above.

(3) It is challenging to modify DCT coefficients that result in an exact 0→ 1 change in layout
image pixels, as the images are binary-valued.

5.2.1 DCT as a Convolution Layer in the Network. Our solution to this problem is to implement
the DCT computation as a convolution layer of the neural network such that the combined network
works in an end-to-end fashion. The network takes in layout images as inputs; this allows us
to perturb image pixels while also incorporating the attack constraints. This idea comes from
Equation (7), where we observed that the summation and element-wise product can be realized
directly as a convolution layer of the CNN (without adding bias). The weights of a DCT filter for
calculating the Kth DCT coefficient is obtained as shown in Equation (8):

WK = cos

[
π

N1

(
n1 +

1

2

)
k1

]
cos

[
π

N2

(
n2 +

1

2

)
k2

]
. (8)

Here k1 and k2 are the horizontal and vertical coordinates of theKth DCT coefficient, andn1 andn2

are the horizontal and vertical coordinates of each weight of the filter. N1 and N2 are the width and
height of the filter. Since the DCT computation operates on 100 × 100 sub-blocks of each image,
the DCT convolution layer will have filters of size (100, 100) and strides of 100. We illustrate this
end-to-end network that combines the DCT computation and hotspot detection in Figure 4.

5.2.2 Attack Process. With this new end-to-end network, the attacker can now explore the gra-
dients of the network in terms of the image and guide placement of SRAFs to positions that have
the highest impact on the network output prediction (shifting from hotspot to non-hotspot). We
define the loss of the attack as the distance between the prediction probability of perturbed hotspot
layout and ideal non-hotspot layout (i.e., a layout with perfect prediction probability of [1, 0]). This
is represented as Equation (9) where Photspot (x ) is the probability that a layout x is classified as
hotspot:

loss_adv (x ) = (1 − Photspot (x ) − 1)2 + Photspot (x )2 = 2Photspot (x )2. (9)

The attacker aims to keep minimizing the loss as they choose and add perturbations (i.e., SRAFs)
iteratively, until at some point the perturbed layout image is predicted as non-hotspot. As an
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Fig. 5. Illustration of the white-box attack process with one SRAF insertion.

attack parameter the attacker can choose a maximum number of SRAFs to insert, T . The detailed
algorithm of the white-box attack is shown in Algorithm 1.

To perform the attack, we first calculate the gradient of the loss function with respect to each
pixel (line 4 in Algorithm 1). This gradient represents the amount of “influence” that a given pixel
has on the final network prediction. However, since we are modifying blocks of image pixels instead
of a singe pixel (when we insert SRAFs), we sum the gradients of a potential perturbation block
at each potential insertion location (lines 5–10 in Algorithm 1). We illustrate this concept as 1© in
Figure 5. This represents the “influence” that a perturbation has on the final network prediction
when it is inserted in that location. Specifically, we are changing blocks of pixel values in the
positive direction from 0 to 1, so the image block that has the largest negative sum of gradients
will have the most influence in minimizing the loss.

However, these gradient sums only reflect the influence for a small change in the input. As we
are shifting pixel values with a relatively large step (i.e., from 0 to 1) there is no guarantee that the
largest negative sum of gradients will still have the most significant influence. Therefore, instead
of picking the SRAF insertion that has the largest negative sum of gradients, we query the CNN
for top-n candidate perturbation blocks with the largest negative sum of gradients (lines 11–14 in
Algorithm 1). We refer to this n as the attacker-specified check parameter. Of these candidates, we
pick the one that has the largest influence (i.e., that fools the network toward predicting a hotspot
as non-hotspot) (line 15 in Algorithm 1).

Our strategy for finding candidate SRAF insertion ( 2© in Figure 5) is as follows. We define
the location of SRAFs by the coordinate of its top-left corner point. We slide the SRAF over
the center region of the layout (we leave a 200 nm boundary on each side of the layout image)
with horizontal and vertical stride of 40 nm. This forms all the possible locations for potential
perturbation addition. However, if any part of a location and its surrounding 40 nm has an existing
pixel value of 1 (i.e., it is already occupied with an SRAF), or overlaps with any forbidden region,
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ALGORITHM 1: White-box Attack

1: Input: original hotspot image x , white-box network function F with DCT convolutional layer at

the bottom, loss function L, image pixel indexing function P , perturbation pattern set S = heiдht ×
[width1,width2, . . . ], surrounding spacing d , maximum number of perturbation addition T , check pa-

rameter n.

2: t = 0

3: while t < T do

4: compute image gradient x_дrad = dL/dx
5: for shape in S do

6: for each position pos in x do

7: if pixel values of shape at pos and its surrounding area P (x , shape,pos,d ) = 0 then

8: sum_дrad[shape,pos] =
∑
P (x_дrad, shape,pos ) � Sum gradients of the shape area.

9: else

10: sum_дrad[shape,pos] = ∞
11: for i = 1 to n do

12: Get shape and pos of the ith smallest element of sum_дrad
13: perturbed image x ′ = x and set P (x ′, shape,pos ) = 1

14: compute loss loss_adv[i] = L(x ′)

15: shape, pos = arg min loss_adv and set P (x , shape,pos ) = 1 � Insert perturbation.

16: if F (x ) is hotspot then

17: t = t + 1

18: else if F (x ) is non-hotspot then

19: Return: x � Adversarial non-hotspot layout generated.

20: Return: null � Otherwise, failed to generate non-hotspot layout within attacker-specified bound.

this location is marked as invalid for SRAFs. We set the loss of this location/shape pair to be ∞
(line 10 in Algorithm 1). In this way, we ensure that inserted SRAFs satisfy the attack constraints.

If the constraints are all satisfied, then we consider this location to be valid. If the sum of the
gradients at this location is one of the n largest negative sums, then we compute the loss for this
layout image with the hypothetically inserted SRAF shape at this location (shown as 3© of Figure 5).
Since the attacker has the flexibility to add six different shapes of SRAFs (width varies from 40, 50,
60, 70, 80, to 90 nm), they will iterate the gradient summation on all the possible locations for each
of these perturbation shapes. In each iteration of adding one SRAF, one of the six shapes is added
to the current layout such that it yields the lowest prediction probability for hotspot.

The algorithm stops either when the network predicts the perturbed layout as non-hotspot
(hotspot prediction probability ≤ 0.5), or when the number of inserted SRAFs has reached the
maximum allowance and no adversarial non-hotspot layout is generated (lines 16–20 in Algo-
rithm 1).

5.3 Black-Box Attack

This attack explores the case where an attacker has less knowledge of the target network. With
a black-box access to the network, the attacker can query the hotspot detector with computed
DCT coefficients of a layout to obtain the output prediction probability. We illustrate the attack in
Figure 6. Details of the black-box algorithm are shown in Algorithm 2.

At a high-level, the black-box attack iteratively queries the detector with different SRAF
shape and insertion location combinations. The attacker first adds a single SRAF. The attacker
exhaustively examines all the possible valid locations for each valid SRAF shape ( 1© in Figure 6),
and queries the network with DCT coefficients of the candidate modified layout ( 2© in Figure 6,
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Fig. 6. Illustration of the black-box attack process with one SRAF insertion.

lines 4–10 in Algorithm 2). The location and perturbation that has the minimum loss is selected,
using the same loss function as in Equation (9) ( 3© in Figure 6, line 11 in Algorithm 2). Further
SRAFs are added in the same way. Like the white-box attack, the algorithm terminates either by
returning a successful adversarial non-hotspot layout, or fails to produce an adversarial layout
within the specified maximum number of inserted SRAFs.

6 EMPIRICAL EVALUATION OF ATTACK SUCCESS

6.1 Experimental Setup

To investigate the implications of our proposals, as well as study the relationship between the
attack efficacy and the target networks, we performed white-box and black-box attacks on both
CNN-based hotspot detection networks. We run all experiments on a desktop computer with Intel
CPU i9-7920X (12 cores, 2.90 GHz) and single Nvidia GeForce GTX 1080 Ti GPU. As a measure of
the CNN-based hotspot detectors’ sensitivity to adversarial input perturbation, we explore how
feasible it is to change the output classification by characterizing our proposed attacks along sev-
eral dimensions: the percentage of hotspot clips where the output classification is flipped after
successful perturbation, the average number of added SRAFs needed to trigger the label flip, the
average area changed by the SRAF addition (as a percentage of the layout clip), and the average
time taken by the proposed attack algorithms for creating adversarial examples. For our analysis,
we report the perturbation success rate, defined as follows:

Definition 6.1 (Perturbation Success Rate). The perturbation success rate is the percentage of
originally hotspot layouts that were successfully perturbed (under attacker-specified constraints,
such as maximum number of SRAF insertions) such that they are classified as non-hotspot by the
CNN-based hotspot detector.

In Section 6.4, we further investigate if the successfully perturbed layout clips remain truly
hotspot (i.e., that they were not incidentally “fixed” by the attack process), thus investigating the
“true attack success rate.”

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 5, Article 48. Pub. date: August 2020.



Adversarial Perturbation Attacks on ML-based CAD 48:15

Table 4. Summary of Attack Results for White-box and Black-box Algorithms

Attack White-box Black-box
Network A B A B
Perturbation success rate 99.7% 85.5% 99.7% 93.3%
Average attack time per layout 8.6 s 45.1 s 350.5 s 677.3 s
Average number of SRAFs added 5.3 8.3 4.1 7.3
Average area of SRAFs added 0.3% 0.5% 0.3% 0.5%

For both attacks, the maximum number of SRAF insertions allowed (T ) is 20. For the white-box

attack, the check parameter (n) is 180. T and n are attacker-specified parameters, as explained

in Algorithms 1 and 2.

ALGORITHM 2: Black-box Attack

1: Input: original hotspot image x , DCT computation function DCT , black-box network function F , loss

function L, image pixel indexing function P , perturbation pattern set S = heiдht × [width1,width2, . . . ],

surrounding spacing d , maximum number of perturbation additions T .

2: t = 0

3: while t < T do

4: for shape in S do

5: for each position pos in x do

6: if pixel values of shape at pos and its surrounding area P (x , shape,pos,d ) = 0 then

7: perturbed image x ′ = x and set P (x ′, shape,pos ) = 1

8: compute loss loss_adv[shape,pos] = L(DCT (x ′))
9: else

10: loss_adv[shape,pos] = ∞
11: shape,pos = arg min loss_adv and set P (x , shape,pos ) = 1 � Insert perturbation.

12: if F (DCT (x )) is hotspot then

13: t = t + 1

14: else if F (DCT (x )) is non-hotspot then

15: Return: x � Adversarial non-hotspot layout generated.

16: Return: null � Otherwise, failed to generate non-hotspot layout within attacker-specified bound.

Across all the experiments in this section, we consider a layout to be hotspot if the network
prediction probability for hotspot is ≥ 0.5. For the white-box attack, we adversarially perturb 500
correctly classified hotspot layouts from the validation set (i.e., the layouts that were not used for
training). As the black-box attack takes longer to perform, we generate adversarial non-hotspot
layouts for 150 hotspot layouts. The average attack time is the end-to-end time (including querying
the hotspot detector). We limit the maximum number of adversarial SRAF additions to 20, and the
check parameter in the white-box attack is 1802. We illustrate a selection of attack outputs and
their corresponding verification results in Figures 8 and 9. We present a summary of the results in
Table 4.

6.2 Attack Results

The most successful attack was on Network A, where we achieved a 99.7% perturbation attack
success (498 hotspot layouts were made to be classified as non-hotspot by the CNN). The white-
box perturbation success rate drops between our attack of Network A and B (a decrease of 14.2%).

2This corresponds to ∼11% of the total number of possible SRAF insertion candidates on average.
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Fig. 7. Histograms of percentages of different number of adversarial SRAF insertions by white-box attack on
Networks A (a) and B (c). Histograms of percentages of different number of adversarial SRAF insertions by
black-box attack on Networks A (b) and B (d).

One explanation is that the complex Network B has learned more about the characteristics of
hotspots, and therefore is more challenging to fool; this is consistent with prior findings of neural
network robustness [29].

These trends can be observed in the average time taken to generate an adversarial layout in
the white-box attack. The average attack time is 8.6 s/45.1 s for Network A and B, respectively, in
the white-box attack. Network B required on average ∼ 6× more time than the white-box attack
on Network A. The extra time for the white-box attack on Network B to produce a successful
perturbed layout is partially due to the increased feedforward computation on more layers (higher
overhead in query-time during the attack). Similarly, the average number of SRAFs inserted is
greater for the more complex Network B compared to the simpler Network A.

Figures 7(a) and 7(c) show the percentage of layouts that were successfully perturbed by a given
number of SRAF insertions for the white-box attack. In all cases, the minimum number of SRAFs
that needed to be added to cause misclassification was 1, and an example of this is shown in
Figure 8. Of the layouts that were successfully perturbed to appear as non-hotspot in each attack,
∼13% required only one inserted SRAF to fool Network A, and ∼10% for Network B. Furthermore,
50% of the perturbed layouts could fool Network A with 4 or fewer inserted SRAFs. For Network
B, 50% of the perturbed layouts had seven or fewer inserted SRAFs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 5, Article 48. Pub. date: August 2020.



Adversarial Perturbation Attacks on ML-based CAD 48:17

Fig. 8. White-box and black-box attack outputs—Example 1. These examples feature a single inserted SRAF.
In the layout images (a–c), the vias are colored green, the original SRAFs are black, and the adversarial SRAFs
are red. In the lithography simulation outputs, the vias are shown in purple and hotspots are marked with a
cross and labelled with “HOTSPOT!”

Looking to the black-box attack results, we notice the same general trends as the white-box
attack, where the simpler Network A is attacked most successfully, while the complex Network
B exhibits greater robustness. The average attack time for the black-box attack is 350.5 s/677.3 s,
for Networks A and B, respectively. Figures 7(b) and 7(d) show the percentage of layouts that
were successfully perturbed by a given number of SRAF insertions for the black-box attack. As
with the white-box attack, the black-box attack yielded adversarial layouts with as few as one
inserted SRAF (an example is shown in Figure 8). Of the layouts that were successfully perturbed
to appear as non-hotspot, ∼18% required one inserted SRAF to fool Network A and ∼11% required
one SRAF to fool Network B. In the black-box attack on Network A, 50% of the adversarial layouts
required three or fewer added SRAFs. For Network B, 6 or fewer SRAFs were required in 50% of
the adversarial layouts.

6.3 Comparison and Observations

There are a number of commonalities and differences between the results of white-box and black-
box attacks. Both attacks produced adversarial layouts with only one added SRAFs for a num-
ber of layouts. Attacks on the simpler Network A had a higher perturbation success rate in both
white-box and black-box cases. There is also a notable increase in the average number of ad-
versarial SRAFs added; the white-box attack requires 1–2 more SRAFs on average. An exam-
ple of different SRAF insertions produced by the white-box and black-box attack can be seen in
Figure 9.
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Fig. 9. White-box and black-box attack outputs—Example 2. These examples feature multiple inserted SRAFs.
In the layout images (a–c), the vias are colored green, the original SRAFs are black, and the adversarial SRAFs
are red. In the lithography simulation outputs, the vias are shown in purple and hotspots are marked with a
cross and labelled with “HOTSPOT!”

While it may appear counter-intuitive that the black-box attack is able to produce adversar-
ial examples with fewer SRAFs compared to the white-box approach (on average) given that the
white-box approach uses more information about the targeted CNN, this is due to the greedy-
search nature of the black-box attack, where, in each iteration, the perturbation (in a set of all valid
perturbations) that makes the greatest change in output prediction is selected. In other words, the
black-box approach finds the best perturbation to move the detector from classifying a clip as
hotspot toward non-hotspot in each iteration of the black-box attack.

In contrast, the gradient-based insertion of the white-box attack does not guarantee that the
best perturbation is chosen in each iteration. Instead, this additional information afforded to the
white-box attacker is used to improve the speed of the attack. In the white-box attack, the gradients
are calculated on a per-pixel level. The gradient represents how much the output prediction will
change based on a marginal modification of the pixel value of the input, thus providing guidance
as to where perturbations are likely to affect the output classification in the direction we desire
(i.e., from hotspot to non-hotspot). Because SRAFs are large (i.e., they are a block of pixels), we
choose, as candidates, the n number of blocks of pixels that, together, have the top-n largest negative
gradient sums as candidates for perturbation. By only selecting n perturbation candidates, we
reduce the number of times the attacker needs to query the CNN, thus speeding up the attack
compared to the black-box attack. However, inserting an SRAF is a relatively large change (i.e., it is
not a marginal modification); hence, there is no guarantee that a large change where the gradients
are largest will result in the largest change in classification, as the gradient only represents the
sensitivity to a small change. This is why we query the detector with each of the n candidates
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in the white-box attack, and choose the best one out of these candidates. Also, this means the
perturbation that will cause the largest change (as found by the black-box attack) could be outside
the top-n candidates found by the white-box attack. That is why, on average, white-box attacks
may require more perturbations to mislead the detector from hotspot to non-hotspot.

Of particular interest to an attacker is the feasibility of the attack in terms of computational
overhead. One measure of this is the time taken to generate an adversarial layout. Our results show
that the more successful black-box attack is 10× slower than the white-box attack. The trade-off for
such high attack success is increased time and computation requirements. This can be explained
by the number of times the attacker needs to query the CNN-based detector. In the white-box
attack, the attacker only needs to query the network n + 1 times in each iteration. The first query
is incurred when using the network to compute the loss function gradients for each pixel. The
subsequent n queries obtain the prediction probabilities for candidate adversarial layouts. When
n is set to the maximum number of possible shape/position combinations, white-box is equivalent
to the black-box attack.

As an attacker, one could tune the check parameter, n, to balance the perturbation success rate
against the computation resources required. Thanks to the gradient information used to guide the
placement of adversarial SRAFs in the white-box algorithm, n need not be too large to achieve
reasonable or even comparable perturbation success rate as the black-box attack, while taking
advantage of up to a 10× attack time reduction. This can also be useful for defenders, as we discuss
in Section 7.

6.4 Do Adversarial Perturbations Fix Hotspots?

Given the success of our adversarial perturbations, a natural question to ask is whether, using
perturbations, we are actually fixing hotspots instead of misleading the designer. To answer this
question, we performed lithography simulation of the adversarial layouts to confirm the hypoth-
esis that inserting only a few SRAFs does not drastically improve/fix hotspots but instead cause
misclassification in most cases. We used the same experimental settings as those for ascertaining
the ground truth labels of the original dataset (described in Section 4). Examples of original and
adversarial layouts, as well their simulation outputs, are shown in Figures 8 and 9. The simula-
tions revealed that in the majority of cases, our adversarial layouts still produced layout defects.
In the white-box attack on Network A, 84.4% of the adversarial layouts that the network classi-
fied as non-hotspot were verified as hotspot, while in the same attack on Network B, 77.4% of the
adversarial layouts that were classified as non-hotspot were verified as hotspot. Based on this, we
can consider the true attack success rate, being the percentage of perturbed hotspots that remain
as hotspots but misclassified as non-hotspots, as ∼84% and ∼66%, respectively. In the black-box
attack, the hotspot verification rate was similar, where 86.7% and 77.9% of the layouts that fooled
Network A and B (respectively) were verified as hotspot corresponding to a true attack success rate
of ∼86% and ∼73%, respectively. The lower true attack success rate on Network B suggests that the
deeper network is more robust compared to Network A, despite their apparently similar baseline
accuracy. This implies that accuracy alone is not a determining factor for robustness against adver-
sarial perturbations, and we further discuss this notion in Section 8. In the case for both networks,
this level of misclassification under an adversarial setting nevertheless raises concerns about the
overall robustness of such CNN-based hotspot detectors.

Additionally, when we examined the lithography simulation outputs, we found instances where
the number of hotspots in a layout increased, decreased, and stayed the same. An example of an
instance where the inserted SRAFs added hotspots is shown in Figure 9(e), instances where the
inserted SRAFs led to less hotspots is shown in Figures 8(e) and 8(f), and an instance where the
inserted SRAFs did not change the hotspot number is shown in Figure 9(f).
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ALGORITHM 3: Adversarial Retraining

1: Input: Training data Dtr ain , Training hotspot data Dtr ain,hotspot , network function F , adversarial non-

hotspot layout generation function Attack , lithography simulation process Litho, network retraining

process Retrain, maximum number of retraining rounds R.

2: for i = 1 to R do

3: adv_train = Attack (F ,Dtr ain,hotspot ) � Generate adversarial non-hotspot layout for training

hotspot.

4: adv_train_hotspot = Litho(adv_train) � Get verified hotspot through lithography simulation.

5: Dtr ain = Dtr ain ∪ adv_train_hotspot
6: F = Retrain(F ,Dtr ain ) � Retrain network F with robust training data Dtr ain .

7: Return: Robustified network F

7 TOWARD A MORE ROBUST NETWORK

7.1 Iterative Adversarial Retraining

So far, we have shown that the white-box and black-box attacks are effective. Since this implies a
feasible threat to deep learning-based CAD, there is a need to investigate and propose countermea-
sures. As such, we propose a strategy to increase the robustness of CNN-based hotspot detectors.
The main aim is to reduce the perturbation success rate without compromising hotspot detec-
tion accuracy. The approach can be integrated into the initial training process for the CNN-based
network and is a type of adversarial retraining, as proposed in Reference [47].

First, let us assume that the defender knows the risks of adversarial perturbations on hotspot de-
tectors. Intuitively they can make the trained network robust by including adversarial layouts into
the training dataset but with true hotspot labels, and then retrain their detector using the usual
methods [47]. To diversify the training data set, the defender can adopt the attacker’s method-
ology to proactively generate their own adversarial layouts and include them after verifying the
true labels using lithography simulation. For robustness, the defender can repeat the adversarial
retraining to suppress the success rate of adversarial attacks on the robust retrained network.

In practice, as we showed in Section 6, the black-box attack achieves the highest possible per-
turbation success rate. Hence, it would make sense to make the network robust using adversarial
layouts produced by this attack. However, given that it can be 10× slower than the white-box at-
tack, this is less feasible under time and computation resource constraints. Therefore, while the
white-box attack may have lower success rate in some occasions, it is more efficient in gener-
ating adversarial layouts. We adopt the white-box attack as part of the defender’s strategy, and
this provides ample training data and robustification results. Adversarial retraining is shown in
Algorithm 3 and the flow is shown in Figure 10.

7.2 Evaluation

To demonstrate robustification, we perform iterative adversarial retraining on Network A, and
perform white-box attacks to determine the perturbation success rate. We start with Network A
in Section 5. We conduct the white-box attack using all hotspot layouts from the training set that
are correctly classified by the CNN ( 1© of Figure 10). Of these 2,070 hotspot layouts, the white-box
attack successfully produces 1,725 adversarial layouts (these were verified using lithography sim-
ulation, 2© of Figure 10). These are labelled as hotspot, and added into the training dataset for the
1st round of retraining ( 3© of Figure 10). We call the 1st round retrained Network A′. For the sec-
ond round of retraining, we take the hotspot layouts from the expanded training dataset that are
correctly classified by Network A′, and perform the white-box attack. A′ classifies 3,910 hotspot
layouts correctly, and from these, the white-box attack produces 2,141 lithography simulation-
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Fig. 10. Overview of the adversarial retraining process.

Table 5. White-box Attack Results with Iterative Adversarial Retraining on Network A

Network Initial net (A) First round retrain (A′) Second round retrain (A′′)
Network overall accuracy 0.73 0.73 0.73

Hotspot detection accuracy 0.72 0.72 0.72

perturbation success rate 99.7% 73.6% 37.2%

Average attack time per layout 8.6 s 18.2 s 22.9 s

Average number of SRAFs added 5.3 7.3 7.2

Average area of SRAFs added 0.3% 0.4% 0.4%

The maximum number of SRAF insertions allowed (T ) is 20, and the check parameter (n) is 180.

verified hotspot layouts. These layouts are added into the training dataset, and we perform a sec-
ond round of retraining to produce the next generation of robustified network, Network A′′. One
can repeat this until an attack threshold success rate is met, or after a pre-determined number of
rounds.

To evaluate the efficacy of adversarial retraining, we perform white-box attacks using correctly
classified hotspot layouts for Network A, A′, and A′′ from the validation dataset, after each round
of training. When we use the white-box attacks to produce new training data and evaluate the
retrained networks, we set the maximum number of SRAF insertions allowed (T ) to 20, and the
check parameter (n) to 180 (as in Section 6). The results are shown in Table 5. Throughout the
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retraining process, the networks’ overall accuracy (the average of hotspot and non-hotspot classi-
fication accuracy) and hotspot detection accuracy are maintained. Even though Network A has a
simpler architecture, after two rounds of retraining, its robustness to being fooled by adversarial
input perturbation (as represented by the decreased perturbation success rate) surpasses that of
Network B (where the perturbation success rate was 85.5%).

8 DISCUSSION AND ADDITIONAL INSIGHTS

Over the course of this study, our findings raised several questions that warrant discussion and
future study.

What drives differences between white-box vs. black-box perturbation success rate? Black-box at-
tacks had a higher success rate compared to white-box attacks, at the cost of longer attack time.
We posit that this is largely due to the greedy nature of the black-box attack, where the target net-
work is repeatedly queried. This query-based approach guarantees that the attacker can achieve
the highest perturbation success rate (given a fixed horizontal and vertical sliding stride) in search-
ing for the best shape/position combination. Conversely, while the white-box attack is a gradient-
guided approach, it considers n candidates and it is possible that the best valid solutions are missed
depending on the size of the check parameter.

What factors affect differences in robustness between different networks? An interesting finding is
that that there was a difference in perturbation success rate and true attack success rate against
Network A and B, where the more complex Network B displayed greater robustness even while
the networks’ baseline hotspot detection accuracies were the same. Prior work has found that
networks with greater capacity are more robust [29]; whether Network B has learned a “better”
approximation of the underlying physics warrants more study. As mentioned in Section 4.2, the
hotspot detectors we trained did not appear to be overfitted to the training data (as there was less
than 3% difference between training and test data accuracy in both Network A and B). Taken to-
gether, this suggests that neither baseline accuracy nor overfitting act as the determining factor
for robustness; this is also echoed in recent studies [48, 61]. In our adversarial retraining pro-
cess, we found that robustness was improved without affecting accuracy (i.e., neither improving
nor degrading the hotspot/non-hotspot classification accuracy), so the perturbed layouts do not
appear to provide sufficient additional information to improve generalizability, but nevertheless
enable improved robustness to adversarial input perturbation. We also wanted to see if the number
of DCT coefficients used in the input layer affects a detector’s vulnerability to adversarial input
perturbation (after all, Network B uses more DCT coefficients in its input). To do this, we trained
another CNN (using the same architecture as Network A), which instead used 160 DCT coefficients
as its input (i.e., 5× the number of coefficients compared to the input layer of Network A), to see
if the CNN would learn more complex details from the input features, thus improving robustness.
We performed the white-box attack on this new network, using the same settings described in
Section 5, and achieved a 100.0% perturbation success rate, where the average number of SRAFs
added was 2.9 (or +0.2% area). This suggests that using only a few of the lower frequency DCT
coefficients was not the root-cause of the vulnerability to adversarial input perturbation.

What is the impact of design rules on the ability to produce adversarial examples? Unlike research
into adversarial input perturbation in general image classification settings (e.g., Reference [14]),
we focused on the notion of semantically meaningful perturbations. In the CAD context, this refers
to manipulation of design artifacts while satisfying design rules. Given more complex design rules,
the space for valid perturbations becomes smaller. While this may speed up the process of search-
ing for perturbations (as there are less options to explore), it may also increase the difficulty of
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finding the required perturbations while maintaining some desired measure of imperceptibility or
innocuousness. Depending on an adversary’s goal, a single act of sabotage may be sufficient to
achieve a desired malicious derailment. Going forward, future study could explore the interplay of
complex design rules at more advanced nodes, and protection against meaningful perturbations,
thus reducing the incidence of such error-causing corner cases.

Do adversarial attacks generalize to other datasets? Our study focuses on SRAF insertion for im-
proving the printability of via layouts, which represents only one scenario in lithographic hotspot
detection. Unfortunately, as noted previously, we were limited in our ability to comprehensively
evaluate our attack on the ICCAD’12 contest benchmarks due to the unavailability of a DRC deck
and lithography simulation settings for these benchmarks. Nevertheless, in the appendix, we show
results for a limited evaluation of adversarial perturbation attacks on the ICCAD’12 dataset using a
small set of inferred design rules. In this experiment, we show that our attack strategies are indeed
able to produce adversarial examples. Note that although we could not verify via lithography sim-
ulation that the adversarially perturbed layouts remain hotspots, the perturbations are relatively
small and are therefore unlikely to have actually fixed hotspots (as we have observed in the SRAF
case study). Interestingly, the baseline CNN for the ICCAD’12 benchmarks has >90% accuracy,
suggesting that higher accuracy by itself does not necessarily imply immunity to adversarial per-
turbations. The perturbation success rate in this experiment is somewhat lower than the results of
Section 6, perhaps suggesting that the ease of finding adversarial examples is affected, at the very
least, by the nature of the dataset and the interplay between design rules and the chosen network
architecture.

Do adversarial perturbations transfer across detectors? In our experiments, we focused on CNN-
based hotspot detectors, demonstrating their vulnerability to adversarial input perturbation. An
interesting phenomenon that has been observed in adversarial machine learning research on image
classification has raised the possibility of perturbations that are able to fool DNN models with
different architectures [35]. To investigate whether this may also be the case in our setting, we
trained another CNN-based hotspot detector, instead with 13 layers (sitting between the 9-layer
Network A and 15-layer Network B). This 13-layer network is similar to Network A but with two
additional convolution layers before each maxpooling layer. We took the successfully perturbed
clips from the white-box attack on Network A, and used Network B and the 13-layer CNN to
classify them. None of the perturbed clips that fool Network A fool Network B, but 10.5% of them
fool the 13-layer CNN. Seeing as all the networks have essentially the same baseline accuracy, the
poor transferability of perturbed clips appear to hint at the different networks’ learning of different
features for classification, suggesting that generated adversarial examples appear to be specific to
a single detector, although this could be investigated more thoroughly in future work.

It is also worth discussing whether adversarial examples might also affect other hotspot detec-
tion approaches, such as those involving pattern matching. Pattern matching-based approaches
compare layouts against a database of known (previously-seen) hotspot-susceptible patterns. Be-
cause adversarial input perturbation processes are designed to minimize the modifications made to
a clip, pattern matching approaches that are fuzzy (e.g., Reference [49]) are more likely to identify
the subtle changes as simply variants of hotspot patterns (assuming, of course, that the hotspot
pattern is in the database of known patterns). If an “exact pattern” identification approach is used,
however, then perturbations could indeed fool the detector by making the clip sufficiently vary
from known clips in the database.

Does adversarial retraining using one attack algorithm protect against all possible adversarial inser-

tions? Different attack formulations may discover similar and different adversarial examples—we
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witnessed this situation in our exploration of the white-box and black-box attacks. We expect that
retraining on adversarial examples from one type of perturbation-based attack (e.g., our white-box
attack) would provide some robustness against other types of perturbation-based attack (e.g., our
black-box attack). However, we cannot guarantee that an adversarially retrained network (using
adversarial samples from one attack algorithm) is robust against all other attack. This is because
the perturbation space could be large, and the other attack algorithms may find non-overlapping
samples from this space. Thus, we expect that networks robustified using adversarial retraining
are robust to some, but not all adversarial insertions—this poses another interesting line of inquiry
for future work.

What does the network learn? Security aside, perhaps the more basic question raised by our work
is this: what does a CNN learn? The high success rate of the attacks indicate that the CNN-based
hotspot detectors do not truly and fully “learn” the physics relevant to the hotspot problem. One
might argue that this is to be expected; after all, a CNN is only approximating the underlying
physics. Nonetheless, the fact that in several cases only one or two additional SRAFs throws off
the CNN is worrisome, since, at least intuitively, these small modifications should not drastically
fix hotspots. Furthermore, the ability to acquire or prepare a “perfect” dataset that fully represents
the complete domain space of a problem, and the ability to guarantee that training fully “learns”
this domain space remains an open research problem, so there is a pressing need to understand
what a DNN learns in imperfect settings. Indeed, in the broader deep learning community, there is
on-going work about the interpretability of neural networks that seeks to better understand what
concepts networks actually learn, and we would encourage this to be considered in the ML-CAD
context also [33].

Are there wider security implications for ML-based CAD flows? The success of both attacks in
lithographic hotspot detection raises important questions about the wider implications to ML in
CAD. CAD flows involve many complex steps using tools sourced from different vendors; this
provides a wide attack surface [2]. With ML added to the mix, the risk compounds—prior work
has raised concerns about outsourcing deep learning [45], and given the many CAD domains in
which deep learning can contribute (we provide an overview in Section 9), security considerations
are paramount. A key insight we provide in this study is the presence of semantically meaning-
ful perturbations in the lithographic context. We posit that similar meaningful perturbations exist
in other CAD domains, and further work should be done to discover these. Moreover, we con-
tend that the data that is produced and used for training in CAD problems is imperfect (i.e., that
it is infeasible to generate data that completely captures the full gamut of possible designs and
processes). Given this, we surmise that any current ML-CAD solution using neural networks is
therefore imperfect to some degree, and thus, could in fact be a potential target.

9 RELATED WORK

The CAD industry is facing challenges with increasing design complexity, especially with the
growing time-to-market pressures. ML techniques have been explored to accelerate steps in the
VLSI design flow [20].

In optical lithography, a variety of techniques have been proposed to analyze the printability
of layouts and design enhancement. Pattern matching (such as Reference [60]) and ML (such
as Reference [30]) have been studied, offering a range of successes in accuracy and ability to
generalize for previously unseen layouts. Recently, there has been an uptick in the study of deep
learning approaches, where different facets have been investigated. For example, in Reference
[56], Yang et al. train a CNN to detect hotspots from a layout image. They provide a detailed
comparison on the effectiveness of different ML techniques at identifying hotspots, concluding
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that the CNN-based approaches offer superior accuracy. To reduce the computational overhead
of processing large layout data, Reference [19] proposes to binarize and down-sample the input
data, yielding 8× speed-up over prior deep learning solutions.

Other studies have exposed challenges in adopting CNNs, such as the abundance (or lack
thereof) of labeled data for training. Chen et al. detect hotspots using a CNN [7], but propose a
semi-supervised approach to handle the scarcity of labelled data. Using a two-stream architecture,
labelled data is used to create a preliminary model that is used to provisionally label other samples
together with a measure of confidence in the provisional label. Provisionally labelled samples with
high confidence are used to train the model in subsequent training cycles; the general belief is that
more data can result in ML models with more knowledge. Synthetic variants of labelled data are
proposed in Reference [39] to improve the information-theoretic content of the training dataset
and address dataset imbalances, resulting in considerable improvement of false alarm rates. The
adversarial retraining procedure proposed in our work can similarly be viewed as a data augmen-
tation strategy; however, unlike prior work, our data augmentation is targeted toward generating
adversarially robust networks.

Recently, state-of-the-art applications of CNNs have moved beyond design analysis toward de-
sign enhancement to aid in modifying designs to reach a certain goal. Insertion of SRAFs has been
framed as a type of image domain transformation, where Generative Adversarial Networks (GANs)
are trained to take in layouts and “predict” where SRAFs should be inserted [1]. Other mask op-
timizations (such as OPC) have been cast similarly [13, 53, 54, 58]. While they focus on accuracy
and scalability, our work examines an orthogonal, yet crucial dimension of robustness. In physical
design, trained ML models are a faster alternative to simulation, allowing designers to quickly eval-
uate the validity of a design. Lin et al. perform resist modelling and demonstrate transfer learning
for different technologies [25]. Cao et al. [5] use parameters related to design, pin-mapping, and
layout to predict achievable and actual inductance at pre- and post-layout stages.

Checking design rule violation (DRV) is another important aspect of the design flow where deep
learning has been used. In Reference [44], Tabrizi et al. do routability checks after netlist placement,
but before global routing. Routing shorts are predicted using the trained model, allowing designers
to avoid potential unroutable layouts. Similarly, Xie et al. [51] use a CNN to predict the number
of DRVs, even in the presence of design macros and to identify DRV hotspots. DRV prediction
ascertains the routability of layouts for earlier correction.

In early stages of design, deep learning has been used for logic optimization [50], design space
exploration [16], synthesis flow exploration [59], and high-level area estimations [11]. Such tech-
niques reduce designer workload by culling the design variants that need to be progressed in the
design flow. Yu et al. [59] propose the training and use of a CNN to gauge the effectiveness of dif-
ferent combinations of synthesis transformations (termed flows) for a given register transfer level
(RTL) design. To avoid exhaustively running all combinations, a model is trained from a subset of
possible flows. The trained model is used to predict the quality of several possible flows, outputting
a collection of “angel-flows” that are likely to yield good results in the synthesis of the RTL design.
In a related approach, Hasswijk et al. [50] train a CNN to discover new transformation algorithms,
but focus on graph optimization instead of quality of results from subsequent technology map-
ping. Orthogonal to these approaches, Greathouse et al. [16] use a neural network to predict how
the performance of a software kernel will scale as a function of the number of parallel compute
units. The adversarial robustness of these aforementioned approaches remains an open question.

Adversarial attacks on CNNs are being actively studied [3], although, prior to our article, this
question of adversarial robustness has not yet been brought up in the electronic CAD domain.
Our work contributes to this growing body of literature in this hitherto unanalyzed context. Our
attacks modify layouts to cause misclassification on a well-trained network; these belong to the
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class of inference-time or evasion attacks and have been examined in detail (in a general context)
in works like [12, 14, 24, 35, 42, 43].

Adversarial attacks in the literature can be classified into two categories based on the contextual
meaning/imperceptibility of the added perturbation. One class of adversarial perturbations are
meaningless and akin to subtle noise that are crafted to fool the neural network in general cases.
The other type of adversarial perturbations have contextual meaning, while still remaining subtle
in the semantics of the real-world context. Examples of these include using a pair of glasses to
mislead a face recognition system [42] and a post-it note on a traffic sign to fool a traffic sign
detector [12]. Our attack on hotspot detection falls into the second category, as our added SRAFs
are semantically meaningful (SRAFs are real-world artifacts) and difficult to perceive as malign.

A variety of defenses against adversarial inputs have been proposed [10, 29, 37, 47]. Some focus
on the detection of adversarial inputs by identifying feature disparity between valid and adver-
sarial examples [31, 32, 52]. Some resort to transformation techniques to rectify adversarial inputs
into “normal” ones [17, 31, 41]. Others resort to retraining to counter adversarial attacks [14, 47].
Research into defenses that offer strong guarantees of robustness is ongoing [29]. We use adversar-
ial retraining to make CNN-based hotspot detectors robust without sacrificing detection accuracy
and adding computation overhead in inference.

In contrast to inference-time attacks, another class of attacks on deep learning is that of training-

time or backdoor attacks [28, 45]. Here the training dataset is in some way compromised (or poi-
soned). Part of the study into these attacks includes examining the risks when the integrity of
the training data is compromised [45], and the risks that come from re-using potentially compro-
mised networks. Recent work that aims to improve the robustness to backdoors include [4, 6, 26].
Understanding the implications of these attacks in ML-based CAD merits investigation.

10 CONCLUSION

In this article, we revealed a vulnerability of CNN-based hotspot detection in electronic CAD. We
showed that CNN-based hotspot detectors are easily fooled by specially crafted SRAF insertions
that can mislead the network to predict a hotspot layout as non-hotspot. We proposed and ex-
amined white-box and black-box attacks on well-trained hotspot detection CNNs, and the results
showed that up to 99.7% perturbation success rate was possible. The deeper, more complex CNN
we attacked exhibited better natural robustness compared to the less complex CNN. To robustify
the vulnerable hotspot detectors, we proposed adversarial retraining, revealing that after only two
rounds, the white-box perturbation success rate could be decreased to 37.2%. Our findings point
to semantically meaningful adversarial perturbations as a viable concern for ML-based CAD. This
study leads us to urge caution and advocate for further study of the wider security implications
of deep learning in this field. As an immediate recommendation for CNN-based hotspot detection,
we suggest adversarial retraining as an add-on procedure after initial network training, as it in-
troduces no extra computation overhead at inference and has no accuracy compromise, but adds
robustness against adversarial attacks. Ultimately, we find that adversarial perturbations should be
a concern for ML-based CAD, and thus advocate that an appropriately proactive stance is adopted
as such systems mature. Hence, our future work will look to other attack types in other CAD
problems, including training-time attacks and robustification techniques.

APPENDIX

EXPLORATION USING ICCAD’12 DATASET

To further explore wider security implications in ML for CAD, we investigated adversarial pertur-
bations in another hotspot detection task. In this experiment, we attacked a different CNN-based
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Fig. 11. Restricted set of patterns for black-box attack (shape dimensions shown). The (a) square, (b) rectan-
gle, (c) zigzag, and (d) Tee shapes are drawn from the existing layout dataset.

hotspot detector, trained using a dataset from the ICCAD’12 contest on pattern matching for phys-
ical verification [46]. The attack goal is similar to that in Section 2 in that the attacker wants to
modify given hotspot layouts such that they are misclassified as non-hotspot by the detector. Note,
however, we could not perform lithography simulation-based verification as the physical models
required were not available as part of the ICCAD competition dataset.

Dataset and Hotspot Detector Design. We use layout 4 from the ICCAD dataset containing 4,547
training and 32,067 test layout images; 4,452 of the training samples are non-hotspot and the re-
maining 95 are hotspot. Of the test samples, 31,890 are non-hotspot and 177 are hotspot. Each
layout image has dimensions of 1,200 × 1,200 pixel, and has binary valued pixel intensities to rep-
resent the pattern to be printed. Each pixel corresponds to 1nm2 of the layout. Before training and
inference, we preprocess the layout images using the same DCT filters as described in Section 4.2
to obtain the DCT coefficients as input to the hotspot detector. The resulting input dimension
is (12, 12, 32). We use a similar CNN architecture and training procedure as for Network A (Sec-
tion 5) but with this modified input dimension — the network parameters are shown in Table 6. The
trained network has 98.5% non-hotspot classification accuracy and 92.7% for hotspot classification
accuracy on the test data.

Table 6. Network Architecture

Layer Kernel Size Stride Output Size
input - - (12, 12, 32)
conv1_1 3 1 (12, 12, 16)
conv1_2 3 1 (12, 12, 16)
maxpooling1 2 2 (6, 6, 16)
conv2_1 3 1 (6, 6, 32)
conv2_2 3 1 (6, 6, 32)
maxpooling2 2 2 (3, 3, 32)
fc1 - - 250
fc2 - - 2

Black-box attack. We conducted a black-box attack on the test hotspot layouts to examine the
efficacy of our proposed attack scheme. However, instead of inserting SRAFs, we add isolated
printing patterns to the layouts. The attack constraints in this experiment are: (1) shape constraint:
adversarial insertions can only be chosen from a restricted set of four basic shapes that already
exist in the layout dataset, as illustrated in Figure 11; (2) spacing constraint: inserted patterns

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 5, Article 48. Pub. date: August 2020.



48:28 K. Liu et al.

Table 7. Summary of Black-box Attack Result

Perturbation success rate 77.4%
Average attack time per layout 63.5 s
Average number of patterns added 4.5
Average area of patterns added 2.1%

Fig. 12. Top row: original hotspot layouts. Bottom row: corresponding adversarial non-hotspot layouts.

should be at least 45 nm away from any surrounding patterns; (3) alignment constraint: inserted
patterns need to be aligned with existing shapes; (4) insertion region: inserted patterns must not
overlap with a 100-nm-wide border at the edges of the layout image. The black-box algorithm is
reused from Section 5.

Attack Results. We performed the black-box attack using 164 hotspot layouts from the test set
that the detector correctly classified as hotspot. Of these 164 layouts, 127 were successfully per-
turbed to fool the network. The results are summarized in Table 7. We illustrate some of the per-
turbed layouts in Figure 12 with 1–4 adversarial inserted patterns.

Remarks. Based on these additional experiments, it appears that this dataset is also susceptible
to adversarial perturbation attacks, despite the fact that the CNN-based hotspot detector baseline
accuracy on this dataset is high. Access to the lithography simulation settings will further allow
us to verify that the modified layouts remain hotspots.
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