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Layout Hotspot Detection With Feature Tensor
Generation and Deep Biased Learning

Haoyu Yang , Jing Su, Yi Zou, Yuzhe Ma , Bei Yu , Member, IEEE, and Evangeline F. Y. Young

Abstract—Detecting layout hotspots is a key step in the physical
verification flow. Although machine learning solutions show ben-
efits over lithography simulation and pattern matching-based
methods, it is still hard to select a proper model for large scale
problems and inevitably, performance degradation occurs. To
overcome these issues, in this paper, we develop a deep learn-
ing framework for high performance and large scale hotspot
detection. First, we use feature tensor generation to extract rep-
resentative layout features that fit well with convolutional neural
networks while keeping the spatial relationship of the original lay-
out pattern with minimal information loss. Second, we propose a
biased learning (BL) algorithm to train the convolutional neural
network to further improve detection accuracy with small false
alarm penalties. In addition, to simplify the training procedure
and seek a better tradeoff between accuracy and false alarms, we
extend the original BL to a batch BL algorithm. Experimental
results show that our framework outperforms previous machine
learning-based hotspot detectors in both ICCAD 2012 Contest
benchmarks and large scale industrial benchmarks. Source
code and trained models are available at https://github.com/
phdyang007/dlhsd.

Index Terms—Design for manufacturability, feature extraction,
lithography hotspot detection, machine learning.

I. INTRODUCTION

AS TRANSISTOR feature size enters the nanometer era,
manufacturing yield is drastically affected by litho-

graphic process variations caused by the limitations of the
conventional 193-nm wavelength lithography system. Even
with various resolution enhancement techniques, manufac-
turing defects are still likely to happen for some sensi-
tive layout patterns, referred to as hotspots, as shown in
Fig. 1. Thus hotspot detection during physical verification
stage is very important. The conventional hotspot detec-
tion flow includes optical proximity correction (OPC) and
lithography simulation on multiple process windows, which
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Fig. 1. (a) Hotspot and (b) nonhotspot examples.

has a high accuracy but suffers from runtime overhead
issues.

To quickly and correctly recognize hotspots during physical
verification, two major methodologies were heavily developed:
1) pattern matching [1]–[3] and 2) machine learning [4]–[9].
In the pattern matching solutions, [1] facilitated the verifica-
tion flow by integrating the density-based layout encoding,
principle components analysis and customized city-block dis-
tance. Yu et al. [2] developed a design rule-based pattern
matching method to recognize hotspots. In [3], an improved
tangent space-based distance metric was proposed to perform
hotspot pattern analysis and classification. Although pattern
matching is a direct and fast method to detect layout char-
acteristics, it has a high error rate for unknown patterns. On
the other hand, machine learning techniques are capable of
learning hidden relations between layout patterns and their
defect characteristics, and can greatly improve detection accu-
racy. Drmanac et al. [9] proposed a histogram-based layout
representation and an unsupervised support vector machine
(SVM) model to predict the variability of the lithography pro-
cess. Ding et al. [7] incorporated hierarchical artificial neural
networks and SVM models to reduce the false alarm rates.
Ding et al. [8] constructed a meta classifier with basic pattern
matching and machine learning classifiers to achieve better
detection performance. Yu et al. [4] presented a hotspot clas-
sification flow with a multikernel SVM and critical feature
extraction. In [5], AdaBoost and decision tree are adopted for
fast hotspot detection. Very recently, Zhang et al. [6] achieved
tremendous performance improvements on the ICCAD Contest
2012 benchmark suite [10] by applying an optimized concen-
tric circle sampling (CCS) feature [11] and an online learning
scheme. However, there are several aspects that previous works
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do not take into account, especially when targeting a very large
scale problem size.

1) Scalability: As integrated circuits develop to an
ultralarge scale, very large scale integration layout
becomes more and more complicated and traditional
machine learning techniques do not satisfy the scala-
bility requirements for printability estimation of a large
scale layout. That is, it may be hard for machine learn-
ing techniques to correctly model the characteristics of
a large amount of layout patterns.

2) Feature Representation: The state-of-the-art layout fea-
ture extraction approaches, including density [5] and
CCS [11], inevitably suffer from spatial information
loss, because extracted feature elements are flattened
into 1-D vectors, and ignore potential spatial relations.

To overcome the conventional machine learning methodol-
ogy limitations and issues, in this paper we develop a deep
learning-based framework targeting high performance and
large scale hotspot detection. Because of the automatic fea-
ture learning technique and highly nonlinear neural networks,
deep learning is highly successful in image classification
tasks [12], [13].

Several attempts were made to detect layout hotspots
using deep neural networks. Matsunawa et al. [14],
Shin and Lee [15], Yang et al. [16]–[18] demonstrated that
ordinary convolutional neural networks can offer promising
hotspot detection results. To make the deep neural networks
more suitable and efficient for layout hotspot detection tasks,
we consider the following two aspects. First, because layout
hotspots are related to light diffraction, the input clips of a
hotspot detector usually have a resolution over 1000 × 1000,
which is much larger than the image size (e.g., ∼ 200× 200)
in traditional object recognition tasks. As a result, the corre-
sponding neural networks are not computational and storage
efficient. Inspired by the feature map in deep neural networks,
we utilize the feature tensor concept, i.e., a multidimensional
representation of an original layout pattern, that performs com-
pression on input layout images to facilitate learning while
keeping the spatial relationship to avoid drastic information
loss. Feature tensor compatibility with convolutional neural
networks makes our framework more efficient for large scale
layout patterns. Second, a good hotspot detector is expected
to have a satisfactory tradeoff between detection accuracy and
false alarms. Note that in the physical verification flow, a
missing hotspot region means a possible failure while a false
alarm simply induces additional lithographic simulation time.
Therefore, hotspot detection accuracy plays a more important
role when balancing the tradeoff. In our preliminary work [19],
we developed a bias learning technique that is easily embed-
ded into traditional neural network training procedures and
achieve high detection accuracy with a low false alarm penalty.
However, the biased learning (BL) requires multiple rounds
of end-to-end training and manually determined bias terms,
which result in a complex training procedure. To address these
concerns, a batch-BL (BBL) algorithm is proposed so that we
can train the network with simple back-propagation and single-
round mini-batch gradient descent (MGD). Because BBL
considers the batch loss of each iteration, we can obtain better

Fig. 2. Proposed hotspot detection flow.

tradeoffs between accuracy and false alarms. The proposed
hotspot detection flow is illustrated in Fig. 2.

The main contributions of this paper are listed as follows.
1) A feature tensor extraction method is proposed, where

the new feature is compatible with the emerging deep
learning structure and can dramatically speed up feed-
forward and back-propagation.

2) A BL technique is embedded into the deep learn-
ing framework, that offers significant improvements on
hotspot detection accuracy with a minor cost of false
alarms.

3) We develop a BBL algorithm to adaptively adjust the
biased ground truth with respect to the batch training
loss that facilitates the training procedure and provides
better tradeoffs between accuracy and false alarms.

4) Experimental results show that our proposed methods
have a great advantage over existing machine learning
solutions and achieve a 6.3% accuracy improvements on
average for very large scale industrial layouts.

The rest of this paper is organized as follows. Section II
introduces basic concepts and problem formulation.
Sections III and IV cover feature tensor generation and
BL algorithm, respectively. Section V lists the experimental
results, followed by the conclusion in Section VI.

II. PRELIMINARIES

In this section, we will introduce some terminologies used
in layout hotspot detection. Designed layout patterns are trans-
ferred onto silicon wafers through a lithographic process,
which involves a lot of variations. Some patterns are sensitive
to lithographic process variations and may reduce the manu-
facturing yield due to potential open or short circuit failures.
Layout patterns with a smaller process window and sensitive
to process variations are defined as hotspots.

The main objectives of the hotspot detection procedure
are identifying as many real hotspots as possible, avoiding
incorrect predictions on nonhotspot clips, and reducing run-
time. In this paper, we use the following metrics to evaluate
performance of a hotspot detector.
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Fig. 3. Feature tensor generation example (n = 12). The original clip (1200 × 1200 nm2) is divided into 12 × 12 blocks and each block is converted to
a 100× 100 image representing a 100× 100 nm2 subregion of the original clip. Feature tensor is then obtained by encoding on first k DCT coefficients of
each block.

Definition 1 (Accuracy [10]): The ratio between the num-
ber of correctly predicted hotspot clips and the number of all
real hotspot clips.

Definition 2 (False Alarm [10]): The number of nonhotspot
clips that are predicted as hotspots by the classifier.

In the actual design flow, detected hotspots (including false
positive patterns) are required to perform lithographic simu-
lation, it is reasonable to account for false alarms the overall
estimation flow runtime. Therefore, an overall detection and
simulation time (ODST) is defined as follows.

Definition 3 (ODST [6]): The sum of the lithography sim-
ulation time for layout patterns detected as hotspots (including
real hotspots and false alarms) and the learning model evalu-
ation time.

With the above definitions, we can formulate the hotspot
detection problem as follows.

Problem 1 (Hotspot Detection): Given a set of clips con-
sisting of hotspot and nonhotspot patterns, the objective of
hotspot detection is training a classifier that can maximize
accuracy and minimize false alarms.

III. FEATURE TENSOR EXTRACTION

Finding a good feature representation is a key procedure in
image classification tasks, and so is layout pattern classifica-
tion. Local density extraction and CCS were widely explored
in previous hotspot detection and OPC research [11], and were
proved to be efficient on hotspot detection tasks because of
the embedded lithographic prior knowledge. It is notable that
layout hotspots are associated with light diffraction, there-
fore whether a layout pattern contains hotspots is not only
determined by the pattern itself, but is also affected by the
surrounding patterns. Therefore, to analyze clip characteris-
tics, we must be aware of the spatial relations of its local
regions. However, all of these existing features finally are flat-
tened into 1-D vectors that limit hotspot detection accuracy
due to a large amount of spatial information loss.

To address the above issue, we propose a feature tensor
extraction method that provides a lower scale representation
of the original clips while keeping the spatial information of
the clips. After feature tensor extraction, each layout image
I is converted into a hyper-image (image with a customized
number of channels) F with the following properties: 1) size of
each channel is much smaller than I and 2) an approximation
of I can be recovered from F.

Spectral analysis of mask patterns for wafer clustering was
recently explored in [20] and [21] and achieved good clus-
tering performance. Inspired by that work, we express the
subregion as a finite combination of different frequency com-
ponents. High sparsity of the discrete cosine transform (DCT)
makes it preferable over other frequency representations in
terms of spectral feature extraction, and it is consistent with
the expected properties of the feature tensor.

To sum up, the process of feature tensor generation contains
the following steps.

Step 1: Divide each layout clip into n× n subregions, then
obtain feature representations of all subregions for multilevel
perceptions of layout clips.

Step 2: Convert each subregion of the layout clip Ii,j (i, j =
0, 1, . . . , n− 1) into a frequency domain

Di,j(m, n) =
B∑

x=0

B∑

y=0

Ii,j(x, y) cos

[
π

B

(
x+ 1

2

)
m

]

× cos

[
π

B

(
y+ 1

2

)
n

]

where B = (N/n) is subregion size, (x, y) and (m, n) are orig-
inal layout image and frequency domain indexes, respectively.
Particularly, the left-upper side of DCT coefficients in each
block correspond to low frequency components, that contain
high density information, as depicted in Fig. 3.

Step 3: Flatten Di,js into vectors in Zig-Zag form [22] with
the larger index being higher frequency coefficients as follows:

C∗i,j =
[
Di,j(0, 0), Di,j(0, 1), Di,j(1, 0), . . . , Di,j(B, B)

]ᵀ
.

(1)

Step 4: Pick the first k� B× B elements of each C∗i,j
Ci,j = C∗i,j[:k] (2)

and combine Ci,j, i, j ∈ {0, 1, . . . , n − 1} with their spatial
relationships unchanged. Finally, the feature tensor is given as
follows:

F =

⎡

⎢⎢⎢⎣

C11 C12 C13 . . . C1n

C21 C22 C23 . . . C2n
...

...
...

. . .
...

Cn1 Cn2 Cn3 . . . Cnn

⎤

⎥⎥⎥⎦ (3)

where F ∈ R
n×n×k. By reversing above procedure, an original

clip can be recovered from an extracted feature tensor.
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The nature of DCT ensures that high frequency coefficients
are near zero. As shown in Fig. 3, large responses only present
at the entries with smaller indexes, i.e., low frequency regions.
Therefore, most information is kept even when a large amount
of elements in C∗i,j are dropped.

The feature tensor also has the following advantages when
applied in neural networks: 1) highly compatible with the data
packet transference in convolutional neural networks and 2)
forward propagation time is significantly reduced when com-
pared with using an original layout image as input, because
the scale of the neural network is reduced with the smaller
input size.

IV. TRAINING THE NEURAL NETWORKS

This section discusses the convolutional neural network
details. First, we introduce the basis and the architecture of
convolutional neural networks. Then, we present a customized
training procedure that looks for better tradeoffs between accu-
racy and false alarms. Finally, we list additional training and
testing strategies.

A. Convolutional Neural Network Architecture

To address the weak scalability of traditional machine learn-
ing techniques, we introduce the convolutional neural network
(CNN) as preferred classifier. CNN is built with several
convolution stages and fully connected (FC) layers, where
convolution stages perform feature abstraction and FC layers
generate the probability of testing instances drawn from each
category (Fig. 4).

In this paper, our convolutional neural network has two
convolution stages followed by two FC layers, and each con-
volution stage consists of two convolution layers: 1) an ReLU
layer and 2) a max-pooling layer. In each convolution, a set
of kernels perform convolution on a tensor F as follows:

F⊗K(j, k) =
c∑

i=1

m∑

m0=1

m∑

n0=1

F(i, j− m0, k − n0)K(i, m0, n0)

(4)

where F ∈ R
c×n×n, and kernel K ∈ R

c×m×m. In this paper,
the convolution kernel size is set to 3× 3 and the numbers of
output feature maps in two convolution stages are 16 and 32,
respectively. ReLU is an element-wise operation that follows
each convolution layer as a replacement of the traditional sig-
moid activation function. As shown in (5), ReLU ensures that
the network is nonlinear and sparse

ReLU(x) =
{

x, if x > 0
0, if x ≤ 0.

(5)

The max-pooling layer performs 2 × 2 down-sampling on
the output of the previous layer and is applied as the output
layer of each convolution stage. Following the two convolution
stages are two FC layers with output node numbers of 250 and
2, respectively. A 50% dropout is applied on the first FC layer
during training to alleviate overfitting. The second FC layer
is the output layer of the entire neural network, where two
output nodes generate the predicted probabilities of an input

TABLE I
NEURAL NETWORK CONFIGURATION

instance being hotspot and nonhotspot. Detailed configurations
are shown in Table I.

B. Mini-Batch Gradient Descent

Determining the gradient of each neuron and the parameter
updating strategy in the neural network are two key mech-
anisms in the training procedure. Back-propagation [23] is
widely applied to calculate gradients when training large neu-
ral networks. Each training instance F has a corresponding
gradient set G = {G1, G2, . . . , Gv}, where each element is a
gradient matrix associated with a specific layer and v is the
total layer number. All the neural network parameters are then
updated with the obtained G.

Stochastic gradient descent (SGD), where each training data
instance is randomly presented to the machine learning model,
has proved more efficient to train large data sets [24] than
conventional batch learning, where a complete training set is
presented to the model for each iteration. However, as a data
set scales to the ultralarge level, e.g., millions of instances,
SGD has difficulty to efficiently utilize computation resources.
Therefore, it takes a long time for the model to cover every
instance in the training set. A compromise approach called
MGD [25] can be applied where a group of instances are ran-
domly picked to perform gradient descent. Additionally, MGD
is naturally compatible with the online method allowing it to
facilitate convergence and avoid large storage requirements for
training ultra large instances.

However, for large nonlinear neural networks, back-
propagation and MGD do not have rigorous convergence
criteria. A fraction, empirically 25%, of training instances (val-
idation set) is separated out and is never shown to the network
for weight updating. We then test the trained model on the
validation set every few iterations. When the test performance
on the validation set does not show much variation or starts
getting worse, the training procedure is considered to be con-
verged. To make sure MGD reaches a more granular solution,
we reduce the learning rate along with the training process.

The details of MGD with learning rate decay are shown
in Algorithm 1, where W is the neuron weights, λ is the
learning rate, α ∈ (0, 1) is the decay factor, k is the decay
step, y∗h is the hotspot ground truth, and y∗n is the nonhotspot
ground truth. MGD can be regarded as a function that returns
the model with the best performance on the validation set.
Indicator j will count up through iterations (line 4), and in each
iteration, m training instances {F1, F2,. . . , Fm} are randomly
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Fig. 4. Proposed convolutional neural network structure.

Algorithm 1 MGD
1: function MGD(W, λ, α, k, y∗h, y∗n)
2: Initialize parameters j← 0, W > 0;
3: while not stop condition do
4: j← j+ 1;
5: Sample m training instances {F1, F2, . . ., Fm};
6: for i← 1, 2, . . . , m do
7: Gi ← backprop(Fi);
8: end for
9: Calculate gradient Ḡ ← 1

m

∑m
i=1 Gi;

10: Update weight W←W− λḠ;
11: if j mod k = 0 then
12: λ← αλ, j← 0;
13: end if
14: end while
15: return Trained model f ;
16: end function

sampled from the training set (line 5). Gradients of these train-
ing instances (Gi) are calculated using back-propagation (lines
6–8). Then neuron weights W are updated by subtracting the
average gradient of sampled instances λḠ scaled by learning
rate γ (line 14). When j is an integer multiple of k, λ is reduced
to αλ, i.e., the learning rate decays every k iterations (lines 11–
13). At the end of MGD, a trained model that has satisfactory
performance on validation set will be returned (line 15).

Although SGD has shown an advantage in emerging
machine learning techniques, it cannot fully utilize GPU
resources. MGD, on the other hand, is more compatible with
parallel computing and can speed up training procedures. To
evaluate the efficiency of MGD, we train the neural network
on the ICCAD benchmark using MGD and SGD separately
with the configuration in Table III. The training procedure is
shown in Fig. 5, where the x-axis is the elapsed time (s) in the
training procedure and the y-axis is the cross-entropy loss on
the validation set. The curve shows that MGD behaves much
more stably than SGD, which indicates the neural network
with the MGD learning strategy is more efficient and effective
than conventional SGD.

C. Learning Toward Biased Target

Softmax cross entropy can provide speedup for back-
propagation while attaining comparable network performance
with the mean square error [25]. In a n-category classifica-
tion task, the instance that belongs to class c has a ground

Fig. 5. SGD versus MGD.

truth y∗ ∈ R
n where y∗ has the property that y∗(c) = 1 and∑n

i=1 y∗(i) = 1. Each entry of y∗ is regarded as the probabil-
ity of the instance drawn from each category. The predicted
label vector y by classifier is defined similarly.

In the task of hotspot detection, y∗ = y∗n = [1, 0] and y∗ =
y∗h = [0, 1] are assigned as the ground truths for nonhotspot
and hotspot. To generate loss with respect to ground truth,
score x = [xh, xn] predicted by the neural network is scaled
to a (0, 1) interval by the softmax function shown in

y(0) = exp xh

exp xh + exp xn
, y(1) = exp xn

exp xh + exp xn
(6)

and then, cross-entropy loss is calculated as follows:

l
(
y, y∗

) = −(
y∗(0) log y(0)+ y∗(1) log y(1)

)
. (7)

In case of the situation we need to calculate log 0, we define

lim
x→0

x log x = 0. (8)

Because each entry of softmax label yi is the probability
of given instance Fi being nonhotspot N and hotspot H, we
have

F ∈
{N , if y(0) > 0.5
H, if y(1) > 0.5.

(9)

y(0)+ y(1) = 1. (10)

To improve the hotspot detection accuracy, a straightforward
approach is shifting the decision boundary, as shown

F ∈
{N , if y(0) > 0.5+ λ

H, if y(1) > 0.5− λ
(11)

where λ > 0 is the shifting level. However, this method can
cause a large increase in false alarms.



1180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 2019

(a) (b) (c) (d)

Fig. 6. Training loss versus accuracy. The loss in (a) and (b) are calculated with respect to the hotspot ground truth. The loss in (c) and (d) are calculated
with respect to the nonhotspot ground truth. An optimal loss does not guarantee a better discriminant performance: (a) illustrates a smaller loss than (b) but
suffers a lower hotspot prediction accuracy (75% versus 100%); (c) illustrates a smaller loss than (b) but suffers a higher false alarm (1 versus 0).

The conventional training procedure applies ground truth
label y∗n = [1, 0] for nonhotspot instances and y∗h = [0, 1]
for hotspot instances. For non hotspot instances, the classifier
is trained toward y∗n. If the training procedure meets the stop
criteria, then for most nonhotspot clips, f will predict them to
have a high probability, close to 1, to be nonhotspots. However,
as can be seen in (9), the instance would be predicted as a
nonhotspot as long as the predicted probability is greater than
0.5. Thus, to some extent, the classifier is too confident as
expected.

Intuitively, a too confident classifier is not necessary to give
a good prediction performance and on the contrary, may induce
more training pressure or even overfitting problem. We exem-
plify the case using a linear classifier. As illustrated in Fig. 6,
a more confident classifier results in an optimized loss, but
cannot guarantee higher classification accuracy. Therefore, an
assumption can be made that the hotspot detection accuracy
can be further improved by sacrificing the training loss of non-
hotspot samples. Meanwhile, the induced false alarm penalties
are expected to be lower than directly shifting the decision
boundary.

Assumption 1: Given a pretrained convolutional neural
network model with ground truth y∗n = [1, 0] and y∗h = [0, 1]
and hotspot detection accuracy a on a given test set. Fine-tune
the network with yε

n = [1− ε, ε], ε ∈ [0, 0.5), we can obtain
the hotspot detection accuracy a′ and false alarm fs′ of the new
model. Shifting the decision boundary of the original model to
reach the detection accuracy a′, the corresponding false alarm
is fs′′. We have a′ ≥ a and fs′′ ≥ fs′.

Because it is hard to have a solid proof of the above assump-
tion due to the uncertainty of the deep neural networks, we
conduct a sketch explanation of a′ ≥ a by analyzing the
training actions of the FC layer.

Proof: Consider a trained classifier f with Ol−1(Fi) as the
output of the second last layer, and the neurons have weight
Wl. Then the output can be expressed as follows:

xi =Wᵀ
l Ol−1(Fi) (12)

where Wl is learned toward the target y∗n = [1, 0]. We
will show in (29)–(32) that training gradients of nonhotspot
instances with biased labels are smaller than those without
bias. Considering the fine-tune process with yε

n = [1 − ε, ε],
training instances with predicted probability less than 1 − ε

are only supposed to generate minor gradient to update the
network, since they can not even make prominent difference
with the target yn when the stopping criteria is met. For
those nonhotspot instances that have predicted probability in
(1 − ε, 1) (confident instances), neuron weights are updated
along the gradient generated by confident instances.

Also, gradient vanishing theory [26] indicates a later layer
in the neural network learns faster, therefore within a limited
number of iterations, updates of the front layer can be ignored.
We assume the layers before Ol−1 are fixed for some iterations.
Let the updated weight for the output layer be W′l, and the
current output for confident instance Fc is

x′c =W′ᵀl Ol−1(Fc). (13)

Before adjusting the ground truth, we have

xc =Wᵀ
l Ol−1(Fc). (14)

Note that x ∈ R
2, therefore Wl has two columns Wl,1 and

Wl,2. Similarly, W′l = [W′l,1, W′l,2]. We define w and w′ as
follows:

w =Wl,1 −Wl,2, w′ =W′l,1 −W′l,2. (15)

Here w′ is updated from w through gradient descent

w′ = w− α∇w(xc(0)− xc(1))
(∇xc(0)Lc − ∇xc(1)Lc

)

= w− αOl−1(Fc)
(∇xc(0)Lc − ∇xc(1)Lc

)
(16)

where Lc is the cross-entropy loss and α > 0 is the learning
rate. Besides,

Lc = −yε
n(0) log yc(0)− yε

n(1) log yc(1) (17)

yc(0) = exp xc(0)

exp xc(0)+ exp xc(1)
(18)

yc(1) = exp xc(1)

exp xc(0)+ exp xc(1)
. (19)

Substitute (18) and (19) into (17)

Lc = −yε
n(0)xc(0)− yε

n(1)xc(1)

+ log(exp xc(0)+ exp xc(1)), (20)

∇xc(0)Lc = −yε
n(0)+ yc(0) (21)

∇xc(1)Lc = −yε
n(1)+ yc(1). (22)

∇xc(0)Lc − ∇xc(1)Lc > 0. (23)
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For hotspot instances

w′ᵀOl−1(Fh) = wᵀOl−1(Fh)− αOᵀ
l−1(Fc)

× (∇xc(0)Lc −∇xc(1)Lc
)
Ol−1(Fh). (24)

Because Ol−1 is ReLU output, we have Ol−1(Fc) > 0 and
Ol−1(Fh) > 0. Therefore,

wᵀOl−1(Fh) > w′ᵀOl−1(Fh) (25)

which indicates that

xh(0)− xh(1) > x′h(0)− x′h(1) (26)

⇒ exp xh(1)

exp xh(0)+ exp xh(1)
<

exp x′h(1)

exp x′h(0)+ exp x′h(1)
. (27)

Therefore, the predicted probability of hotspot instances being
real hotspots is expected to be greater, and the classifier is
more confident about those wrongly detected patterns that have
predict probability around 0.5. In other words, a′ ≥ a.

From a physical point of view, the biased term ε can be
regarded as a force “dragging” the decision boundary closer
to nonhotspot instances. However, in the space defined by the
pretrained model, all the instances are located in different loca-
tions and have different distances to the decision boundary. For
any nonhotspot instance, the loss with and without the biased
term ε is given by (28) and (29), respectively

l = − log y(0) (28)

lb = −(1− ε) log y(0)− ε log y(1)

= −(1− ε) log y(0)− ε log(1− y(0)). (29)

The training speed of the neural network is determined by the
gradient of the loss with respect to neuron weights. Because
the relationships between the prediction score y and neuron
weights are the same regardless of the loss function, the train-
ing speeds of the two cases are determined by the following
equations:

∂l

∂y(0)
= − 1

y(0)
(30)

∂lb
∂y(0)

= ε + y(0)− 1

y(0)(1− y(0))
. (31)

Observe that when y(0) ≤ 0.5, i.e., the network makes an
incorrect prediction

∣∣∣∣
∂l

∂y(0)

∣∣∣∣ >

∣∣∣∣
∂lb

∂y(0)

∣∣∣∣ (32)

which indicates if the bias is directly applied at the random
initialized networks, the network with bias updates slower than
the network without bias. Therefore, we apply multiple rounds
fine-tuning on the pretrained model instead of directly training
the network with bias.

The bias term ε cannot be increased without limitations,
because at some point, most of the nonhotspot patterns will
cross the middle line, where the probability is 0.5, causing
a significant increase of false alarms. Because the approach
improves the performance of hotspot detection at the cost
of confidence on nonhotspots, we call it BL. As the uncer-
tainty exists for large CNN, a validation procedure is applied

Algorithm 2 BL
Require: ε, δε, t, W, λ, α, k, y∗h, y∗n;

1: i← 0, ε ← 0, y∗h ← [0, 1];
2: while i < t do
3: y∗n ← [1− ε, ε];
4: fε ← MGD(W, λ, α, k, y∗n, y∗h); � Algorithm 1
5: i← i+ 1, ε ← ε + δε;
6: end while

Fig. 7. Bias learning shows a smaller false alarm penalty to obtain the same
hotspot detection accuracy.

to decide when to stop BL. To sum up, BL is iteratively carry-
ing out normal MGD with changed nonhotspot ground truths,
as shown in Algorithm 2.

Here ε is the bias, δε represents the bias step, and t is the
maximum iteration of BL. In BL, the hotspot ground truth
is fixed at [0, 1] while the nonhotspot truth is [1 − ε, ε].
Initially, the normal MGD is applied with ε = 0 (line 1). After
getting the converged model, fine-tune it with ε updated by
ε = ε+ δε. Repeat the procedure until the framework reaches
the maximum bias adjusting time t (lines 2–6).

Assumption 1 shows that the BL algorithm can improve
hotspot detection accuracy by taking advantage of the ReLU
property. Because BL is applied through training, the false
alarm penalty on the improvement of hotspot accuracy is
expected to be limited. Here we evaluate the BL algorithm
by training the neural network with ε = 0 to obtain an initial
model and fine-tuning with ε = 0.1, 0.2, 0.3. Then we perform
boundary shifting on the initial model to achieve the same test
accuracy with three fine-tuned models. As shown in Fig. 7,
BL has 600 less false alarm penalties for the same improve-
ment of hotspot detection accuracy equivalent to saving 6000s
of ODST consumption, which demonstrates the validity of
Assumption 1.

D. Batch Biased Learning

In the BL algorithm, we perform fine-tuning on the pre-
trained models with a fixed and biased ground truth until
meeting the stop condition. From the deduction above, we also
notice that it might not be suitable to apply the same biased
ground truth on all the nonhotspot instances. Therefore, to
dynamically adjust the bias for different instances, we define
a bias function as follows:

ε(l) =
{ 1

1+exp(βl) , if l ≤ 0.3
0, if l > 0.3

(33)
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Algorithm 3 BBL
Require: W, λ, α, k, y∗h, y∗n, β;

1: Initialize parameters, y∗h ← [0, 1];
2: while not stop condition do
3: Sample m non-hotspot instances {N1, N2, . . ., Nm};
4: Sample m hotspot instances {H1, H2, . . ., Hm};
5: Calculate average loss of non-hotspot samples ln with

ground truth [1, 0];
6: y∗n ← [1− ε(ln), ε(ln)];
7: for i← 1, 2, . . . , m do
8: Gh,i ← backprop(Hi);
9: Gn,i ← backprop(Ni);

10: end for
11: Calculate gradient Ḡ ← 1

2m

∑m
i=1(Gh,i + Gn,i);

12: Update weight W←W− λḠ;
13: if j mod k = 0 then
14: λ← αλ, j← 0;
15: end if
16: end while

where l is the training loss of the current instance or batch
in terms of the unbiased ground truth and β is a manually
determined hyper-parameter that controls how much the bias
is affected by the loss. Because the training loss of the instance
at the decision boundary is − log 0.5 ≈ 0.3, we set the bias
function to take effect when l ≤ 0.3. With the bias function,
we can train the neural network in a single-round MGD and
obtain a better model performance. Because ε(l) is fixed within
each training step, no additional computing effort is required
for back-propagation, as indicated by (31).

The training procedure is summarized as Algorithm 3,
where β is a hyper-parameter defined in (33). Similar to MGD,
we initialize the neural network (line 1) and update the weight
until meeting the convergence condition (lines 2–16). Within
each iteration, we first sample the same amount of hotspot
and nonhotspot instances to make sure the training procedure
is balanced (lines 3 and 4); we then calculate the average loss
of nonhotspot instances to obtain the bias level and the biased
ground truth (lines 5 and 6); the gradients of the hotspot and
nonhotspot instances are calculated separately (lines 8 and 9);
the rest of the steps are the normal weight update through
back-propagation and learning rate decay (lines 11–15).

E. Data Augmentation and Ensemble Testing

Many studies have shown that data preprocessing pro-
vides a greater generalization ability of the deep learning
model [12], [16], [27]. Observe that: 1) the orientation of a
clip does not affect its property under most illumination set-
tings and 2) usually there are more nonhotspot clips than
hotspot clips, we include several data augmentation techniques
in the training stage accordingly.

1) We randomly perform flipping (top-bottom transforma-
tion) and mirroring (left-right transformation) on each
feature tensor along its last axis. It is easy to derive
that the convolution operation is not flipping invariant,
therefore random flipping and mirroring will introduce

TABLE II
BENCHMARK STATISTICS

diversity to the dataset and increase the trained model’s
generalization ability (how well the model fits the testing
data [28], [29]).

2) We force the number of hotspot and nonhotspot
instances to be equal in each mini-batch. As shown in the
experiment of [16], a highly imbalanced dataset causes
performance degradation. Sampling equal amount of
instances from different categories is expected to benefit
both the training progress and the model performance.

To make better use of the flipping variance property, an
ensemble method is applied in the testing phase.

1) We do prediction on four directions of each clip and
take the average of the prediction scores as the final
prediction result.

Although ensemble testing will induce additional testing run-
time, it offers better model performance.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement our deep BL framework in Python with the
TensorFlow library [30], and test it on a platform with a Xeon
E5 processor and Nvidia Graphic card. To fully evaluate the
proposed framework, we employ four test cases. Because the
individual test cases in the ICCAD 2012 contest [10] are not
large to verify the scalability of our framework, we merge all
the 28-nm patterns into a unified test case ICCAD.

Additionally, we adopt four more complicated industry test
cases: Industry0 – Industry3. The details for all test
cases are listed in the Table II.

Columns “Train HS#” and “Train NHS#” list the total num-
ber of hotspots and the total number of nonhotspots in the
training set. Columns Test NHS# and Test HS# list the total
number of hotspots and total number of nonhotspots in the
testing set. Images in the testing set of ICCAD have a res-
olution of 3600 × 3600 which is larger than the images in
industry benchmarks (1200 × 1200). Therefore, during the
testing phase, each clip in ICCAD Testing Set is divided
into nine 1200 × 1200 blocks before feeding into the testing
flow. Mask images in the four benchmarks are from differ-
ent OPC stages, and have different complexities, as shown
in Fig. 8. Note that classic hotspot detection problems aim
to find and revise problematic designs at an early stage of
the whole layout verification flow which corresponds to cases
ICCAD benchmarks and Industry0 that contains before-
OPC patterns and are labeled based on the results of the
entire layout verification flow, including OPC and lithography
simulation. Industry1-Industry3 are benchmark sets
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(a) (b)

(c) (d) (e)

Fig. 8. Benchmark examples. (a) and (b) are before-OPC pat-
terns from ICCAD and Industry0, respectively. (b)–(d) correspond to
Industry1-Industry3, which are from intermediate OPC results. The
pattern becomes more complicated after OPC and is more challenging for
machine learning based hotspot detectors.

TABLE III
TRAINING CONFIGURATIONS

that contain layouts from intermediate OPC results which are
labeled hotspot or nonhotspot based on the lithography simula-
tion results of current OPC step. The motivation of introducing
intermediate OPCed layouts is to show some potential of
embedding efficient hotspot detectors into OPC engines and
facilitate the procedure.

B. Model Training

We train five individual models for each benchmark set fol-
lowing Algorithm 3. Table III lists the details of the training
configurations. “Adam” is an improved optimizer to conduct
a gradient descent proposed in [31] that is proved to converge
faster. Parameters α and k denote that the learning rate (λ)
drops to αλ every k steps. β is the coefficient that appears
in (33) and controls how much the bias is affected by the loss
of a nonhotspot batch, therefore, it also controls the tradeoffs
between accuracy and false alarms. Here we use β = 6 for the
datasets (ICCAD, Industry0, and Industry1) with more
regular patterns and β = 43 for the datasets (Industry2 and
Industry3) with complicated patterns. Because it takes
more effort to fit the complicated patterns with the neural
networks, we pick a larger β to avoid additional perturbation
on the neural networks at early training stages (Fig. 9). Feature
tensor channel represents the number of remaining elements
after dropping high frequency components in the feature tensor
extraction procedure.

We visualize the training loss of BBL and BL of five bench-
marks in Fig. 9, where Fig. 9(a)–(e) correspond to ICCAD,
Industry0, Industry1, Industry2, and Industry3,
respectively. The “Loss” is the average cross-entropy loss
given by (7) with respect to the unbiased ground truth. For the
ICCAD and Industry0 dataset, the BBL converges quickly
within 20 000 steps, while the BL requires manual adjustment
of the bias and finally converges at a higher loss level [see
the blue curve in Fig. 9(a) and (b)]. Also, for the benchmarks
Industry1–Industry3, the BBL (red curve) has better
convergent result than the BL (blue).

C. Model Testing

To evaluate the effectiveness of the BBL, we first com-
pare the test results on four datasets (statistics are listed
in Table II) with our preliminary results in [19], as shown
in Tables IV and V. “Accu (%)” and “FA #” denote the
hotspot detection accuracy (Definition 1) and the false alarm
number (Definition 2). “FA (%)” is the percentage rep-
resentation of false alarms that are coherent with FA #.
“SPIE’17 [16]+BL” corresponds to the results obtained by
inserting BL (Algorithm 2) in SPIE’17 [16] neural networks
model; “SPIE’17 [16]+BBL” lists the results obtained by
embedding BBL (Algorithm 3) in SPIE’17 [16] neural
networks model; “BL [19]” corresponds to the original BL
algorithm (Algorithm 2) that is applied in our preliminary
work; column “BL [19] + AUG” contains the results obtained
from the original BL and the data augmentation mentioned
in Section IV-E; “BBL” lists the testing results of the BBL
as in Algorithm 3; and “BBL + AUG” also includes the
data augmentation in the BBL procedure. Note that original
SPIE’17 [16] also employs data augmentation on raw layout
images.

In this paper, we propose a BBL algorithm that can train
the neural network in one round MGD and seek a better
tradeoff than the BL algorithm. Table IV lists the testing
results of target layouts ICCAD and Industry0, which show
that BBL surpasses BL on both average detection accuracy
and false alarm. With the aid of data augmentation, detec-
tion accuracy is further improved from 97.8% to 98.8% with
ignorable false alarm penalty. For intermediate OPCed layouts
Industry1-3 in Table V, BBL also significantly reduces
average false alarm from 2347 to 1981 when achieving almost
the same detection accuracy. We can also notice that for
OPCed layouts with data augmentation, BBL does not exhibit
as efficiently as on target layouts. One reason falls on the
complexity of OPC patterns which induce more challenge on
neural network training, when unbiased labels dominate the
training procedure compared to BL which forces nonhotspot
labels to be biased.

We also embed the proposed BL and BBL algorithms
into large neural networks designed in SPIE’17 [16] which
takes raw layout images as input. Compared with original
SPIE’17 [16] (as shown in Tables VI and VII), BL and BBL
can significantly improve the hotspot detection performance.
For target layouts, average detection accuracy increased
from 97.63% to 98.17% and 98.76% with BL and BBL,
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(a) (b) (c)

(d) (e)

Fig. 9. Visualize training of the BBL (red) and the BL (blue). On each benchmarks, BBL exhibits lower loss than the BL at convergence. (a) ICCAD.
(b) Industry0. (c) Industry1. (d) Industry2. (e) Industry3.

TABLE IV
PERFORMANCE COMPARISON BETWEEN THE BL AND THE BBL ON TARGET LAYOUTS

Fig. 10. Throughput comparison of different neural network models.

respectively. BL also reduces the false alarm count from
1394 to 1185. For OPCed layouts, BL and BBL dramatically
increase the detection accuracy from 88.17% to 94.39% and
95.84%, respectively. In particular, BBL can further improve
the hotspot detection accuracy when inserted in large SPIE’17
nets at relatively large false alarm penalty, because biased
labels dominate during the training procedure of BBL for
neural networks with larger capacity. Fig. 10 illustrates the
testing speed of different neural network models that corre-
spond to Tables IV and V. From the experimental results, we
can clearly see that the proposed methods can achieve similar
hotspot detection accuracy compared to larger neural network
models but with much less computing costs (104 clips/s of

deep networks in SPIE’17 versus 156 clips/s in our proposed
network architecture). Although data augmentation and
ensemble testing slightly induces computing costs, we can
still observe great advantage of the proposed models over
SPIE’17 nets.

We then compare the hotspot detection results with four
state-of-the-art hotspot detectors in Tables VI and VII.
“SPIE’15 [5]” is a traditional machine learning-based hotspot
detector that applies the density-based layout features and
the AdaBoost [32]—DecisionTree model. “ICCAD’16 [6]”
takes the lithographic properties into account during feature
extraction and adopts the more robust Smooth Boosting [33]
algorithm. “SPIE’17 [16]” is another deep learning solution for
hotspot detection that takes the original layout image as input
and contains more than 20 layers. “SOCC’17 [18]” employs
a deep neural networks that replace all pooling layers with
strided convolution layers and contains the same number of
layers as SPIE’17.

Overall, our framework performs better than traditional
machine learning techniques (SPIE’15 [5] and ICCAD’16 [6])
with at least a 2% advantage for the detection accuracy
(98.88% of BBL versus 96.89% of ICCAD’16) on target lay-
outs. Traditional machine learning models are effective for the
benchmarks with regular patterns (ICCAD and Industry0)
with the highest detection accuracy of 97.7% on the ICCAD
and 96.07% on the Industry0 achieved by [6]. However,
manually designed features, including the density-based fea-
tures and the CCAS, have difficulties to grasp the attributes
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE BL AND THE BBL ON OPCED LAYOUTS

TABLE VI
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART HOTSPOT DETECTORS ON TARGET LAYOUTS

TABLE VII
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART HOTSPOT DETECTORS ON OPCED LAYOUTS

of the post-OPC mask layouts. For OPCed layouts, [5]
suffers a large performance degradation with only approx-
imately 45% detection accuracy on the most complicated
case Industry3. Although prior knowledge and a more
robust Smooth Boosting [33] algorithm are applied in [6],
the hotspot detection accuracy inevitably drops around 8%.
Deep learning solutions [16], [18] and BBL+AUG exhibit bet-
ter performances with hotspot detection accuracy of 91.20%,
88.17%, and 95.03%, respectively. It is notable that the archi-
tecture of our framework contains significantly fewer layers
than the framework in SPIE’17 and SOCC’17. Although the
shallow architecture results in acceptable more false alarms
than deep models, our framework can still offer significant
higher accuracy on ICCAD, Industry0, Industry2, and
Industry3.

Although neural networks are not as computational effi-
cient as traditional machine learning methods, with the aid of
parallel computing units (e.g., GPU), we are able to achieve
comparable and acceptable processing speed. Fig. 11 presents
the detecting speed of different hotspot detectors adopted in
this paper, where SPIE’15 and ICCAD’16 are tested on CPU
only and neural network implementations are tested on graphic
cards. Runtime reports show that although neural network
models are not computational friendly due to the complicated
convolutional operations, we are still able to complete the
task with comparable and acceptable time, which also show
the potential of enhancing the layout verification flow with
dedicated computing units instead of CPU only.

Fig. 11. Throughput comparison with state-of-the-art hotspot detectors.

VI. CONCLUSION

To address the existing problems of machine learning-based
printability estimation techniques, we first propose a high-
dimensional feature (feature tensor) extraction method that
can reduce the size of training instances while keeping the
spatial information. The feature tensor is also compatible
with powerful convolutional neural networks. Additionally,
to improve hotspot detection accuracy, we first develop a
BL algorithm, which takes advantage of the ReLU func-
tion in CNN to prominently increase accuracy while reducing
false alarm penalties. We further propose a BBL algorithm to
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automatically adjust the training ground truth according to the
current batch loss, that can offer better tradeoffs between accu-
racy and false alarms. The experimental results show that the
BBL algorithm is more efficient during training and our frame-
work outperforms the other hotspot solutions on complicated
benchmarks. Source code and trained models are available at
https://github.com/phdyang007/dlhsd. As the technology node
keeps shrinking down, we hope this paper can be a demonstra-
tion that deep learning has the potential to provide satisfactory
solutions for advanced design for manufacturability research.
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