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Abstract—Recently, in VLSI design for manufacturability (DFM),
capturing and representing the intrinsic characteristics of a layout is
of great importance. Especially, there has been revival of interest in
applying machine learning techniques into DFM field. Feature extraction
of layout patterns is imperative before feeding into learning models
so that feature representation directly affects performance of machine
learning model. In this paper, a literature review of recent progress on
VLSI layout feature extraction is firstly conducted. Then, for the first
time, we propose a dictionary learning approach wrapped in an online
learning model in applications of VLSI layout such as sub-resolution
assist feature (SRAF) generation and hotspot detection. With mapping
original features into a sparse and low-dimension space, dictionary
learning model is benefit to calibrate a machine learning model. The
experimental results show that our method not only improves the
accuracy of hotspot detection but also boosts F1 score in machine
learning model-based SRAF generation with less time overhead.

Index Terms—VLSI layout; Hotspot detection; SRAF generation;
Feature extraction; Dictionary learning

I. INTRODUCTION

In modern VLSI design for manufacturability (DFM), measuring

the similarity among different layout designs is extremely crucial

and meanwhile involved in almost all applications in the field [1],

[2]. Capturing and representing the intrinsic characteristics such as

topological information of a layout is the kernel to addressing the

problem. Since pattern intuitively describes and summarizes two-

dimensional polygon configurations in a layout design, pattern-based

scheme is widely used in layout design. For example, design rule

check (DRC) Plus exploiting a library of patterns to identify prob-

lematic 2D patterns, has been proven to be effective [3]. However,

as integrated circuit feature sizes continue to decrease, patterning

technology may have poor process margin [4]. In addition, the

number of patterns increases dramatically, which brings about chal-

lenges in identifying, organizing, and carrying forward the learning

of each pattern from test layout designs to mature products. On

the other hand, recently, machine learning technologies have been

heavily introduced into DFM. To a machine learning model, the fed

features directly affect the performance of regression and prediction.

Therefore, the problem how to extract characteristics from numerous

patterns properly demands prompt solution. In the paper, we will

exemplify two applications in computational lithography domain to

go in depth on feature extraction of layouts.

With feature size of semiconductors entering the nanometer era,

lithographic process variations emerge more commonly in manu-

facturing process. It will lead to manufacturing defects and decrease

yield. Although lithographic simulation is able to generate fabrication

result accurately, it suffers from great runtime consumption. To
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address these problems, different kinds of approaches are proposed.

One is mask optimization through various resolution enhancement

techniques (RETs) [5]–[7]. In modern DFM, this strategy plays an

important role in patterning and litho-friendly layout design [8],

which can improve the yield of semiconductors. Sub-resolution assist

feature (SRAF) [9] is a representative strategy of numerous RET

techniques. Via transferring light to the positions of target patterns,

small SRAF patterns can improve the robustness of target patterns

to lithographic variations. There are many algorithms to generate

SRAFs such as rule-based [10], model-based [11] including machine

learning model-based approach [12]. Rule-based SRAF generation

method is very fast, but it is hard to define and extract rules

from model based SRAFs. Hence, the performance can not be

guaranteed. Although model-based method is more accurate, it is

time-consuming. In addition, it is hard for conventional algorithms

to generate consistent SRAF patterns and may require too much engi-

neering efforts. However, the machine learning model-based scheme

can faster and more precisely obtain consistent SRAF patterns.

Another way to alleviate lithographic process variations, especially

for some sensitive layout patterns, is so-called hotspot detection.

Many methods such as pattern matching-based [13], [14], machine

learning model-based [15], [16] and recently convolutional neural

network (CNN) model-based [17] hotspot detection algorithms are

proposed. Pattern matching provides speedup in comparison with

lithographic simulation. However, it is only applicable to detect

already known or similar patterns and has poor hotspot recogni-

tion rate on unknown patterns. The approaches based on machine

learning, especially deep learning techniques have been able to

achieve reasonable good result for hotspot detection with less time

consumption.

With a remarkable success on some DFM applications [18]–

[20], machine learning has been known as emerging and promissing

technique applied in SRAF generation and hotspot detection. By

computing the lithographic objective function, a mathematical model

is calibrated based on the training data set. Then calibrated model

can predict some values such as hotspot or non-hotspot, inserting

SRAF or not for the testing data set. In a machine learning flow,

before feeding into the learning machine engine, raw data should be

preprocessed in feature extraction stage. Feature representation of

original data directly affects prediction performance. In other words,

with more representative and generalized features, the model has

better performance of approximation and prediction. Besides, the

better-selected features can avoid overfitting to some extents. In this

paper, we propose a dictionary learning based approach wrapped

in an online learning model to extract features. To the best of our

knowledge, there is no previous art in applying dictionary learning

method into the applications of VLSI DFM. Our main contributions

are listed as follows.
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Fig. 1: (a) Original layout; (b) Density-based feature; (c) Spectrum-

based feature; (d) CCAS feature.

• Dictionary learning concept is firstly introduced into DFM

domain of VLSI. Within an online learning model, it can handle

a large amount of layout patterns.

• Our proposed framework are applied into two issues, SRAF

generation and hotspot detection. The revised features are more

sparse and representative.

• The experimental results show that our method not only im-

proves the accuracy of hotspot detection but also boosts the F1

score of model-based SRAF generation.

The rest of this paper is organized as following. Section II

gives a quick survey of recent progress on VLSI layout feature

extraction. Section III introduces the concept of dictionary learning

and online learning model. Section IV illustrates the experiment

results, followed by conclusion in Section V.

II. PREVIOUS FEATURE EXTRACTION APPROACHES

In DFM, layout feature extraction plays an important role. In the

case of VLSI layouts, a set of feature vectors will be extracted to

represent layout pattern information. To represent layout accurately,

numerous kinds of feature extraction methods have been proposed

in previous work.

A. Density-based Feature

The density-based feature [13], [21] summarizes local pattern

density of a layout within given grids. This feature is reasonable

to measure the mask printability since layouts with high pattern

density have a higher risk of suffering defects. The core scheme is

first divide encoding area of each layout into some square grids, and

then calculate the ratio between the pattern area in one grid and the

corresponding grid area. Compared with other features, the density-

based feature vectors are prone to be separated in low-dimension

space. It benefits training and inference of a machine learning

model. However, this rough idea will lead to global information

loss and degenerate of machine learning model in high-dimension.

In some cases, the extraction method even extract the same feature

vectors from different patterns. Hence, a modified version of density-

based feature extracted by local grid density differential (LGDD)

method is proposed in [22]. Traditional density-based feature just

calculates the density value of a gird. However, the new scheme

sets triangles locating at 4 corners of a grid as sampling area

and concatenate density values from different sampling areas to

form a feature vector. But the longer feature dimensionality may

increase the risk of overfitting. To alleviate the overfitting problem,

some extended approaches are investigated. In [15], the parameters

such as grid size and window size of density-based feature are

optimized by maximizing the Mahalanobis [23] distance between

non-hotspot and hotspot features. The principal component analysis

(PCA) method [24] is exploited to reduce the dimensionality of

feature vectors. However, information loss is inevitable since non-

principal components are ignored. In addition, there also exists a

problem that how many principal components need to be kept. To

give a direct understanding, the density feature is shown in Fig. 1(b).

B. Spectrum-based Feature

As illustrated in Fig. 1(c), spectrum-based feature applies fre-

quency domain transforms such as discrete Fourier transform (DFT),

discrete cosine transform (DCT). In [21], [25], a feature vector

consists of the coefficients of Fourier transform of a layout pattern.

Since the feature reflects an effect due to projection optics, it is

expected to benefit a machine learning model with highly accurate

prediction. In addition, in [25], the feature has made a remarkable

success on reflected and shifted patterns.

After achieving a success on wafer clustering tasks [26], [27],

DCT coefficients are also exploited as the input of convolutional

neural network (CNN) [17]. Compared with raw layouts as inputs,

CNN with DCT as inputs can achieve a higher accuracy. The success

of DCT is that the extracted features will be easier to obtain high

sparsity and global representations than raw images.

C. Concentric Circle Area Sampling Feature

Recently proposed concentric circle area sampling (CCAS) [28]

is developed from concentric square sampling (CSS) [29]. It takes

advantages of layout properties and lithography process, thus has

made considerable improvements on hotspot detection accuracy.

Meanwhile, because of reflecting light diffraction effects, CCAS

layout features are also exerted to generate SRAFs in [12]. With

considering concentric propagation of diffracted light from mask

patterns, the core method of CCAS is sub-sampling on concentric cir-

cles. However, since adjacent circles contain similar information, the

CCAS features have much redundant information. The redundancy

will result in some problems such as hindering fitting of a machine

learning model. As a result, concentric circle sampling (CCS) method

which exploits the mutual information to select import circles of

CCAS is proposed in [16]. The objective of circle selection is

maximizing the dependency of selected circles on the corresponding

classification variable. Because of reducing redundancy of CCAS,

CCS is benefit to calibrate machine learning model. Fig. 1(d) shows

the CCAS feature extraction method.

D. Other Successful Features

Besides the above features, there are many kinds of other success-

ful features such as modified transitive closure graph representation

[14], fragmentation-based context characterization feature [30], [31],

histogram of oriented light propagation (HOLP) [32], improved

tangent space-based characterization [33] and so on. In [14], authors

modified the transitive closure graph (TCG) [34] method to extract

critical topological features within a pattern. Meanwhile, in [33], the

improved tangent space representation which reflects the radius and

angle of a polygon in a layout clip has been proposed. Considering
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the geometric shape of a layout pattern and combined impact of its

neighboring patterns, Yu et al. investigated a fragmentation-based

feature [30] consisting of important information such as pattern

shapes, the distance between patterns and corner information (convex

or concave). Recently, inspired by histogram of oriented gradient

(HOG) [35], HOLP [32] feature which reflects light propagation in

the exposure process has been presented. This feature is robust to

small shifts of layout patterns.

III. DICTIONARY LEARNING BASED FEATURE EXTRACTION

A. Dictionary Learning Approach

Dictionary learning and sparse representation are the two related

topics in terms of data decomposition [36]. Recently, these two

models are coupled in a self-adaptive dictionary learning model,

aiming at decomposing the signal with sparse nature over a learned

dictionary. Specifically, the mechanism of dictionary learning and

sparse representation is to select only a few atoms from a well-

trained dictionary and obtain their linear combination to approximate

the data sparsely and accurately. The joint objective function of

dictionary learning model is following:

min
x,D

1

N

N∑
i=1

{1
2
‖yi −Dxi‖22 + λ ‖xi‖p}, (1)

where yi ∈ R
n is the input data vector, and D = {dj}sj=1 ,dj ∈ R

n

refers to the dictionary, xi ∈ R
s indicates sparse decomposition

coefficients and p denotes the type of norm. Meanwhile, N refers

to the total number of training data vectors in memory.

Since the joint optimization of both dictionary and sparse coef-

ficients is non-convex, but sub-problem with one variable fixed is

convex. Two stages, sparse coding and dictionary constructing, are

alternatively performed in a dictionary model.

The objective function for sparse coding of i-th training data vector

in memory is showed in Equation (2):

xi
Δ
=argmin

x

1

2
‖yi −Dx‖22 + λ‖x‖p. (2)

According to the format of penalty term, the method of sparse

coding can be simply divided into two categories. If p = 0 in (1),

this is an NP-hard problem. Some greedy solutions are proposed.

Matching pursuit (MP) [37] and orthogonal matching pursuit (OMP)

[38] are the representatives among them. Convex relaxation algo-

rithms use convex replacement for non-convex l0-norm. If p = 1
in (1), this is the famous problem about least absolute shrinkage

and selection operator (LASSO) [39]. Least angle regression (LARS)

[40], coordinate descent [41] with its generalizations and fast iterative

shrinkage-threshold algorithm (FISTA) [42] are classical and efficient

schemes to solve LASSO problem.

The objective function for dictionary construction is:

D
Δ
=argmin

D

1

N

N∑
i=1

1

2
‖yi −Dxi‖22 + λ‖xi‖p. (3)

To construct dictionary, different classes of methodologies are

proposed. Fourier transformations, wavelet [43], curvelet [44] and

contourlet transform [45] are deduced based on the analytical so-

lutions which have the fixed mathematical formats. These methods

belong to analytical dictionary, in which the signal is decomposed

over pre-defined atoms. However, these schemes do not explore the

characters of the data such as structure or texture. In addition, the

bases of analytical dictionary should be orthogonal, which restricts

their application in VLSI. Another class of methods is called non-

analytical dictionary, or self-adaptive dictionary learning method

such as K-SVD [46], recursive least square dictionary learning

method (RLS) [47], online dictionary learning method (ODL) [48]

and so forth. These more flexible methods aim at obtaining an over-

complete dictionary, i.e. the number of atoms is far larger than

the dimension of one atom. The atoms are learnt from samples

so that they can explore the data with complicated structure. The

common model of self-adaptive dictionary learning is summarized

in Algorithm 1.

Algorithm 1 Dictionary Learning Approach

Require: Original features Y ← {yi}Ni=1 ,yi ∈ R
n.

Ensure: Dictionary D ← {dj}sj=1 ,dj ∈ R
n, sparse features X ←

{xi}Ni=1 ,xi ∈ R
s.

1: Initialization: Initial dictionary D0,

2: while not convergence do
3: Sparse coding; � Equation (2)

4: Dictionary construction; � Equation (3)

5: end while

K-SVD creativity uses singular value decomposition (SVD) to

obtain the atoms consequentially and use indices matrix before SVD

to keep the sparsity constraint. However, K-SVD is a batch learning

method which means that the whole dataset should be loaded into

memory at the beginning of computation. In the stage of sparse

coding, K-SVD solves l0-norm problem via OMP method which is

very time-consuming. In addition, SVD also has a high computation

complexity based on the size of matrix. Therefore, K-SVD cannot

easily handle large dataset. To deal with large data set, RLS, ODL

and its modified version that double online dictionary learning

(DODL) [49], are proposed. RLS dictionary learning method in-

volves some recursive-decomposition and searching computations.

It is time-consuming when dealing with large data set. DODL uses

the sub-sampling matrix to further shrink the dimensionality of

input medical data. However, this scheme of randomly choosing the

dimension of a feature vector may lead to unnecessary information

loss.

In fact, with integrated circuits entering ultra-large-scale era, VLSI

layouts are more and more complex. Traditional dictionary learning

techniques, like K-SVD, cannot satisfy the requirements of handling

a layout with numerous patterns. The simplified online framework

is suit and good enough for dictionary learning in VLSI.

B. Online Learning Algorithm

Based on the review, we utilize dictionary learning approach

wrapped within online framework. The model is in a stochastic

fashion as there is an assumption in online learning that the number

of input samples can be infinite and i.i.d. input yi is drawn from an

unknown probability distribution.

Sparse coding and dictionary construction are still performed

alternatively in iterations. In one iteration, one sample (or a mini-

batch) is loaded into memory and processed at a time. In the stage

of sparse coding, decomposition only performs on current sample.

Therefore, it can be seen that Equation (2) is in an incremental sense.

Since l1 norm can be solved efficiently, we adopt it as the penalty

term in Equation (2). Coordinate descent algorithm is exploited to

address the sub-problem, and time overhead can be dramatically

reduced. In the stage of dictionary construction, two auxiliary

variables which carry the past information from sparse coefficients

and input data, are introduced to help compute the dictionary. They
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Fig. 2: Visualization of a dictionary trained by ODL algorithm.

play an important role in updating atoms, specifically when the

block coordinate descent method with warm start is applied as the

optimization scheme. The updating rules for auxiliary variables are

showed in Equation (4) and Equation (5), respectively.

With the help from auxiliary variables, the rules for sequentially

updating atoms are summarized in Equations (6) and (7). In Equa-

tion (6), Dt−1 is selected as the warm start of D. bj indicates the

j-th column of Bt, while cj is the j-th column of Ct. C [j, j]
denotes the j-th element on diagonal of Ct. Equation (7) is an

l2 norm constraint on atoms to avoid atoms becoming arbitrarily

large (which may lead to arbitrarily small sparse coefficients). [50]

proves that in the stage of constructing dictionary, the convex

optimization problem allowing separable constraints in the updated

blocks (columns) will guarantee the global convergence. The online

framework for constructing dictionary in t-th iteration is illustrated

in Algorithm 2.

Bt ←
(
1− 1

t

)
Bt−1 +

1

t
ytx

�
t . (4)

Ct ←
(
1− 1

t

)
Ct−1 +

1

t
xtx

�
t . (5)

uj ← 1

C [j, j]
(bj −Dcj) + dj . (6)

dj ← 1

max
(‖uj‖2, 1

)uj . (7)

Algorithm 2 Online Dictionary Construction

Require: Dt−1 ← {dj}sj=1 ,dj ∈ R
n,

Bt−1 ← {bj}sj=1 ,bj ∈ R
n,

Ct−1 ← {cj}sj=1 , cj ∈ R
s.

Ensure: Dictionary Dt ← {dj}sj=1 ,dj ∈ R
n.

1: Update two auxiliary variables Bt, Ct; � Equations (4) and (5)

2: for j = 1 to s do
3: Update the j-th atom dj ; � Equations (6) and (7)

4: end for

An original layout is showed in Fig. 1(a). With many original

layouts as input samples, we visualize the dictionary trained by

dictionary learning method in online framework. From the visual-

ization showed in Fig. 2, we can explore that some basic texture

characteristics of the layouts have been obtained. Some redundant

information exists in the dictionary since it is over-complete.

IV. EXPERIMENTAL RESULTS

A. Overall Flow

The whole working flow of our model is shown in Fig. 3. The

step for online dictionary learning is after completing original feature

Original Feature 
Extraction

VLSI 
Layouts

Online Dictionary 
Learning

Classifiers (e.g. 
SVM, AdaBoost)

Completed Tasks 
(e.g., SRAF, 

Hotspot detection)

Fig. 3: The whole algorithm flow.

extraction. Our well-trained dictionary is made up of atoms which are

representatives of original features. The original features are decom-

posed over the well-trained dictionary and represented as the linear

combinations of atoms. The new features, i.e., sparse decomposition

coefficients, are expected to be benefit to avoid overfitting. In next

stage, the classifier is fed and calibrated by the new features. In

our proposed model, online dictionary learning plays an important

role in initial pattern sampling and mapping original features into

a sparse and low-dimension domain. As a transforming method of

feature space, it can cooperate with many feature extraction methods

for different purposes in DFM.

Proposed online dictionary learning framework is applied into

two applications of VLSI domain: hotspot detection and SRAF

generation. To verify the performance, the framework is embedded

in the advanced model of [16] to predict hotspots and [12] to

generate SRAFs. Our method is implemented via Python with the

Scikit-learn library [51] on a 8-core 3.7GHz Intel platform.

B. Case Study: Hotspot Detection

In the application of hotspot detection, the original dataset,

ICCAD-2012 benchmark [52] is not big enough. Therefore,

we adopt three larger and more complicated industry cases,

Industry1-Industry3, as our benchmark set. In Fig. 4(a), the

small dots denote the sampling points to generate layout clips of

benchmarks for hot-spot detection. Hence, this benchmark set of

VLSI layout clips is sampled densely. As a result, the training dataset

consisting of many similar instances is good for training dictionary.

TABLE I summarizes our results compared with the results by

the prior art [16]. Column “Benchmarks” lists all the test datasets of

layouts. Columns “Accu”, “FA” and “CPU” refer to the evaluation

metrics in terms of the accuracy [52], false alarms [52] and the total

runtime. Column “ICCAD’16” indicates the experiment results by

[16], while Column “Ours” is corresponding to the results of our

dictionary learning model within online framework. Note that for

fair comparison, in “Ours”, the same classifier as [16] is utilized.

(a)

Label: 1

Label: 0

(b)

Fig. 4: Dense sampling in (a) hotspot detection; (b) SRAF generation.
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TABLE I: Comparison with [16] on Hotspot Detection.

Benchmarks
ICCAD’16 [16] Ours

Accu(%) FA# CPU(s) Accu(%) FA# CPU(s)

Industry1 89.9 1136 192.9 98.1 7600 203.7
Industry2 88.4 7402 249.9 93.2 22049 253.5
Industry3 82.3 8609 288.9 94.2 23468 302.4

Average 86.9 5716 243.9 95.2 17706 253.2
Ratio 1.00 1.00 1.00 1.10 3.09 1.04

To fit the consequence classifier, we truncate the numerical value

of sparse coefficients. In fact, it is reasonable since the absolute

values of sparse coefficients are concentrated in the range from 0 to

200. It can be seen from the table that with slightly longer running

time, the accuracy has been improved by 10% in average, while the

false alarms are dramatically increased. The reason may be that the

benchmarks are quite imbalanced.

C. Case Study: SRAF Generation

In SRAF generation issue, the original benchmark is kept since it

is really large. Fig. 4(b) illustrates the feature extraction of machine

learning model based SRAF generation. The layout which is put on

2-D grid plane and sampled at each grid will generate many similar

feature vectors. So the training process of dictionary is benefit from

dense sampling. To demonstrate the performance of proposed model,

we exploit the same benchmark set as applied in [12], which consists

of 8 dense layouts and 10 sparse layouts. The spacing between

adjacent contacts for dense and sparse layouts are different, which

are set to 70nm and ≥ 70nm respectively.

TABLE II compares our method with a state-of-the-art machine

learning based SRAF generation tool [12]. Column “Benchmarks’

lists adopted test layouts. Columns “F1 score” [53] and “CPU” are

the evaluation metrics in terms of the learning model performance

and the total runtime. Column “ISPD’16” refers to the experiment

results by [12]. One thing worth to mention is in “Ours”, the follow-

up classifier is also the same with [12]. The results from TABLE II

prove that in average, 5.8% improvement on F1 score with about

20% speed-up on running time is achieved.

V. CONCLUSION

In this paper, we propose an online dictionary learning based

approach to extract sparse VLSI feature. We apply the framework

into the two famous issues: hotspot detection and SRAF generation.

To verify the performance, our framework has been embedded into

two fancy models of above issues. The experiment results show

that the accuracy of hotspot detection on complicated and large

VLSI layouts has been improved and the F1 score of machine

learning model in SRAF generation has also been boosted with less

time overhead. Although the results of false alarms are high and

some metrics of SRAF issue like process variation band (PV band)

area and edge placement error (EPE) are still need to be verified

by lithography simulation, the framework of dictionary learning is

promising. On the other hand, the dictionary learning algorithms

introduced in this paper are unsupervised learning methods. In

other words, the unsupervised dictionary learning do not exploit

the label information. Our future work will focus on introducing

supervised dictionary learning into VLSI DFM. With the transistor

size shrinking rapidly and the layouts becoming more and more

complex, we expect to apply dictionary learning framework into

more DFM applications.

TABLE II: Comparison with [12] on SRAF Generation.

Benchmarks
ISPD’16 [12] Ours

F1 score(%) CPU(s) F1 score(%) CPU(s)

DenseClip1 95.37 1.44 97.24 1.04
DenseClip2 94.73 1.29 97.06 1.02
DenseClip3 94.00 1.20 96.86 0.94
DenseClip4 93.89 1.51 96.46 1.12
DenseClip5 94.34 1.40 96.52 1.10
DenseClip6 93.44 1.11 96.81 0.89
DenseClip7 94.20 1.34 97.10 1.06
DenseClip8 93.43 1.32 97.21 1.07
SparseClip1 90.56 2.47 93.62 1.88
SparseClip2 87.65 6.65 94.11 4.91
SparseClip3 86.21 13.33 93.51 10.19
SparseClip4 86.54 22.50 93.34 17.56
SparseClip5 85.55 27.66 93.23 22.20
SparseClip6 85.32 39.3 93.21 30.78
SparseClip7 84.94 53.96 93.01 41.87
SparseClip8 84.28 70.98 92.72 55.61
SparseClip9 85.02 90.39 90.21 70.41
SparseClip10 83.96 100.86 92.60 80.13

Average 89.64 24.37 94.85 19.16
Ratio 1.000 1.000 1.058 0.786
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