

MOSAIC: Mask Optimizing Solution With Process Window Aware Inverse Correction

Jhih-Rong Gao, Xiaoqing Xu, Bei Yu, and David Z. Pan

Dept. of Electrical and Computer Engineering The University of Texas at Austin

Supported in part by NSF, SRC, NSFC, and Oracle

Outline

- Mask Optimization: Why & How?
- Proposed Approach: MOSAIC
- Experimental Results
- Conclusions

Sub-wavelength Lithography

Target

OPC

Mask

Mask

Printed Image

scattering

Image distortion is compensated

Image distortion

due to light

Optical Proximity Correction (OPC)

Resolution enhancement technique

Required for advanced technology nodes to ensure printability

Inverse Lithography Technique (ILT)

Further scaling demands more aggressive OPC

Pixel-based OPC

> Higher contour fidelity than conventional OPC methods

[Y. Granik, JM3'06]
[A. Poonawala+, TCAD'07]
[J. Zhang, ICCAD'08]
[Y. Shen+, OpEx'09]
[N. Jia+, J. Opt.'10]
[J. Zhang, ASPDAC'10]
[X. Zhao+, VLSID'12]

ILT-based OPC

Our Contributions

Limitations of previous works

- > Design target optimization
 - » Distortion Area \rightarrow however, not all distortion matters
 - » What really matters is edge placement error (EPE) beyond threshold
 - » No study for direct EPE minimization
- > Process variations
 - » Optical conditions: defocus, dose, ...
 - » One ILT study, [Jia+ J. Opt.'10], considered defocus only

Our contributions

- Provide exact optimization for EPE
- > Optimize both Design Target and Process Variation
- > Outperform the 1st place winner at 2013 ICCAD contest
 - » 11% improvement for the overall score

Outline

- Mask Optimization: Why & How?
- Proposed Approach: MOSAIC
- Experimental Results
- Conclusions

Forward/Inverse Lithography

Mask

Optical Projection

Photoresist

Printed Pattern

Forward lithography
 Z = f(M)
 Inverse Lithography

 $M_{opt} = f^{-1}(Z_t)$

Difficulty

- III-posed problem (not one-to-one mapping)
- No closed form solution

Gradient Descent Based Approach

 $F \leftarrow obj(M)$ to minimize **repeat** $M \leftarrow M - stepSize \ge \nabla F$ **until** F converges

Still difficult

- How to define F such that it
 - ✓ Integrates Design Target & Process
 - Variation
 - ✓ Is Differentiable

Design Target Optimization (Fast)

Design Target Optimization (Exact)

Edge Placement Error (EPE) violation minimization
 Common measurement for yield impact (EPE > th_{epe})

Design Target Optimization (Exact) (cont')

EPE violation minimization

Formulated as a continuous function (Differentiable!)

Process Window Optimization

Process variability band (PV band)

 Area between the outermost and the innermost edges among all process conditions

$$F_{pvb} = \sum_{k=1}^{N_p} (Z_k - Z_t)^2$$

Np: #Process conditions

Outline

- Mask Optimization: Why & How?
- Proposed Approach: MOSAIC
- Experimental Results
- Conclusions

Experiment Setup

• MOSAIC_fast (Total Distortion + PV band) $F_{fast} = \alpha F_{td} + \beta F_{pvb}$ • MOSAIC_exact (EPE Violation + PV band)

$$F_{exact} = \alpha F_{epe} + \beta F_{pvb}$$

- Benchmark
 - 10 layout clips from 32nm M1 layer released by IBM
- Lithography parameters
 - > 193nm wavelength
 - Process variations: ±25nm defocus, ±2% dose
- Evaluation (ICCAD Contest 2013)

 $Score = Runtime + 4 \times PVB + 5000 \times \#EPE$

Score Comparison

Both approaches outperform ICCAD'13 contest winners

Runtime Comparison

Conclusion

- ILT-based OPC that simultaneously optimizes
 Design Target and Process Variation
 - > More accurate EPE formulation into the ILT engine
 - Continuous and differentiable
 - > 11% overall improvement than the 1st place winner
- Future directions
 - Our framework can be extended to handle mask complexity
 - > Multiple patterning, 3D effects
 - > New emerging lithography such as DSA
 - > Co-optimizations with design rules, hotspots, etc...

Thank you!

Gradient Descent Convergence

All benchmarks converges within 20 iterations

Regularization: Needed or Not?

An example of E-beam mask writing [Zable+, SPIE'2010]

Curved lines may be well handled with advanced techniques

Runtime/EPE/PVB Comparison

EPE

OPC Results

