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Optical Proximity Correction (OPC) 
t  Resolution enhancement technique 
t  Required for advanced technology nodes to ensure printability 

4 

Ruled-based 

[A. K. Wong, SPIE Press’01] 

Model-based (Edge) 

[N. B. Cobb+, SPIE’03] 
[P. Yu+, ICCAD’07] 



Inverse Lithography Technique (ILT) 

t Further scaling demands more aggressive OPC 
t Pixel-based OPC 

›  Higher contour fidelity than conventional OPC methods 
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Our Contributions 
t  Limitations of previous works 

›  Design target optimization 
»  Distortion Area à however, not all distortion matters 
»  What really matters is edge placement error (EPE) beyond threshold 
»  No study for direct EPE minimization  

›  Process variations 
» Optical conditions: defocus, dose, … 
» One ILT study, [Jia+ J. Opt.’10], considered defocus only 

t  Our contributions 
›  Provide exact optimization for EPE 
›  Optimize both Design Target and Process Variation 
›  Outperform the 1st  place winner at 2013 ICCAD contest 

»  11% improvement for the overall score 
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Table 1: Variable and symbol definitions.

Variables Definitions
M Mask
I Intensity after optical system
Z Printed pattern after photoresist process
N Length/Width of the mask
⌦ Convolution operator
� Element-by-element multiplication

Optical 
Projection

Photorisist 
Process

Kernel convolution Sigmoid approximation

M
I

Z

Figure 1: Forward lithography process model.

form the final printed image Z. The forward lithography
process of obtaining printed image from a given mask can
be modeled with two phases, optical projection model and
photoresist model.

The Hopskins di↵raction model [15] has been widely used
for partially coherent imaging system. To reduce the compu-
tational complexity, we adopt the singular value decomposi-
tion model (SVD) [16] to approximate the Hopskins model
in this paper. In SVD model, the Hopskins di↵raction model
can be decomposed into a sum of coherent systems based on
eigenvalue decomposition as Eq. (1).

I(x, y) =
N2X

k=1

wk|M(x, y)⌦ hk(x, y)|2, x, y = 1, 2, ...N (1)

, where hk is the kth kernel of the model and wk is the
corresponding weight of the coherent system. The Nhth
order approximation to the partially coherent system can
be obtained by

I(x, y) ⇡
N

hX

k=1

wk|M(x, y)⌦ hk(x, y)|2. (2)

In our implementation, the system is approximated with
Nh = 24 kernels.

The light transmitted through the mask is then exposed
on the photoresist. An image can be developed if the light
intensity of the exposed area exceeds a threshold thr. There-
fore, the photoresist e↵ect can be defined by the following
step function:

Z(x, y) =

⇢
0 if I(x, y) 6 thr

1 if I(x, y) > thr
(3)

Later in this paper, we will derive the partial di↵erential
of the imaging system. In order to obtain a continuous form,
we apply the sigmoid function to approximate the threshold
model:

Z(x, y) = sig(I) = 1

1+e�✓

Z

(I�th

r

) (4)

, where ✓Z defines the steepness of the sigmoid function.
Fig. 2 illustrates our sigmoid function with ✓Z = 50 and
thr = 0.225.
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Figure 2: Sigmoid function with ✓Z = 50 and thr =
0.225.

3. MASK OPTIMIZATION FOR DESIGN TAR-
GET AND PROCESS WINDOW

3.1 Inverse Lithography Based on Gradient De-
scent

Let us write the forward lithography process in Eq. (4)
as:

Z = f(M). (5)

The OPC problem by inverse lithography tries to find:

Mopt = f�1(Zt) (6)

, where Zt is the target pattern and Mopt is the optimized
mask with OPC. However, this is an ill-posed problem be-
cause di↵erent masks may yield the same result. There-
fore, there is no direct closed form solution to Eq. (6).
Instead, gradient descent based approaches have been com-
monly used to solve ILT problem. We formulate the prob-
lem into an unconstrained nonlinear system and solve it with
Alg. 1.

Algorithm 1

1: F  objective function of OPC
2: M  Zt with rule-based SRAF
3: P  initialize unconstrained variables corresponding to

M
4: repeat
5: g calculate gradient rF
6: P  P � stepSize⇥ g
7: M  recalculate pixel value based on P
8: until #iteration = thiter or RMS(g) < thg

9: Mopt  M iter with the lowest objective value

The ILT problem is formulated as a multivariable objec-
tive function F where each variable p(x, y) 2 P corresponds
to a pixel of the mask. As explained previously, our objec-
tive in this work is to optimize the design target and the
process window, which is represented and evaluated by Eq.
(7).

Minimize: F = ↵⇥#EPE V iolation+ � ⇥ PV Band
Subject to: M(x, y) 2 {0, 1}

(7)
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Difficulty 
•  Ill-posed problem (not 

one-to-one mapping) 
•  No closed form solution 



Gradient Descent Based Approach 
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F ß obj(M) to minimize 
repeat 
  M ß M – stepSize x    F 
until F converges 

Δ 

Initial Solution

Iteration 2

Iteration 3

Convergence

M

F(M)

Still difficult 
•  How to define F such 

that it 
ü  Integrates Design 

Target & Process 
Variation 

ü  Is Differentiable  



Design Target Optimization (Fast)  

t Total distortion minimization 
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2. FORWARD LITHOGRAPHY
We first explain the mathematical form of the forward

lithograph process. Table 1 gives the basic variables and
operators. The lithography process is shown as Fig. 1. The
mask M is projected through optical lens onto the wafer
plane, which is coated with photoresist. The aerial image
I then goes through development and etching processes to
form the final printed image Z. The forward lithography
process of obtaining printed image from a given mask can
be modeled with two phases, optical projection model and
photoresist model.

The Hopskins di↵raction model [18] has been widely used
for partially coherent imaging system. To reduce the compu-
tational complexity, we adopt the singular value decomposi-
tion model (SVD) [19] to approximate the Hopskins model
in this paper. In SVD model, the Hopskins di↵raction model
can be decomposed into a sum of coherent systems based on
eigenvalue decomposition as Eq. (1).
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model:

Z(x, y) = sig(I(x, y)) = 1
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where ✓Z defines the steepness of the sigmoid function. Fig.
2 illustrates our sigmoid function with ✓Z = 50 and thr =
0.225.
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where Zt is the target pattern and Mopt is the optimized
mask with OPC. However, this is an ill-posed problem be-
cause di↵erent masks may yield the same result. Therefore,
there is no directed closed form solution to Eq. (6). In-
stead, gradient descent based approaches have been com-
monly used to solve the ILT problem.
The details of our methodologies to solve the ILT prob-

lem are shown in Alg. 1. The ILT problem is formulated
as a multivariable objective function F where each variable
p(x, y) 2 P corresponds to a pixel of the mask. As ex-
plained previously, our objective in this work is to optimize
the design target and the process window, represented and
evaluated below.
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where ✓Z defines the steepness of the sigmoid function. Fig.
2 illustrates our sigmoid function with ✓Z = 50 and thr =
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Here H⇤
nom denotes the conjugate transpose of the kernel

matrix Hnom.
Note that the complexity of the gradient calculation is

proportional to the size of the sample points |HS|+|V S|. If
the target patterns are very complicated, the sample points
would increase, and so does the computational time.

3.3 Design Target Formulation Based on Im-
age Difference

To improve the complexity of gradient calculation, we pro-
pose another objective formulation for design target opti-
mization. The concept is to minimize the image di↵erence
(id) between the nominal image and the target image, as
shown in Eq. (16).

(16)Ftd =
NX

i=1

NX

j=1

(Znom(i, j)� Zt(i, j))
�

where � is used to control the weight of the impact made by
the image di↵erence. The gradient can be derived as:

rFid = �✓Z✓M · {Hnom

⌦ [(Znom � Zt)
��1 � Znom � (1� Znom)� (M ⌦H⇤

nom)]

+H⇤
nom

⌦ [(Znom �Zt)
��1 �Znom � (1�Znom)� (M ⌦Hnom)]}

�M � (1�M)

(17)
The quadratic form (� = 2) of Eq. (16) has been used

in previous ILT studies. We find that when performing the
co-optimization of design target and process window, set-
ting di↵erent � can help make a trade-o↵ between these two
objectives. In our implementation, � is set as 4.

3.4 Co-optimization for Design Target and Pro-
cess Window

PV Band is the area between the outermost printed edge
and the innermost printed edge among all process condi-
tions. However, the outermost/innermost edge may be formed
by more than one process condition [20]. As illustrated
in Fig. 4, the calculation of PV Band requires a series
of boolean operations through all possible printed images.
However, these boolean operations are di�cult to model
with a continuous form.

Therefore, we try to minimize the di↵erence between pos-
sible images and the target image, as defined in Eq. (18)
where Np is the number of possible process conditions. With
this formulation, we expect that inner edges and outer edges
can be optimized toward the target edges which reduces the
overall PV Band.

(18)Fpvb =

N
pX

k=1

(Zk � Zt)
2

By combining Eq. (12) and Eq. (16) with Eq. (18), we
can obtain the following objective functions that optimize
design target and process window simultaneously. Both of
the two functions are applied into Alg. 1 as MOSAICexact

and MOSAICfast respectively, and evaluated in Sec. 4.

Fexact = ↵Fepe + �Fpvb (19)

Ffast = ↵Ftd + �Fpvb (20)

(a) (b) (c)

PV Band

(d)
Figure 4: PV Band demonstration. (a)⇠(c) Printed
images under di↵erent process conditions. (d) Re-
sulted PV Band.

3.5 Speedup for Kernel Convolution
The gradient calculation requires a large amount of com-

putational e↵orts from convolution operations, which is the
main overhead of our approaches. We transform the non-
quadratic form of Eq. (2) into Eq. (21) based on the prop-
erties of convolution, associativity with scalar multiplication
and distributivity. With the new formulation of the kernel
function, we can precompute H by combing all kernel mod-
els without losing the accuracy. This reduces the convolu-
tion operations by Nh times and significantly improves the
e�ciency of our approaches.

(21)

M ⌦H =
N

hX

k=1

wk · (M ⌦ hk) =
N

hX

k=1

M ⌦ (wk · hk)

= M ⌦
N

hX

k=1

wk · hk

4. EXPERIMENTAL RESULTS
Our ILT methods are implemented in C/C++ and tested

on Linux machine with 3.4 GHz CPUs and 32 GB mem-
ory. We adopt the optical parameters from [22], with 193nm
wavelength, a defocus range of ±25nm and a dose range of
±2%. Ten benchmarks released by IBM for the ICCAD 2013
contest [22] are tested, which represent the most challenging
shapes to print. Each benchmark is a layout clip of 32nm
M1 layer, with a size of 1024nm⇥1024nm. The resolution of
the pixelated mask is 1nm per pixel. EPE constraint thepe is
set as 15nm. EPE sample points are measured every 40nm
along the pattern boundaries.
The parameters ↵ and � in our objective functions are set

based on the scoring function provided in [22] as follows:

Minimize: Score = Runtime+ 4⇥ PV Band+
5000⇥#EPE V iolation+ 10000⇥ ShapeV iolation

(22)
where ShapeV iolation is based on the existence of holes in

the final contour. All our results produce zero ShapeV iolation.
We compare our results with the top 3 winners of the IC-

CAD 2013 contest, where those approaches are also designed
to optimize Eq. (22). The results are shown in Table 2 in
terms of the number of EPE violations (#EPE), the area of
process variability band (PVB), and Score. With the given
scoring function, our approaches successfully achieve the
best result (lowest score). Table 3 shows the runtime com-
parison of di↵erent OPC approaches. Note that the com-
pared approaches are run on a di↵erent machine (2.65GHz
CPU) from ours. However, we can still see that the runtime
of MOSAIC fast is around the same scale as the contest re-
sults. Moreover, runtime only accounts for a small portion
of the overall score, which accounts 0.12% for MOSAIC fast
and 0.75% for MOSAIC exact, respectively. Examples of
our OPC result can be seen in Fig. 5.
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t Edge Placement Error (EPE) violation minimization 
›  Common measurement for yield impact (EPE > thepe) 

where ↵ and � are user-defined parameters to control the
tradeo↵ between the two terms. Edge placement error (EPE)
measures the manufacturing distortion by the di↵erence of
edge placement between the final image and the target image
under nominal process condition. EPE may cause yield im-
pact if its value is larger then a certain threshold thepe and
this is referred to as a violation. Process variability band
(PV Band) [20] measures the layout sensitivity to process
variations, which indicates a range of feature edge place-
ment among possible lithography process variations.

When the gradient descent algorithm is applied, the solu-
tion converges to the local optimum of the objective function
closest to the initial condition. Starting from a good initial
solution gives us a better chance to obtain a good result.
An intuitive initial solution is the target mask. Instead of
using the target mask directly, we apply simple rule-based
OPC [21] by adding sub-resolution assist features (SRAF)
in line 2.

Because the mask M contains only binary values, the
ILT problem is an integer nonlinear problem and di�cult
to solve. It is common to relax the binary constraint to
convert the ILT problem into an unconstrained optimiza-
tion problem. We adopt the sigmoid transformation [12] as
Eq. (8), which has been shown to provide e↵ective solution
searching for gradient descent:

M = sig(P ) = 1
1+e�✓

M

·P , ✓M : steepness. (8)

The relaxed variable P is therefore unbounded. Line 3 and
line 7 in Alg. 1 perform the variable transformation based
on the above definition.

In our gradient descent, we start from an initial mask so-
lution and iteratively approach the optimum solution in the
direction of the negative gradient of F with the number pro-
portional to stepSize (line 6). In order to directly calculate
the gradient, F must be a di↵erentiable function. We will
discuss in Sec. 3.2⇠3.4 how to define F properly and derive
the closed form of its gradient. The optimization is repeated
until an user-defined iteration threshold thiter is reached or
the solution converges to a local optimum. The local op-
timum can be determined when the gradient becomes zero.
Since each pixel inside the mask has its own gradient, we cal-
culate the root mean square (RMS) of gradients of all pixels
and exit the loop when it is less then a tolerance value thg.
We further improve the solution quality by exploring multi-
ple local minima. Our implementation integrates the jump
technique [12], where the step size will be adjusted to en-
courage searching the solution from di↵erent local minima.

3.2 Design Target Formulation Based on EPE
In this section, we focus on the first half part of Eq. (7)

for design target optimization. Although EPE is a common
criterion to evaluate image contour, none of existed ILT ap-
proaches optimize EPE directly. Here, we propose an exact
objective formulation for EPE minimization. Fig. 3 (a) gives
an example of how EPE is measured. Measured points are
sampled along the boundary of the target patterns, which
includes a set of samples on horizontal edges (HS) and a
set of samples on vertical edges (V S). We observe that the
image distortion is continuous, producing either inner image
edges or outer image edges as shown in Fig. 3 (b). There-
fore, we can sum up the image di↵erence as Dsum within
the range of the EPE constraint thepe. The mathematical
form is defined by Eq. (9).

Image

EPE

EPE

Target contour

VS

HS

(a)

!

!

Dsum

Outer

Inner

(b)
Figure 3: EPE measurement illustration.

Dsumi,j =

j+th
epeX

k=j�th
epe

Dik , if (i, j) 2 HS

Dsumi,j =

i+th
epeX

k=i�th
epe

Dkj , if (i, j) 2 V S

(9)

where
D = (Znom � Zt)

2 (10)

We can then determine if there is an EPE violation based
on Eq. (11). Again, since we need to formulate a di↵er-
entiable equation, this threshold model is approximated by
the sigmoid function with a steepness of ✓epe.

EPE Violation =

⇢
0 if EPE < thepe

1 if EPE > thepe
(11)

By checking Dsum at all sample points {HS, V S}, we
obtain the objective function for EPE minimization and its
gradient as follows:

Fepe =
X

(i,j)2HS

sig(Dsumi,j) +
X

(i,j)2V S

sig(Dsumi,j) (12)

rFepe =
@Fepe

@p(x, y)

=
X

(i,j)2HS

@sig(Dsumi,j)
@p(x, y)

+
X

(i,j)2V S

@sig(Dsumi,j)
@p(x, y)

(13)
The closed form of the former part of Eq. (13) can be

derived as Eq. (14), similarly for the later part.
X

(i,j) 2HS

@sig(Dsumi,j)
@p(x, y)

=
X

(i,j)2HS

✓epe

· sig(Dsumi,j)(1� sig(Dsumi,j))

j+th
epeX

k=j�th
epe

@Dik

@p(x, y)

(14)
where

@Dik

@p(x, y)

=
@(Znom(i, k)� Zt(i, k))

2

@p(x, y)
= 2✓Z✓M

⇥ (Znom(i, k)� Zt(i, k))Znom(i, k)(1� Znom(i, k))

⇥ {[M(i, k)⌦H⇤
nom(i, k)]Hnom(i� x, k � y)

+ [M(i, k)⌦Hnom(i, k)]H⇤
nom(i� x, k � y)}

⇥M(i, k)(1�M(i, k)).

(15)
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where ↵ and � are user-defined parameters to control the
tradeo↵ between the two terms. Edge placement error (EPE)
measures the manufacturing distortion by the di↵erence of
edge placement between the final image and the target image
under nominal process condition. EPE may cause yield im-
pact if its value is larger then a certain threshold thepe and
this is referred to as a violation. Process variability band
(PV Band) [20] measures the layout sensitivity to process
variations, which indicates a range of feature edge place-
ment among possible lithography process variations.

When the gradient descent algorithm is applied, the solu-
tion converges to the local optimum of the objective function
closest to the initial condition. Starting from a good initial
solution gives us a better chance to obtain a good result.
An intuitive initial solution is the target mask. Instead of
using the target mask directly, we apply simple rule-based
OPC [21] by adding sub-resolution assist features (SRAF)
in line 2.

Because the mask M contains only binary values, the
ILT problem is an integer nonlinear problem and di�cult
to solve. It is common to relax the binary constraint to
convert the ILT problem into an unconstrained optimiza-
tion problem. We adopt the sigmoid transformation [12] as
Eq. (8), which has been shown to provide e↵ective solution
searching for gradient descent:

M = sig(P ) = 1
1+e�✓

M

·P , ✓M : steepness. (8)

The relaxed variable P is therefore unbounded. Line 3 and
line 7 in Alg. 1 perform the variable transformation based
on the above definition.

In our gradient descent, we start from an initial mask so-
lution and iteratively approach the optimum solution in the
direction of the negative gradient of F with the number pro-
portional to stepSize (line 6). In order to directly calculate
the gradient, F must be a di↵erentiable function. We will
discuss in Sec. 3.2⇠3.4 how to define F properly and derive
the closed form of its gradient. The optimization is repeated
until an user-defined iteration threshold thiter is reached or
the solution converges to a local optimum. The local op-
timum can be determined when the gradient becomes zero.
Since each pixel inside the mask has its own gradient, we cal-
culate the root mean square (RMS) of gradients of all pixels
and exit the loop when it is less then a tolerance value thg.
We further improve the solution quality by exploring multi-
ple local minima. Our implementation integrates the jump
technique [12], where the step size will be adjusted to en-
courage searching the solution from di↵erent local minima.

3.2 Design Target Formulation Based on EPE
In this section, we focus on the first half part of Eq. (7)

for design target optimization. Although EPE is a common
criterion to evaluate image contour, none of existed ILT ap-
proaches optimize EPE directly. Here, we propose an exact
objective formulation for EPE minimization. Fig. 3 (a) gives
an example of how EPE is measured. Measured points are
sampled along the boundary of the target patterns, which
includes a set of samples on horizontal edges (HS) and a
set of samples on vertical edges (V S). We observe that the
image distortion is continuous, producing either inner image
edges or outer image edges as shown in Fig. 3 (b). There-
fore, we can sum up the image di↵erence as Dsum within
the range of the EPE constraint thepe. The mathematical
form is defined by Eq. (9).
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Figure 3: EPE measurement illustration.

Dsumi,j =

j+th
epeX

k=j�th
epe

Dik , if (i, j) 2 HS

Dsumi,j =

i+th
epeX

k=i�th
epe

Dkj , if (i, j) 2 V S

(9)

where
D = (Znom � Zt)

2 (10)

We can then determine if there is an EPE violation based
on Eq. (11). Again, since we need to formulate a di↵er-
entiable equation, this threshold model is approximated by
the sigmoid function with a steepness of ✓epe.

EPE Violation =

⇢
0 if EPE < thepe

1 if EPE > thepe
(11)

By checking Dsum at all sample points {HS, V S}, we
obtain the objective function for EPE minimization and its
gradient as follows:

Fepe =
X

(i,j)2HS

sig(Dsumi,j) +
X

(i,j)2V S

sig(Dsumi,j) (12)

rFepe =
@Fepe

@p(x, y)

=
X

(i,j)2HS

@sig(Dsumi,j)
@p(x, y)

+
X

(i,j)2V S

@sig(Dsumi,j)
@p(x, y)

(13)
The closed form of the former part of Eq. (13) can be

derived as Eq. (14), similarly for the later part.
X

(i,j) 2HS

@sig(Dsumi,j)
@p(x, y)

=
X

(i,j)2HS

✓epe

· sig(Dsumi,j)(1� sig(Dsumi,j))

j+th
epeX

k=j�th
epe

@Dik

@p(x, y)

(14)
where

@Dik

@p(x, y)

=
@(Znom(i, k)� Zt(i, k))

2

@p(x, y)
= 2✓Z✓M

⇥ (Znom(i, k)� Zt(i, k))Znom(i, k)(1� Znom(i, k))

⇥ {[M(i, k)⌦H⇤
nom(i, k)]Hnom(i� x, k � y)

+ [M(i, k)⌦Hnom(i, k)]H⇤
nom(i� x, k � y)}

⇥M(i, k)(1�M(i, k)).

(15)
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Dsum
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Inner

, where ↵ and � are user-defined parameters to control
the tradeo↵ between the two terms. Edge placement error
(EPE) measures the manufacturing distortion by the di↵er-
ence of edge placement between the final image and the tar-
get image under nominal process condition. EPE may cause
yield impact if its value is larger then a certain threshold
thepe and this is referred to as a violation. Process variabil-
ity band (PV Band) [17] measures the layout sensitivity to
process variations, which indicates a range of feature edge
placement among possible lithography process variations.

When the gradient descent algorithm is applied, the solu-
tion converges to the local optimum of the objective function
closest to the initial condition. Starting from a good initial
solution gives us a better chance to obtain a good result.
An intuitive initial solution is the target mask. Instead of
using the target mask directly, we apply simple rule-based
OPC [18] by adding sub-resolution assist features (SRAF)
in line 2.

Because the mask M contains only binary value, the ILT
problem is an integer nonlinear problem and di�cult to
solve. It is common to relax the binary constraint to convert
the ILT problem into an unconstrained optimization prob-
lem. We adopt the sigmoid transformation [11] as Eq. (8),
which has been shown to provide e↵ective solution searching
for gradient descent:

M = sig(P ) = 1
1+e�✓

M

·P , ✓M : steepness. (8)

The relaxed variable P is therefore unbounded. Line 3 and
line 7 in Alg. 1 perform the variable transformation based
on the above definition.

In our gradient descent, we start from a initial mask so-
lution and iteratively approach the optimum solution in the
direction of the negative gradient of F with the number pro-
portional to stepSize (line 6). In order to directly calculate
the gradient, F must be a di↵erentiable function. We will
discuss in Sec. 3.2⇠3.4 how to define F properly and derive
the closed form of its gradient. The optimization is repeated
until an user-defined iteration threshold thiter is reached or
the solution converges to a local optimum. The local op-
timum can be determined when the gradient becomes zero.
Since each pixel inside the mask has its own gradient, we cal-
culate the root mean square (RMS) of gradients of all pixels
and exit the loop when it is less then a tolerance value thg.

3.2 Design Target Formulation Based on EPE
In this section, we focus on the first half part of Eq. (7) for

design target optimization. Specifically, we propose an exact
objective formulation for EPE minimization. Fig. 3 (a) gives
an example of how EPE is measured. Measure points are
sampled along the boundary of the target patterns, which
includes a set of samples on horizontal edges (HS) and a
set of samples on vertical edges (V S). We observe that the
image distortion is continuous, producing either inner image
edges or outer image edges as shown in Fig. 3 (b). Therefore,
we can sum up the image di↵erence as Dsum within the
range of the EPE constraint thepe. The mathematical form
can be defined by Eq. (9).
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Figure 3: EPE measurement illustration.

Dsumi,j =

j+th
epeX

k=j�th
epe

Dik , if (i, j) 2 HS

Dsumi,j =

i+th
epeX

k=i�th
epe

Dkj , if (i, j) 2 V S

(9)

, where

D = (Znom � Zt)
2 (10)

We can then determine if there is an EPE violation based
on Eq. (11). Again, since we need to formulate a di↵er-
entiable equation, this threshold model is approximated by
the sigmoid function with a steepness of ✓epe.

EPE Violation =

⇢
0 if Dsum < thepe

1 if Dsum > thepe
(11)

By checking Dsum at all sample points {HS, V S}, we
obtain the objective function for EPE minimization and its
gradient as follows:

Fepe =
X

(i,j)2HS

sig(Dsumi,j) +
X

(i,j)2V S

sig(Dsumi,j) (12)

rFepe =
@Fepe

@p(x, y)

=
X

(i,j)2HS

@sig(Dsumi,j)
@p(x, y)

+
X

(i,j)2V S

@sig(Dsumi,j)
@p(x, y)

(13)

The closed form of the former part of Eq. (13) can be
derived as Eq. (14), similarly for the later part.

X

(i,j) 2HS

@sig(Dsumi,j)
@p(x, y)

=
X

(i,j)2HS

✓epe

· sig(Dsumi,j)(1� sig(Dsumi,j))

j+th
epeX

k=j�th
epe

@Dik

@p(x, y)

(14)

t EPE violation minimization 
›  Formulated as a continuous function (Differentiable!) 

Observation: distortion is continuous 

, where ↵ and � are user-defined parameters to control
the tradeo↵ between the two terms. Edge placement error
(EPE) measures the manufacturing distortion by the di↵er-
ence of edge placement between the final image and the tar-
get image under nominal process condition. EPE may cause
yield impact if its value is larger then a certain threshold
thepe and this is referred to as a violation. Process variabil-
ity band (PV Band) [17] measures the layout sensitivity to
process variations, which indicates a range of feature edge
placement among possible lithography process variations.

When the gradient descent algorithm is applied, the solu-
tion converges to the local optimum of the objective function
closest to the initial condition. Starting from a good initial
solution gives us a better chance to obtain a good result.
An intuitive initial solution is the target mask. Instead of
using the target mask directly, we apply simple rule-based
OPC [18] by adding sub-resolution assist features (SRAF)
in line 2.

Because the mask M contains only binary value, the ILT
problem is an integer nonlinear problem and di�cult to
solve. It is common to relax the binary constraint to convert
the ILT problem into an unconstrained optimization prob-
lem. We adopt the sigmoid transformation [11] as Eq. (8),
which has been shown to provide e↵ective solution searching
for gradient descent:

M = sig(P ) = 1
1+e�✓

M

·P , ✓M : steepness. (8)

The relaxed variable P is therefore unbounded. Line 3 and
line 7 in Alg. 1 perform the variable transformation based
on the above definition.

In our gradient descent, we start from a initial mask so-
lution and iteratively approach the optimum solution in the
direction of the negative gradient of F with the number pro-
portional to stepSize (line 6). In order to directly calculate
the gradient, F must be a di↵erentiable function. We will
discuss in Sec. 3.2⇠3.4 how to define F properly and derive
the closed form of its gradient. The optimization is repeated
until an user-defined iteration threshold thiter is reached or
the solution converges to a local optimum. The local op-
timum can be determined when the gradient becomes zero.
Since each pixel inside the mask has its own gradient, we cal-
culate the root mean square (RMS) of gradients of all pixels
and exit the loop when it is less then a tolerance value thg.

3.2 Design Target Formulation Based on EPE
In this section, we focus on the first half part of Eq. (7) for

design target optimization. Specifically, we propose an exact
objective formulation for EPE minimization. Fig. 3 (a) gives
an example of how EPE is measured. Measure points are
sampled along the boundary of the target patterns, which
includes a set of samples on horizontal edges (HS) and a
set of samples on vertical edges (V S). We observe that the
image distortion is continuous, producing either inner image
edges or outer image edges as shown in Fig. 3 (b). Therefore,
we can sum up the image di↵erence as Dsum within the
range of the EPE constraint thepe. The mathematical form
can be defined by Eq. (9).
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Figure 3: EPE measurement illustration.
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(9)

, where

D = (Znom � Zt)
2 (10)

We can then determine if there is an EPE violation based
on Eq. (11). Again, since we need to formulate a di↵er-
entiable equation, this threshold model is approximated by
the sigmoid function with a steepness of ✓epe.

EPE Violation =

⇢
0 if Dsum < thepe

1 if Dsum > thepe
(11)

By checking Dsum at all sample points {HS, V S}, we
obtain the objective function for EPE minimization and its
gradient as follows:

Fepe =
X

(i,j)2HS

sig(Dsumi,j) +
X

(i,j)2V S

sig(Dsumi,j) (12)

rFepe =
@Fepe

@p(x, y)

=
X

(i,j)2HS

@sig(Dsumi,j)
@p(x, y)

+
X

(i,j)2V S

@sig(Dsumi,j)
@p(x, y)

(13)

The closed form of the former part of Eq. (13) can be
derived as Eq. (14), similarly for the later part.
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, where

@Dik

@p(x, y)

=
@(Znom(i, k)� Zt(i, k))

2

@p(x, y)

= 2✓Z✓M

⇥ (Znom(i, k)� Zt(i, k))Znom(i, k)(1� Znom(i, k))

⇥ {[M(i, k)⌦H⇤
nom(i, k)]Hnom(i� x, k � y)

+ [M(i, k)⌦Hnom(i, k)]H⇤
nom(i� x, k � y)}

⇥M(i, k)(1�M(i, k)).

(15)

Here H⇤
nom denotes the conjugate transpose of the kernel

matrix Hnom.
Note that the complexity of the gradient calculation is

proportional to the size of the sample points |HS|+|VS|. If
the target patterns are very complicated, the sample points
would increase, and so does the computational time.

3.3 Design Target Formulation Based on Im-
age Difference

To improve the complexity of gradient calculation, we pro-
pose another objective formulation for design target opti-
mization. The concept is to minimize the image di↵erence
(id) between the nominal image and the target image, as
shown in Eq. (16).

(16)Fid =
NX

i=1

NX

j=1

(Znom(i, j)� Zt(i, j))
�

, where � is used to control the weight of the impact made
by the image di↵erence. The gradient can be derived as:

rFid = �✓Z✓M · {Hnom

⌦ [(Znom � Zt)
��1 � Znom � (1� Znom)� (M ⌦H⇤

nom)]

+H⇤
nom

⌦ [(Znom �Zt)
��1 �Znom � (1�Znom)� (M ⌦Hnom)]}

�M � (1�M)

(17)

The quadratic form (� = 2) of Eq. (16) has been used
in previous ILT studies. We find that when performing the
co-optimization of design target and process window, set-
ting di↵erent � can help make a trade-o↵ between these two
objectives. In our implementation, � is set as 4.

3.4 Co-optimization for Design Target and Pro-
cess Window

PV Band is the area between the outermost printed edge
and the innermost printed edge among all process condi-
tions. However, the outermost/innermost edge may be formed
by more than one process condition [17]. As illustrated
in Fig. 4, the calculation of PV Band requires a series
of boolean operations through all possible printed images.
However, these boolean operations are di�cult to model
with a continuous form.
Therefore, we try to minimize the di↵erence between pos-

sible images and the target image, as defined in Eq. (18).
With this formulation, we expect that inner edges and outer

(a) (b) (c)

PV Band

(d)

Figure 4: PV Band calculation. (a)⇠(c) Printed
images under di↵erent process conditions. (d) Re-
sulted PV Band.

edges can be optimized toward the target edges which re-
duces the overall PV Band.

(18)Fpvb =

N
pX

k=1

(Zk � Zt)
2

, where Np is the number of possible process conditions.
By combining Eq. (12) and Eq. (16) with Eq. (18), we

can obtain the following objective functions that optimize
design target and process window simultaneously. Both of
the two functions are applied into Alg. 1 as MOSAICexact

and MOSAICfast respectively, and evaluated in Sec. 4.

Fexact = ↵Fepe + �Fpvb (19)

Ffast = ↵Fid + �Fpvb (20)

3.5 Speedup for Kernel Convolution
The gradient calculation requires a large amount of com-

putational e↵orts from convolution operations, which is the
main overhead of our approaches. We transform Eq. (2)
into the form as Eq. (21) based on the properties of convo-
lution, associativity with scalar multiplication and distribu-
tivity. With the new formulation of the kernel function, we
can precomputeH by combing all kernel models without los-
ing the accuracy. This reduces the convolution operations
by Nh times and significantly improves the e�ciency of our
approaches.

(21)

M ⌦H =
N

hX

k=1

wk · (M ⌦ hk) =
N

hX

k=1

M ⌦ (wk · hk)

= M ⌦
N

hX

k=1

wk · hk

4. EXPERIMENTAL RESULTS
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on Linux machine with 3.4 GHz CPUs and 32 GB mem-
ory. We adopt the optical parameters from [19], with 193nm
wavelength, a defocus range of ±25nm and a dose range of
±2%. Ten benchmarks released by IBM for the ICCAD 2013
contest [19] are tested, which represent the most challenging
shapes to print. Each benchmark is a layout clip of 32nm
M1 layer, with a size of 1024nm⇥1024nm. The resolution of
the pixelated mask is 1nm per pixel. EPE constraint thepe is
set as 15nm. EPE sample points are measured every 40nm
along the pattern boundaries.
The parameters ↵ and � in our objective functions are set
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Here H⇤
nom denotes the conjugate transpose of the kernel

matrix Hnom.
Note that the complexity of the gradient calculation is

proportional to the size of the sample points |HS|+|VS|. If
the target patterns are very complicated, the sample points
would increase, and so does the computational time.

3.3 Design Target Formulation Based on Im-
age Difference

To improve the complexity of gradient calculation, we pro-
pose another objective formulation for design target opti-
mization. The concept is to minimize the image di↵erence
(id) between the nominal image and the target image, as
shown in Eq. (16).
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, where � is used to control the weight of the impact made
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The quadratic form (� = 2) of Eq. (16) has been used
in previous ILT studies. We find that when performing the
co-optimization of design target and process window, set-
ting di↵erent � can help make a trade-o↵ between these two
objectives. In our implementation, � is set as 4.

3.4 Co-optimization for Design Target and Pro-
cess Window

PV Band is the area between the outermost printed edge
and the innermost printed edge among all process condi-
tions. However, the outermost/innermost edge may be formed
by more than one process condition [17]. As illustrated
in Fig. 4, the calculation of PV Band requires a series
of boolean operations through all possible printed images.
However, these boolean operations are di�cult to model
with a continuous form.
Therefore, we try to minimize the di↵erence between pos-

sible images and the target image, as defined in Eq. (18).
With this formulation, we expect that inner edges and outer

(a) (b) (c)

PV Band

(d)

Figure 4: PV Band calculation. (a)⇠(c) Printed
images under di↵erent process conditions. (d) Re-
sulted PV Band.

edges can be optimized toward the target edges which re-
duces the overall PV Band.
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, where Np is the number of possible process conditions.
By combining Eq. (12) and Eq. (16) with Eq. (18), we

can obtain the following objective functions that optimize
design target and process window simultaneously. Both of
the two functions are applied into Alg. 1 as MOSAICexact

and MOSAICfast respectively, and evaluated in Sec. 4.

Fexact = ↵Fepe + �Fpvb (19)

Ffast = ↵Fid + �Fpvb (20)

3.5 Speedup for Kernel Convolution
The gradient calculation requires a large amount of com-

putational e↵orts from convolution operations, which is the
main overhead of our approaches. We transform Eq. (2)
into the form as Eq. (21) based on the properties of convo-
lution, associativity with scalar multiplication and distribu-
tivity. With the new formulation of the kernel function, we
can precomputeH by combing all kernel models without los-
ing the accuracy. This reduces the convolution operations
by Nh times and significantly improves the e�ciency of our
approaches.
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on Linux machine with 3.4 GHz CPUs and 32 GB mem-
ory. We adopt the optical parameters from [19], with 193nm
wavelength, a defocus range of ±25nm and a dose range of
±2%. Ten benchmarks released by IBM for the ICCAD 2013
contest [19] are tested, which represent the most challenging
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along the pattern boundaries.
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matrix Hnom.
Note that the complexity of the gradient calculation is

proportional to the size of the sample points |HS|+|VS|. If
the target patterns are very complicated, the sample points
would increase, and so does the computational time.

3.3 Design Target Formulation Based on Im-
age Difference

To improve the complexity of gradient calculation, we pro-
pose another objective formulation for design target opti-
mization. The concept is to minimize the image di↵erence
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shown in Eq. (16).
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The quadratic form (� = 2) of Eq. (16) has been used
in previous ILT studies. We find that when performing the
co-optimization of design target and process window, set-
ting di↵erent � can help make a trade-o↵ between these two
objectives. In our implementation, � is set as 4.

3.4 Co-optimization for Design Target and Pro-
cess Window

PV Band is the area between the outermost printed edge
and the innermost printed edge among all process condi-
tions. However, the outermost/innermost edge may be formed
by more than one process condition [17]. As illustrated
in Fig. 4, the calculation of PV Band requires a series
of boolean operations through all possible printed images.
However, these boolean operations are di�cult to model
with a continuous form.
Therefore, we try to minimize the di↵erence between pos-

sible images and the target image, as defined in Eq. (18).
With this formulation, we expect that inner edges and outer
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Figure 4: PV Band calculation. (a)⇠(c) Printed
images under di↵erent process conditions. (d) Re-
sulted PV Band.
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duces the overall PV Band.
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, where Np is the number of possible process conditions.
By combining Eq. (12) and Eq. (16) with Eq. (18), we

can obtain the following objective functions that optimize
design target and process window simultaneously. Both of
the two functions are applied into Alg. 1 as MOSAICexact

and MOSAICfast respectively, and evaluated in Sec. 4.

Fexact = ↵Fepe + �Fpvb (19)

Ffast = ↵Fid + �Fpvb (20)

3.5 Speedup for Kernel Convolution
The gradient calculation requires a large amount of com-

putational e↵orts from convolution operations, which is the
main overhead of our approaches. We transform Eq. (2)
into the form as Eq. (21) based on the properties of convo-
lution, associativity with scalar multiplication and distribu-
tivity. With the new formulation of the kernel function, we
can precomputeH by combing all kernel models without los-
ing the accuracy. This reduces the convolution operations
by Nh times and significantly improves the e�ciency of our
approaches.
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4. EXPERIMENTAL RESULTS
Our ILT methods are implemented in C/C++ and tested

on Linux machine with 3.4 GHz CPUs and 32 GB mem-
ory. We adopt the optical parameters from [19], with 193nm
wavelength, a defocus range of ±25nm and a dose range of
±2%. Ten benchmarks released by IBM for the ICCAD 2013
contest [19] are tested, which represent the most challenging
shapes to print. Each benchmark is a layout clip of 32nm
M1 layer, with a size of 1024nm⇥1024nm. The resolution of
the pixelated mask is 1nm per pixel. EPE constraint thepe is
set as 15nm. EPE sample points are measured every 40nm
along the pattern boundaries.
The parameters ↵ and � in our objective functions are set

Table 2: Comparison with the winners of the ICCAD 2013 contest.

Testcases 1st place 2nd place 3rd place MOSAIC fast MOSAIC exact
Name Pattern Area #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score

B1 215344 0 65743 263578 6 57190 259242 2 70014 290329 6 58232 263246 9 56890 274267
B2 169280 1 53335 218659 13 45776 248589 0 58927 235838 10 47139 238812 4 48312 214493
B3 213504 25 143993 701266 39 90493 557459 35 106676 602009 59 82195 624101 52 84608 600955
B4 82560 0 31654 127030 14 24276 167591 1 38401 158891 1 28244 118298 3 24723 115161
B5 281958 0 65529 262378 16 55754 303505 4 69796 299394 6 56253 255327 2 56299 237363
B6 286234 1 62164 254086 18 49059 286718 0 59315 237351 1 50981 209238 1 49285 204224
B7 229149 0 51098 204787 8 43663 215134 8 56972 268241 0 46309 185475 0 46280 186761
B8 128544 0 25802 103447 0 23810 95771 0 26106 104504 2 22482 100186 2 22342 100031
B9 317581 2 74931 310008 15 62164 324225 12 78781 375533 6 65331 291646 3 62529 268138
B10 102400 0 18433 73904 0 19585 78829 0 18579 74376 0 18868 75703 0 18141 73276

Ratio 1.11 1.12 1.16 1.04 1.00

Pattern Area/PVB unit: nm

2

based on the scoring function provided in [19] as follows:

Minimize: Score = Runtime+ 4⇥ PV B + 5000⇥#EPE

+ 10000⇥ ShapeV iolation

(22)

, where ShapeV iolation is based the existence of holes in the
final contour. All our results produce zero ShapeV iolation.

We compare our results with the top 3 winners of the IC-
CAD 2013 contest, where those approaches are also designed
to optimize Eq. (22). The results are shown in Table 2 in
terms of the number of EPE violations (#EPE), the area of
process variability band (PVB), and Score. With the given
scoring function, our approaches successfully achieve the
best result (lowest score). Table 3 shows the runtime com-
parison of di↵erent OPC approaches. Note that the com-
pared approaches are run on a di↵erent machine (2.65GHz
CPU) from ours. However, we can still see that the runtime
of MOSAIC fast is around the same scale as the contest re-
sults. Moreover, runtime only accounts for a small portion
of the overall score, which accounts 0.12% for MOSAIC fast
and 0.75% for MOSAIC exact, respectively. Examples of
our OPC result can be seen in Fig. 5.

4.1 Convergence of Gradient Descent
We further investigate the convergence of our gradient de-

scent based ILT. In our experiments of Alg. 1, the maximum
iteration number thiter is 20 and the optimization is stopped
at thg = 0.015. Fig. 6 shows the convergence curves of
testcase B4 and B6. We can see that the number of EPE
violations gradually decreases while PV Band goes the op-
posite. In the first few iterations, the mask patterns are
nearly non-printable, and thus the result is less stable. The
patterns become printable after a few optimization proce-
dures, which also reflects the increase of PV Band as more
iterations applied. In general, the optimization can converge
quite e↵ectively within 20 iterations.

5. CONCLUSION
As the increasing challenges of semiconductor manufac-

turing, OPC becomes much more di�cult. ILT based ap-
proaches have been a promising candidate for advanced tech-
nology nodes. We propose new mask optimizing solutions
considering design target and process window simultane-
ously. Two approaches, MOSAIC exact based on exact EPE
minimization and MOSAIC fast with e�cient gradient com-
putation are tested on 32nm designs. The results show that
both of our approaches outperform the winners of the IC-
CAD 2013 contest.
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Here H⇤
nom denotes the conjugate transpose of the kernel

matrix Hnom.
Note that the complexity of the gradient calculation is

proportional to the size of the sample points |HS|+|V S|. If
the target patterns are very complicated, the sample points
would increase, and so does the computational time.

3.3 Design Target Formulation Based on Im-
age Difference

To improve the complexity of gradient calculation, we pro-
pose another objective formulation for design target opti-
mization. The concept is to minimize the image di↵erence
(id) between the nominal image and the target image, as
shown in Eq. (16).

(16)Ftd =
NX

i=1

NX
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(Znom(i, j)� Zt(i, j))
�

where � is used to control the weight of the impact made by
the image di↵erence. The gradient can be derived as:

rFid = �✓Z✓M · {Hnom
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The quadratic form (� = 2) of Eq. (16) has been used

in previous ILT studies. We find that when performing the
co-optimization of design target and process window, set-
ting di↵erent � can help make a trade-o↵ between these two
objectives. In our implementation, � is set as 4.

3.4 Co-optimization for Design Target and Pro-
cess Window

PV Band is the area between the outermost printed edge
and the innermost printed edge among all process condi-
tions. However, the outermost/innermost edge may be formed
by more than one process condition [20]. As illustrated
in Fig. 4, the calculation of PV Band requires a series
of boolean operations through all possible printed images.
However, these boolean operations are di�cult to model
with a continuous form.

Therefore, we try to minimize the di↵erence between pos-
sible images and the target image, as defined in Eq. (18)
where Np is the number of possible process conditions. With
this formulation, we expect that inner edges and outer edges
can be optimized toward the target edges which reduces the
overall PV Band.

(18)Fpvb =

N
pX

k=1

(Zk � Zt)
2

By combining Eq. (12) and Eq. (16) with Eq. (18), we
can obtain the following objective functions that optimize
design target and process window simultaneously. Both of
the two functions are applied into Alg. 1 as MOSAICexact

and MOSAICfast respectively, and evaluated in Sec. 4.

Fexact = ↵Fepe + �Fpvb (19)

Ffast = ↵Ftd + �Fpvb (20)

(a) (b) (c)

PV Band

(d)
Figure 4: PV Band demonstration. (a)⇠(c) Printed
images under di↵erent process conditions. (d) Re-
sulted PV Band.

3.5 Speedup for Kernel Convolution
The gradient calculation requires a large amount of com-

putational e↵orts from convolution operations, which is the
main overhead of our approaches. We transform the non-
quadratic form of Eq. (2) into Eq. (21) based on the prop-
erties of convolution, associativity with scalar multiplication
and distributivity. With the new formulation of the kernel
function, we can precompute H by combing all kernel mod-
els without losing the accuracy. This reduces the convolu-
tion operations by Nh times and significantly improves the
e�ciency of our approaches.
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4. EXPERIMENTAL RESULTS
Our ILT methods are implemented in C/C++ and tested

on Linux machine with 3.4 GHz CPUs and 32 GB mem-
ory. We adopt the optical parameters from [22], with 193nm
wavelength, a defocus range of ±25nm and a dose range of
±2%. Ten benchmarks released by IBM for the ICCAD 2013
contest [22] are tested, which represent the most challenging
shapes to print. Each benchmark is a layout clip of 32nm
M1 layer, with a size of 1024nm⇥1024nm. The resolution of
the pixelated mask is 1nm per pixel. EPE constraint thepe is
set as 15nm. EPE sample points are measured every 40nm
along the pattern boundaries.
The parameters ↵ and � in our objective functions are set

based on the scoring function provided in [22] as follows:

Minimize: Score = Runtime+ 4⇥ PV Band+
5000⇥#EPE V iolation+ 10000⇥ ShapeV iolation

(22)
where ShapeV iolation is based on the existence of holes in

the final contour. All our results produce zero ShapeV iolation.
We compare our results with the top 3 winners of the IC-

CAD 2013 contest, where those approaches are also designed
to optimize Eq. (22). The results are shown in Table 2 in
terms of the number of EPE violations (#EPE), the area of
process variability band (PVB), and Score. With the given
scoring function, our approaches successfully achieve the
best result (lowest score). Table 3 shows the runtime com-
parison of di↵erent OPC approaches. Note that the com-
pared approaches are run on a di↵erent machine (2.65GHz
CPU) from ours. However, we can still see that the runtime
of MOSAIC fast is around the same scale as the contest re-
sults. Moreover, runtime only accounts for a small portion
of the overall score, which accounts 0.12% for MOSAIC fast
and 0.75% for MOSAIC exact, respectively. Examples of
our OPC result can be seen in Fig. 5.
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Both approaches outperform 
ICCAD’13 contest winners 
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Conclusion 

t  ILT-based OPC that simultaneously optimizes 
Design Target and Process Variation 

›  More accurate EPE formulation into the ILT engine 
›  Continuous and differentiable  
›  11% overall improvement than the 1st place winner 

t Future directions 
›  Our framework can be extended to handle mask 

complexity 
›  Multiple patterning, 3D effects 
›  New emerging lithography such as DSA 
›  Co-optimizations with design rules, hotspots, etc… 
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Gradient Descent Convergence 

t All benchmarks converges within 20 iterations 
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Regularization: Needed or Not? 
t  An example of E-beam mask writing [Zable+, SPIE’2010] 
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As more and more complex SRAFs are required on masks for small geometries, forward scattering of 50kV electron 
guns and resist-related short-range blur become significant.  In order to accurately take those effects into account during 
MDP, e-beam simulation is required. Since e-beam simulation for printing such small SRAFs is required anyway, 
conventional restrictions of not assigning dose to individual shots until long-range PEC, and not overlapping any shots 
(which produce double and triple dose areas) can be removed. Now it is possible not only to assign individual doses to 
shots and let those shots overlap but it is also possible to use any shape to be projected, enabling character projection to 
be “fractured.”  Fracturing is the wrong terminology for this case because the mask shapes are not being divided up into 
the primitive shapes, hence our naming of this technique as MB-MDP.  With the larger degree of freedom small complex 
mask shapes can be written with a lower number of shots and optimized edge slope. 

 

4. MB-MDP FLOW 
MB-MDP is additive to the conventional mask data preparation flow deploying conventional fracturing.  There are many 
shapes on every mask layer that are best shot using conventional fracturing [5].  However, for small, complex, or 
curvilinear shapes on the mask, particularly those shapes that are heavily affected by short-range blur, it may be 
advantageous to deploy MB-MDP.  Two alternative flows are possible.  One is to deploy conventional fracturing first, 
followed by MB-MDP where conventionally fractured shots are improved using MB-MDP either in shot count, edge 
slope, or both for certain of the shapes.  The other is to divide the design into conventional parts and complex parts 
where the conventional parts are handled by conventional fracturing and complex parts are handled by MB-MDP.  In 
this approach, however, unless the sections of data are sufficiently isolated from each other, MB-MDP needs to be able 
to “see” the conventionally fractured shots for proximity effects.  Figure 8 depicts the MB-MDP flow being added to the 
conventional flow. 

 
Figure 8. The Model Based Mask Data Preparation (MB-MDP) included in the conventional fracturing flow where 
MB-MDP processes curvilinear shapes while rectangular shapes are fractured conventionally. 

 

As shown, complex shapes, such as ideal ILT shapes, are input into the MB-MDP flow.  However, since ILT 
incorporates mask models as part of the computation, the actual target shapes for MB-MDP are not the original ILT 
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