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Abstract—Dataflow architecture accelerators are a new kind
of scalable DNN accelerators. The availability of input operands
of the instructions solely determines the execution of instruc-
tions. This paper proposes the Klotski framework to solve DNN
model orchestration for dataflow architecture accelerators. First,
a Bayesian optimization-based entropy-directed partition algo-
rithm is proposed to transform a DNN model into p.ops. Second,
a unified formal formulation for j.ops scheduling and mapping
is presented. Third, a two-stage methodology is proposed to
decouple the scheduling and mapping, making the solution fea-
sible. Extensive results show that Klotski outperforms baselines
in runtime by an average of 9.55% and 48.48%.

I. INTRODUCTION

The DNN models continue to evolve, hit breakthroughs,
and gain astonishing outcomes with emergent abilities [1].
The success is achieved via computational scaling and al-
gorithm innovation, which incurs deeply-stacked layers and
complicated model structures and layer connections [2]-[4].

The ultimate pursuit of extremely efficient DNN model in-
ference propelled the appearance of various DNN accelerators
[5]-[8]. And the DNN accelerators are also scaled to keep
pace with the increasing DNN models’ size and structural
complexity. The accelerator scales following two aspects.
First, a DNN accelerator becomes more “brawny” [6], [9].
The hardware resources, like on-chip memory, computation
units, efc., are assigned more. Second, when “brawny” scal-
ing cannot offer more profits from performance improve-
ments [10], independent DNN accelerators are connected via
dedicatedly-designed network-on-chip (NoC) [11]-[16]. As
a result, they formulate scalable DNN accelerators (we term
scalable scaling). The scalable scaling is effective. The philos-
ophy behind this is that collaborative multi-processing opens
opportunities for exploiting higher execution parallelism.

Dataflow architecture accelerators are a new kind of scal-
able DNN accelerators [17]-[19]. A fundamental distinction
from previous scalable DNN accelerators is the execution
model. That is, in dataflow architecture, the executability and
execution of instructions is solely determined based on the
availability of input operands to the instructions [20], [21]. In
other words, dataflow architecture facilitate the asynchronous
mechanism where multiple instructions operate on multiple
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Fig. 1 A pipeline overview of DNN model orchestration for
scalable DNN accelerators connected using the mesh topol-
ogy. The example uses the GoogLeNet inception module.
h; and h;y; are for hidden inputs and outputs. Partition
generates different shapes of utensors for pops. Scheduling
allocates pops’ time slots. Mapping assigns accelerators for
pops. Multiple pops can be executed simultaneously.

data streams simultaneously. Fine-grained parallelism is al-
lowed, and most synchronization steps are removed compared
to traditional scalable DNN accelerators [13].

The orchestration of DNN models determine how to par-
tition, schedule and map the model to scalable DNN accel-
erators, as shown in Fig. 1. Previous works propose some
solutions to the problem [13], [22], [23]. CNN-Partition [22]
proposed an automated hardware resource partition method to
maximize the efficiency of accelerators. Tangram [13] applied
alternate layer loop ordering (ALLO) dataflow to improve
the inter-layer parallelism and leveraged the zig-zag mapping
strategy to the underlying accelerators. Atomic dataflow [23]
partitioned DNN models with simulated annealing and sched-
uled the DNN computation graph in finer granularity based
on dynamic programming with pre-determined heuristics.

Nevertheless, these methods are proposed for traditional
scalable DNN accelerators. In this paper, we propose Klotski,
a DNN model orchestration framework for dataflow architec-
ture accelerators. We give a formal mathematical formulation
in Klotski. Firstly, we propose a Bayesian optimization-
based entropy-directed DNN partition algorithm. In dataflow
architecture accelerators, we flatten a DNN model to many



pops (shortened from “micro-operations”) and break the layer
connections to embrace higher parallelism. In consequence,
the concept of inter-layer and intra-layer (or inter-operator
and intra-operator in other literature) parallelism is giving
way to the inter-pops and intra-pops parallelism. Secondly,
we give a unified formal formulation for the scheduling
and mapping. Thirdly, based on the unified formulation, we
propose a two-stage methodology to decouple it, making the
solution feasible. The scheduling allocates time slots for each
pop to attain the promising makespan with an integer linear
programming (ILP) model. And the mapping decides the
allocation of an accelerator for a pop based on a mixed-
integer programming (MIP) model. Our mapping algorithm
can minimize the NoC transfer overheads during dataflow
executions. It is worth noting that our partition algorithm is
tightly coupled with the two-stage methodology. The partition
can generate pops that maximize hardware utilization and
achieve load balancing for dataflow architecture accelerators.

Our contributions are summarized as follows:

« A Bayesian optimization-based entropy-directed parti-
tion algorithm is proposed for pops generation.

o A unified formal formulation for the scheduling and
mapping is proposed for the newly-emerged dataflow
architecture accelerators.

« A two-stage methodology decoupling the unified formu-
lation is proposed to make the solution feasible. With the
methodology, we can minimize the makespan and NoC
communication overheads.

« Extensive results show that Klotski can achieve 9.55%
and 48.48% higher execution performance improvement.

The remainder of this paper is organized as follows. Sec-

tion II introduces the preliminaries and the problem formula-
tion. Section III provides the Klotski framework. Section IV
is for experiments. Finally, Section V concludes this paper.

II. PRELIMINARIES

A. Dataflow Architecture Accelerators

The traditional scalable DNN accelerators [10], [13] tile
individual accelerators [5], [7]-[9] in a 2D manner. NoC
connects all individual accelerators. And memory controllers,
shared SRAMs, efc., surround the 2D accelerator arrays.
A microprocessor is leveraged to trigger the execution of
scalable DNN accelerators. It sends instructions, controls data
movement, and synchronizes all DNN accelerators.

Similarly, individual DNN accelerators are also connected
via NoC in dataflow architecture accelerators. On the con-
trary, they are decentralized. An individual accelerator has the
attribute of “egoism” in dataflow execution. The accelerators
work asynchronously, and no central governor is incorpo-
rated. An instruction execution is solely triggered by the
status of its required operands, i.e., whether the operands
are ready. The overall coordination of all accelerators are
implemented by a proprietary NoC [19], [24]. The primal
difference between the dataflow architecture accelerators and
the traditional scalable DNN accelerators leads to the exis-
tence of accelerator synchronization. The traditional scalable
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Fig. 2 Comparison between traditional scalable DNN accel-
erators and dataflow architecture accelerators.

DNN accelerators schedule a tensor computation per round
after a synchronization. Instead, the dataflow architecture
accelerators can schedule a tensor computation at any time
slot, and no such synchronization is required.

Fig. 2 manifests the difference in detail. The illustration
shown in Fig. 2 is from the three convolution layers in Fig. 1
with blue, orange, and red colors. The input/output tensors
of the three convolution layers are partitioned into putensors
with different shapes, and example computation dependencies
of pops are also visualized. For example, due to irregular
partitions, the pop 4-1 relies on the outputs from pops 1-
1, 2-1, 3-1, and 3-2. We use the scalable DNN accelerators,
including four individual accelerators, as an example to il-
lustrate the execution, and corresponding execution timelines
are also shown. In traditional scalable DNN accelerators,
pops are scheduled per round. Synchronization latencies are
produced between adjacent rounds. The time interval of a
round is decided by the pop, whose computing latency is
the highest. Oppositely, dataflow architecture accelerators
eliminate all synchronizations. So, the pop 4-1 can be fired
immediately without delay. In this way, dataflow architecture
accelerators permit exceptionally higher performance effi-
ciency. The performance benefits come from two aspects.
First, the synchronization overheads are eliminated, and a
pop can be scheduled for any time slot. The performance
improvement is demonstrated in Fig. 2 when two designs
accomplish the computation of pop 4-3. Second, the pop
processing throughputs are highly increased. Such as, the
accelerator 4 in dataflow architecture can aggressively be
filled with more pops from the red convolution layer.
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Fig. 3 An overview of ASAP and ALAP scheduling.

B. ASAP & ALAP Scheduling

Scheduling is a significant part of DNN model orchestra-
tion for dataflow architecture accelerators. Two basic schedul-
ing techniques are as soon as possible (ASAP) and as late
as possible (ALAP) algorithms. Considering a DNN model
which is partitioned into several pops, ASAP and ALAP
techniques can give the scheduling flexibility of each pop.
Scheduling flexibility refers to the duration between the
earliest possible and the latest possible time slot to issue a
pop to an individual accelerator for execution. Fig. 3 gives
the overview of ASAP and ALAP scheduling results of 12
pops (suppose the computation latency of each pop equals
one). The pop 3 has scheduling flexibility between the time
slot 1 and 2, and the pop 8 is more flexible, i.e., from time
slots 2 to 4.

Formally, the scheduling flexibility of a pop w; given by
ASAP and ALAP is formulated as follows:

ASAP(;) max ASAP(u;) + l(u;),
U; ) =
0, 39 Uj; < Uy, V’U,j

= Uj < Uy, V’U,j

)]
min ALAP(u;) — I(uy), 3 u; < uj, Yuy
ALAP(UZ) = mg)& ALAP(uk), 39 U; 74 Uj, V’u]‘
Uk
2

In Equation (1) and Equation (2), [(u;) is the execution
latency of pop u;. u; < w; denotes producer-consumer
relations. u; is the producer, and u; is the consumer. V' is
the set of pops.

C. Problem Formulation

The computation of a DNN model is usually represented
as a directed acyclic graph (DAG) G(V, E), where V' denotes
the set of all layers, and F represents the producer and
consumer relations between these layers. We first introduce
definitions used in dataflow architecture accelerators. Then
we formally give three problem formulations for DNN model
orchestration.

Definition 1 (1Op). pOp is defined as the execution gran-
ularity of an individual accelerator in dataflow architecture
accelerators.

Definition 1 is the formal definition of pop. A pop’s
operands are termed utensors. We use u to denote a pop.
The execution granularity is also the minimal scheduling unit.
For example, the execution granularity can be per layer, per-
atomic dataflow [23], etc., for a DNN model.

Property 1 (1Op precedence constraints). The consumer pop
should not begin to execute before the producer pops are
completed.

Following Section II-B, we use u; < u; to denote that u;
is an immediate producer of u;. The earliest possible time
slot for u; to start execution is when all its dependent pops
are finished execution according to Property 1.

Definition 2 (Accelerator). An accelerator executes one pop
at a time until its completion. Other pops cannot preempt the
execution.

We denote the dataflow architecture accelerators as
M(a,b), where a = {a1,as,...,an} refers to accelerators
defined in Definition 2. Each element b; of b is the on-chip
memory capacity for the accelerator a; (i.e., |lal| = ||b|).
NoC connects all accelerators with a specific topology and
routing algorithm.

The orchestration of a DNN model for dataflow architec-
ture accelerators is formulated into three problems.

Problem 1 (Partition). The partition problem is to partition
the computation of a DNN model into pops, aiming to
maximize utilization of each accelerator, and achieve load
balancing, given a set of constraints.

Partitioning the computation of the DNN model into pops
can introduce different parallelism granularity, as indicated by
Definition 1. If we partition a DNN model by layer, then inter-
layer and intra-layer parallelism is considered [13]. Finer-
grained parallelism is achieved by partitioning the computa-
tion with smaller pops.

Problem 2 (Scheduling). The scheduling problem is to solve
the allocation of time slots for pops (the solution from
Problem 1), aiming to minimize the makespan.

The scheduling problem decides the time slot allocations
for each pop w.r.t. Property 1. Mapping is also conducted for
pops. The mapping decides which individual accelerator is
assigned to a given pop.

Problem 3 (Mapping). The mapping problem is to solve
the allocation of accelerators for pops (the solution from
Problem 1), aiming to minimize the NoC communication costs
during dataflow executions.

ITI. KLOTSKI
A. Overview of Klotski

Fig. 4 gives an overview of Klotski. Given a DNN model
and the dataflow architecture accelerators specifications, Klot-
ski generates the model’s orchestration solutions. The speci-
fications refer to hardware configurations, like the type of an
individual accelerator, memory capacity, processing elements
(PE) arrays, NoC topology etc. First, we propose an entropy-
guided partition algorithm based on Bayesian optimization
(BO) (Section III-B). Various shapes of utensors are gen-
erated. Then, we decouple the unified formal formulation
(Section III-C) for pops scheduling and mapping via the
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Fig. 4 An overview of Klotski framework.

two-stage methodology (Section III-D). uOps scheduling is
solved via an ILP model. And the mapping is conducted
via a NoC communication-aware MIP model. The makespan
or a mean value of all pops’ latencies are returned to the
partition algorithm, expecting to generate promising pops in
the next round. Finally, the DNN model orchestration solution
is produced once the BO budget is met.

B. Bayesian Optimization-based Entropy-guided Partition

The partition algorithm produces pops for each layer of
a DNN model. Two requirements should be satisfied in the
process. First, the computation of each pop should fully uti-
lize an accelerator’s resources. Each accelerator involves PE
arrays and applies specific unrolling and reusing strategies.
Such as, ShiDianNao [5] adopts YX-partition, Eyeriss [7]
leverages YR-partition, and NVDLA [9] implements KC-
partition. The KC-partition favors ptensors with large input
and output channels since NVDLA unrolls and parallelizes
the two dimensions. Therefore, the shape of utensors should
adapt to various accelerator architectures, i.e., maximize the
utilization of each PE. Second, the computation latency of
all ptensors should be as close as possible to achieve load
balancing. Large gaps in computation latencies can delay
consumer pops’ executions since a producer pop can cost a
high runtime to finish. As a result, the thundering herd prob-
lem [25] emerges when a DNN model consists of complicated
structures. Namely, many consumer pops cannot utilize idle
accelerators due to waiting for a “bad” producer pop with a
long latency. Resource contention occurs immediately once
the producer finishes execution.

Our partition utilizes a representation similar to the atomic
dataflow [23]. We demonstrate the idea using a single convo-
lution layer, as shown in Fig. 5. The convolution layer is with
the shape represented by a tuple (R, S, P,Q,C, K), where
the elements are for kernel width and height, output width
and height, input channel, and output channel, respectively.
We partition output tensors with s(h, w, ic, oc), where h and
w refer to the utensors’ height and width, ¢c is for the input
channels, and oc refers to the utensors’ output channels. If a

K Q

<L>
P

Convolution Kernels

Input Feature Map Output Feature Map
X 7x 5x 5%

Tx7%x3 3x3x3x5 5x3
Type 1 Type 2 Type 3 Type 4 Type5  Type6  Type7 Type 8
Type 9 Type 10 Type 11 Type 12 Type 13 Type 14 Typel5 Type 16

Fig. 5 An example shows a partition with s(2,2,2,3). We
partition the output feature map computation by s, generating
at most 16 types of utensors. Although the shape of type 1
and type 2 are the same (i.e., 2 X 2 X 3), they come from
different input channels, i.e., type 1 comes from the green and
yellow channels, while type 2 is only from the purple channel.
The input channels for each utensor are also indicated.

dimension cannot be divisible by an element of s, we treat
the remainder as extra putensors. Through s, a convolution
layer can be divided into up to 16 different kinds of ptensors,
detailed in Fig. 5. We handle computation dependencies of
pops from different layers via automated analysis.

As for the first requirement, we partition by remainder-
free operations [23]. For example, an accelerator implements
KC-partition, and its PEs are tiled into an m x n 2D array.
Then, ic and oc should be multiple of m and n, which makes
ptensors completely unrolled to utilize PEs fully. Regarding
the second requirement, we formulate it as a design space
exploration since the relation between a partition strategy
and the corresponding execution makespan do not have a
clear form. Hence, we leverage BO to search for promising
s. The search is guided by maximizing the proposed entropy
function normalized by the execution makespan, as shown in
Equation (3),

! I(ui)

()
Bl = =2, )" 7wy

where we reuse V' and ! defined in Section II-B, and [(V') =
> u,ev l(u;). The makespan refers to the execution runtime
after we schedule and map pops to dataflow architecture
accelerators. « is a pre-determined coefficient to normalize
the entropy score.

The rationale behind Equation (3) is based on the principle
of maximum entropy [26]. Entropy maximization tries to
attain a uniform distribution. Analogously, the second require-
ment exactly aligns with the characteristic. So, the entropy
of pops’ latencies reaching its maximum corresponds to the
optimal load balancing. Furthermore, we divide the entropy
score with the makespan, expecting to find a partition strategy
to improve the execution runtime. We also find it is effective

)/ (o - makespan),  (3)



Algorithm 1 BO-based Entropy-guided Partition

Require: G: a DNN model. D: the design space for s. T": opti-
mization budget.
1: S =0; Sample s € D;
2: fori=1—1T do
3: Partition G with s;
4: Schedule, map, execute pops;
5: Evaluate F(s);
6 S=SU{(s,E(s))}:
7: Construct a Gaussian process model with S
8: 8" = argmax,, UCB(s); s = s~
9: end for
10: return Optimal s* from S.

> Equation (3)

by setting the makespan as the mean latency of all pops.

We adopt BO due to its promising results for general
applications [27]. BO consists of a surrogate model and
an acquisition function. The surrogate model constructs a
mapping from a partition strategy s to the function value
E(s). The acquisition function is leveraged to evaluate the
utility of s and decide whether a particular s could improve
E(s) more. Within each BO iteration, the surrogate model
is established on an augmented exploration set. The model
is improved to predict more accurately on relative rankings
between different s. Algorithm 1 lists the partition algorithm,
where S in line 1 is the exploration set. In line 7, we leverage
the automatic relevance determination (ARD) Matérn 5/2
kernel, and the upper confidence bound (UCB) in line 8 is our
acquisition function. We augment the exploration set in line
6. Additionally, we restrict a partition solution if a generated
utensor size is larger than the on-chip memory b;.

C. Unified Formulation for uOps Scheduling & Mapping

We give a formal formulation for the scheduling and map-
ping with generated pops (Section III-B). Our formulation
targets to minimize the makespan and the NoC communica-
tion cost. First, we illustrate our motivations to optimize the
NoC communication cost. Then we demonstrate scheduling
constraints construction. Next, we give the formulation for
the NoC communication cost. Finally, we present the unified
formulation for pops scheduling and mapping.

Unlike traditional scalable DNN accelerators, dataflow ar-
chitecture accelerators suffer from high NoC communication
overhead. The reason lies in two folds. First, the asynchro-
nization mechanism transfers the collaboration control of
individual accelerators from an external microprocessor to
NoC. NoC is not only responsible for data communication
but also for coordination. Second, a DNN model is parti-
tioned into pops, leading to many communication demands.
Therefore, the numbers of NoC communications, like data
movement and buffering, are growing.

We apply the list scheduling [28], [29] to acquire the upper
bound of the makespan. The main idea of list scheduling
is to schedule a ready pop, whose dependent producers
are finished, from a pre-defined order for idle accelerators
without delay. Theorem 1 gives the upper bound formally.

Theorem 1 (Upper Bound of the Makespan for pOps
Scheduling). List scheduling achieves 2 — 1/||a|| times the
optimal makespan for dataflow architecture accelerators.

With the upper bound (denote it as 7"), we can calculate
the scheduling flexibility of each pop with ASAP and ALAP
(Section II-B) accordingly. Suppose the earliest possible and
the latest possible time slot for one pop u; to issue are .S;
and L;. We define a binary tensor X with the size of V| x
T x ||a]| as the scheduling and mapping solution, shown in
Equation (4)

1, pop w; is scheduled to the k-th accelerator

Xiji = at the j-th time slot.

0, otherwise.

“4)

A legal solution should satisfy following constraints.

1Op constraint: A pop can only be scheduled within the
scheduling flexibility (Equation (5)). And it can only be
issued to one individual accelerator.

llal L,
> Xigp =1, Yu; € V. (5)
k=1j=S;
Each pop must be finished before 7' (Equation (6)).
llall L;
Z Z (F+Uus) = D)Xy < T, Yu; € V. (6)
k=1j=5;

Constraint by Property 1: Property 1 determines the
scheduling priority for pops to guarantee correct computa-
tions (Equation (7)).

llall Ly llall Lq
D2 Xk =30 D Xk < llwy),
k=1j=5, k=1j=5, Q)

Yy, Yug € V oand up < ug.

Computing resource constraint: In each time slot, the
number of pops fired or held by accelerators should be fewer
than the number of accelerators (Equation (8)).

lall (u;)—1 V|

> > Y Xigope <llal. Vi={12,..T} ®

k=1 p=0 i=1

Our targets are the makespan 7' and the NoC commu-
nication cost. We elucidate the NoC communication cost
formulation by walking through a concrete example.

Consider an NoC with mesh topology and XY-YX routing
algorithm [30], shown in Fig. 6. The producer pop wu, is
mapped to the accelerator highlighted in yellow. The con-
sumer pop u, resides on the accelerator shaded with green
and requests a NoC communication.  and y are the numbers
of individual accelerators per row and column. The route path
is not unique and is determined by runtime information like
packet congestion. Three possible route paths are visualized
in Fig. 6. Regardless of the route path used, communication
costs can be uniformly described. The communication cost
is relative to the number of hops from the source to the
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Fig. 6 An overview of an NoC communication. We can
efficiently reduce NoC communication costs by placing de-
pendent pops on the same or adjacent accelerators.

target accelerator, which is correlated with the locations of
accelerators. Hence, the NoC communication cost from pop
Up 1O UOP Uq 1S

Cup<u, = |21 — 22| + Y1 — ¥2, ©)

where u,’s assigned accelerator is at (x1,y1), and the ac-
clerator for u, is at (z2,y2). We have following equations to
compute the locations of accelerators.

T = [EJ, y1 = amod x (10)
x
Ty = \‘b]yg:bmodx (11)
T
llall llall
a—b#0if Y Xpu+ Y Xgje>1, je{l,2,..T}
k=1 k=1
(12)
llall Lp llall Lq
a=> > kXpir, b=>_ > kXg. (13)
k=1j=S, k=1j=8,

Equation (10) and Equation (11) are formulations of source
and target accelerators’ locations, respectively. Equation (12)
prevents duplicated mappings if u, and u, are fired at the
same time slot. Equation (13) decides which accelerator
to map a pop. The entire NoC communication costs are
the summation of the point-to-point utensors transmissions
(Equation (9)) between a producer and a consumer, as shown
in Equation (14).
||
C= Z|xel - x€2| + ‘yel - y62|7 (14)
e=1
where F is the set of all producer-consumer relations among
1Ops. T¢; and y; are (x;,y;) of the e-th relation.
The complete unified formulation for the scheduling and
mapping is shown below.
argmin  T+p5C
x (15)
s.t. Equations (5) — (13),
where [ is a coefficient to trade-off 7" and C. And the length
of a single time slot is determined by min I(u;), Vu; € V.
Nevertheless, two difficulties restrict us from solving Equa-
tion (15). First, when the problem size becomes large, it

costs high runtime to construct constraints like Equation (8).
Second, the problem cannot be solved with mathematical pro-
gramming due to non-linearity in Equation (9), Equation (10),
and Equation (11). We introduce a two-stage methodology to
decouple the scheduling and mapping, making the solution
feasible contrapuntally.

D. Two-Stage Scheduling & Mapping Decoupling

We decouple the scheduling and mapping by defining two
new varibles. Define a |V| x T binary matrix X shown in
Equation (16) as a scheduling solution.

(16)

X = 1, pop w; is scheduled to the j-th time slot.
v 0, otherwise.

And we define a binary matrix Y with the size of |V| x ||a]]
as the mapping solution, shown in Equation (17).

v 1, pop w; is mapped to the j-th accelerator;
Yo 0, otherwise.

As a result, Equation (15) is transformed into two sub-
problems. The first sub-problem is listed in Equation (18).

argmin T

x
L; L;
s.t. Z X =1, Z G+lu)—1)Xy; <T
J=5i J=5i
L Ly,
joXl'j— ZJXkJS_l(U1)7 u; <
J=5Si =Sk
l(u;)—1 |V
> Xigop <lall, Vie{1,2,..,T}
p=0 i=1

(18)
The computing resource constraint in Equation (18) (the last
constraint) still requires a high runtime cost to construct.
So, we relax it and allow the existence of contentions for
accelerators in the formulation with Equation (19).

> X <llal, Vje{1,2,.,T}
ieI={i|j€[S:,L.]}
The relaxation is valid for dataflow architecture accelerators
since NoC can buffer the resource contentions. In this way,
we can only require the number of issued pops to be fewer
than the number of individual accelerators, given any time
slot. Consequently, we accommodate Equation (12) for pair
of pops that can be parallelized during executions. The
parallelism comes from inter-pops and intra-gops.
Concerning the non-linearity in Equation (15), we intro-
duce new variables to transform the mapping problem as
mixed-integer linear programming. Take an example from
Equation (10) to Equation (13). With newly-incorporated six
rational variables (ky, k2, n1, no, 71, 2), four integer variables
(x1,x2,p,q), and a binary variable z, we can transform the
formulation to a solvable MIP model, as shown below'.

19)

'We omit the details of the cumbersome transformation process.



argmin k1+k2+n1+n2 (20)
Y:,Y;
st. x1—ax2=k1 — ks, p—q=mn1 —ng 21
b b
e <t 2 e<an< (22)
T Tz T
a=p-x+r, b=q-x+1ry (23)
0<rm<z—-—1,0<r<z—-1 24)
0—(1—2)- M<a-b<—-6+Mz 25)
M =af +1 (26)
llall llall
a=) kY, b=1 kY, @n
k=1 k=1

ki,ka,mi,me >0, p,q,x1,22 €7Z, z € {0,1}.
(28)
In Equation (22) and Equation (25), € and § are two small
constants. Specifically, we choose ¢ = 0.999 and § = 0.001.
With the two-stage decoupling, we make the unified for-
mulation solvable.

IV. EXPERIMENTS
A. Implementation Details

We build an in-house simulator for the dataflow archi-
tecture accelerators. The simulator leverages a proprietary
NoC with the mesh topology to connect individual DNN
accelerators. The NoC transfers computation results between
individual DNN accelerators and sends and receives requests
and replies to achieving asynchronous executions. It applies
the XY-YX routing algorithm [30] with a dedicated-designed
congestion control mechanism. And its bandwidth is 512
bytes/cycle, with each packet size of 8 bytes. Each individual
DNN accelerator adopts KC-partition and equips with a
12 x 14 PE array. PEs are shared with an on-chip SRAM
memory of 5.86 MB. The size of registers in each PE is 5 KB.
The precision of computations are 32 bits. The flit size is 192
bits and frequency is 1GHz. MAESTRO [31] is embedded
to model the execution performance of one individual DNN
accelerator for simplicity.

In Klotski, we adopt an open-source tool nn_dataflow [32]
as the front end of DNN models. The DNN model partition
is implemented based on the framework. In the partition
algorithm, the maximal budget of the BO-based entropy-
guided partition is set as 50. We use Gurobi v10.0 [33] as
the ILP and MIP solver in the two-stage methodology.

B. Baselines & Wokrloads

Our baselines are based on Tangram [13] and the atomic
dataflow [23]. Tangram [13] schedules a DNN model per
layer and proposes a zig-zag mapping strategy. The atomic
dataflow [23] is the latest methodology, combined with
heuristics and dynamic programming. Both are representa-
tive solutions to the problem in traditional scalable DNN
accelerators. However, since our problem originates from a
new architecture, we cannot directly compare Klotski with

TABLE I The experimental results for the 3 x 3 topology

‘ Workload ‘ Method ‘ Cycles Ratio ‘ Overall Runtime Ratio ‘ HUR ! ‘
Baseline 1 1.2283E 4+ 08  1.0000 =2 —— 1.0000
VGG16 Baseline 2 | 5.5633E + 07  0.4529 477.6634 1.0000 | 2.5617
Klotski 4.0659E + 07 0.3310 878.8832 1.8399 | 3.0602
Baseline 1 1.5523E 408  1.0000 —— —— 1.0000
VGG19 Baseline 2 | 7.4207E +07  0.4781 576.3081 1.0000 | 2.5229
Klotski 5.5381E + 07  0.3568 887.5790 1.5401 | 2.9857
Baseline 1 7.7422E + 07  1.0000 —— —— 1.0000
ResNet50 | Baseline 2 | 5.7060E + 07  0.7370 583.6488 1.0000 | 0.9762
Klotski 4.8174E 407  0.8443 1779.0426 3.0481 | 1.3050
Baseline 1 1.8984E + 08  1.0000 —— —— 1.0000
ResNet152 | Baseline 2 | 1.7102E+ 08  0.9009 867.0853 1.0000 | 1.2523
Klotski 1.5947E + 08  0.8400 2800.9154 3.2302 | 1.3605
Baseline 1 | 2.5122E+ 07  1.0000 —— —— 1.0000
Inception Baseline 2 | 1.6345E +07  0.6506 470.3763 1.0000 | 2.5103
Klotski 1.3348E + 07  0.5313 1397.9008 2.9719 | 3.2996

! Hardware utilization ratio
2 Not applicable

TABLE II The experimental results for the 4 x 4 topology

‘ Workload ‘ Method ‘ Cycles Ratio ‘ Overall Runtime Ratio ‘ HUR ‘
Baseline 1 | 1.2283E + 08  1.0000 —— —— 1.0000
VGG16 Baseline 2 | 4.5869E + 07  0.3734 317.5903 1.0000 | 2.1196
Klotski 3.0670E + 07  0.2497 881.6310 2.7760 | 2.4547
Baseline 1 | 1.5523E + 08  1.0000 —— —— 1.0000
VGG19 Baseline 2 | 5.8049E + 07  0.3740 388.8627 1.0000 | 1.9895
Klotski 3.9934E +07  0.2573 1130.6444 2.9076 | 2.2964
Baseline 1 | 7.7422E +07  1.0000 —— —— 1.0000
ResNet50 | Baseline 2 | 5.3365E 4+ 07  0.6893 541.8091 1.0000 | 2.8954
Klotski 4.6260E + 07  0.5975 1019.2198 1.8811 | 3.1953
Baseline 1 | 1.8984E + 08  1.0000 —— —— 1.0000
ResNet152 | Baseline 2 | 1.6578E + 08  0.8733 793.7304 1.0000 | 1.2264
Klotski 1.5754E + 08  0.8299 2327.4657 2.9323 | 1.3438
Baseline 1 | 2.5188E + 07  1.0000 —— —— 1.0000
Inception Baseline 2 | 1.5183E+ 07  0.6028 419.3479 1.0000 | 2.2822
Klotski 1.0781E + 07  0.4280 1432.0112 3.4148 | 2.8579

them. We made appropriate modifications to Tangram and the
atomic dataflow so that they can orchestrate a DNN workload
with our architecture model. For Tangam, we schedule a
DNN model layer-wise and allocate accelerators following
the zig-zag manner, and we term it as “baseline 1”. The
atomic dataflow schedules a workload per round with heuris-
tics due to the synchronization in traditional scalable DNN
accelerators. We remove the synchronization and consider
the heuristics proposed by the atomic dataflow for all ready
pops rather than a candidate set in each round. We term the
modified method as “baseline 2”. The modifications adhere
to both methods’ original ideas but extend their applicability
to dataflow architecture accelerators.

Our workloads are VGGI16, VGGI19, ResNet50,
ResNet152, and Inception v3. The workloads include
cascaded layers structures, branching cells, and residual
layers with different scales. The cascaded layers can be
parallelized if layers are partitioned into pops.

C. Comparison to Previous Methodologies

In the evaluation, we leverage three kinds of scales of
dataflow architecture accelerators, in which the individual
accelerators are organized in 3 x 3, 4 X 4, and 5 X 5 arrays.
Such hardware scaling is used to denote different problem
sizes, allowing us to fully evaluate Klotski and baselines.
TABLE 1, TABLE 1II, and TABLE III list related results,
including running cycles, the overall runtime (include Gurobi



TABLE III The experimental results for the 5 x 5 topology

‘ ‘Workload ‘ Method ‘ Cycles Ratio ‘ Overall Runtime Ratio ‘ HUR ‘
Baseline 1 1.2283E+ 08  1.0000 —— —— 1.0000
VGGI16 Baseline 2 | 4.2621E+ 07  0.3470 466.9748 1.0000 | 2.7157
Klotski 2.4240E+07  0.1973 1640.0338 3.5120 | 3.4766
Baseline 1 1.5523E 4+ 08  1.0000 —— —— 1.0000
VGGI19 Baseline 2 | 5.0412E+ 07  0.3248 569.8779 1.0000 | 2.8346
Klotski 3.9046E + 07  0.2515 2755.4077 4.8351 | 3.1257
Baseline 1 | 7.7422E+ 07  1.0000 —— —— 1.0000
ResNet50 | Baseline 2 | 5.0868E + 07  0.6570 628.1705 1.0000 | 1.8228
Klotski 4.4029E + 07  0.5687 1672.0000 2.6617 | 1.9678
Baseline 1 | 1.8984E + 08  1.0000 —— —— 1.0000
ResNet152 | Baseline 2 | 1.6460E 408  0.8671 858.0045 1.0000 | 1.2575
Klotski 1.5240E + 08  0.8028 4505.7838 5.2515 | 1.3352
Baseline 1 | 2.5180E + 07  1.0000 —— —— 1.0000
Inception Baseline 2 | 1.2733E 407  0.5057 514.9384 1.0000 | 2.8642
Klotski 8.3088E 4+ 06  0.3300 2787.1383 5.4126 | 3.3710

solution runtime for Klotski) for different algorithms, and the
hardware utilization ratio.

Baseline 1 does not partition a DNN model and straightly
schedule and map the model layer-wise. The entire procedure
is deterministic, and no search or tuning is incorporated.
Hence, the runtime results for baseline 1 are not applicable.
Baseline 2 is also deterministic except for the employed sim-
ulated annealing for partition. Thus, the runtime of baseline
2 largely depends on partition?.

In the 3 x 3 topology, compared to baseline 1 and baseline
2, the solution given by Klotski outperforms by an average
of 44.42% and 10.03% for all DNN workloads. In the 4 x 4
topology, the numbers are 49.01% and 9.29%. And in the
5 x 5 topology, they are 52.02% and 9.33%.

Klotski also utilizes the underlying hardware better. The
hardware utilization is the average utilization of all individual
DNN accelerators. In the 3 x 3 topology, Klotski achieves
an average of 140.22% and a 45.35% higher than base-
lines. Compared to baseline 1, the improvement numbers are
142.96% and 165.52% for the 4 x 4 and 5 x 5 topologies,
respectively. Klotski also improves the hardware utilization
ratio compared to baseline 2. In the 4 x 4 topology, Klotski
surpasses baseline 2 by 90.52% and 35.63%.

However, Klotski costs more runtime. It is due to that
Klotski leverages much time to solve the scheduling and
mapping in the two-stage methodology. When the topology
size enlarges, the runtime cost continues to increase. We ex-
pect approximate algorithms to improve Klotski’s efficiency
in future work.

D. Ablation Study

We investigate the effectiveness of scheduling and mapping
by Klotski with an ablation study. The partition strategy
explored by Klotski is leveraged for baseline 2. Baseline
1’s results are also compared, listed in Fig. 7. In the 3 x 3
topology, Klotski outperforms baseline 1 and baseline 2 by
46.34% and 4.10%. For the 4 x 4 and 5 x 5 topology, the im-
provments for baseline 1 and baseline 2 are 50.44%, 3.13%,
46.34%, and 3.71%, respectively. The results demonstrate
that Klotski effectively improves the scheduling and mapping

’In the experiments, we set the running budgets for the simulated
annealing with 50 to align with Klotski’s settings.
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Fig. 7 The comparisons with different topologies.

solution quality. Moreover, with the BO-based entropy-guided
partition, Klotski can outperform baselines more.

We summarize two lessons learned from Section IV-C
and Fig. 7. Firstly, partitioning a DNN model into pops al-
lows better execution performance, even for cascaded layers
structures. The claim can be concluded from comparisons
between Klotski and baseline 1 with different DNN models.
Particularly, baseline 1 fails to explore opportunities to paral-
lelize the cascaded layers executions (VGG16 and VGG19).
Second, the improvement of the execution performance is
non-linear to the increased hardware utilization ratio. Com-
pared to baseline 2, Klotski achieves higher the hardware
utilization, as listed in TABLE I, TABLE II, TABLE III
and Fig. 7. However, the gained hardware utilization ratio
does not contribute to execution performance improvement
expectedly. The reason stems from multiple factors. For
example, different pops lead to various computation and
memory access trade-offs. Smaller sizes in ptensors do not
represent higher performance efficiency.

V. CONCLUSIONS

In this paper, we propose Klotski, a DNN model orchestra-
tion framework for the newly-emerged dataflow architecture
accelerators. With BO-based entropy-guided partition, and
two-stage decoupling of the scheduling and mapping, Klotski
improves the solution qualities by an average of 9.55% and
48.48% compared to baselines.
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