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Abstract—Analytical placement is proven to be effective in global
placement. The differentiability of wirelength models is very critical to
gradient-based numerical optimization. Most previous works approximate
the non-smooth half-perimeter wirelength (HPWL) model with various
differentiable functions. In this paper, we propose a new differentiable
wirelength model using the Moreau envelope to approximate HPWL. By
combining the state-of-the-art electrostatic-based placement algorithm, the
experimental results demonstrate that our proposed algorithm can achieve
up to 5.4% HPWL improvement and more than 1% on average compared
to the most widely-used nonlinear wirelength model.

I. INTRODUCTION

In order to find suitable locations for circuit components, circuit
placement is an essential step in physical design with various objec-
tives and constraints. Different objectives may induce different prob-
lem formulations. However, the widely adopted strategy is to perform
wirelength-driven global placement first, which directly minimizes the
total wirelength of the entire circuit. Analytical placers formulate the
global placement problem as mathematical programming with certain
constraints on legality [1]–[11].

Thanks to the rapid development of computing power and the pop-
ularity of neural networks, an efficient implementation of numerical
optimization approaches has gained the great attention of engineers and
developers. In order to apply gradient-based numerical optimization
approaches, we require the wirelength model to be differentiable ev-
erywhere. However, the most popular half-perimeter wirelength model
(HPWL) function containing maximum and minimum coordinates
is not everywhere differentiable [12]. Therefore, modern placement
algorithms heavily rely on differentiable approximations of the HPWL
model. There are two main categories, quadratic approximations and
nonlinear approximations.

Quadratic models like [3]–[7], [10], [11] approximate every edge
cost with the squared length, which gives a strictly convex objective
that is very convenient for us to optimize. The general form of
quadratic objective has closed-form minimizers which can be found by
solving linear systems. However, quadratic models have poor approx-
imation error bounds. To better approximate HPWL with quadratic
models, some linearization techniques [13] have been proposed. They
integrate certain net weights inversely proportional to net length so that
the weighted squared term can be closer to HPWL. The Bound2Bound
(B2B) model [7], [14] decomposes larger nets by selecting boundary
pins and connecting them to each internal node.

Commonly, nonlinear analytical placers use differentiable functions,
like the log-sum-exp [15] model and the weighted-average [16], [17]
model, to approximate HPWL to arbitrary precision by controlling
some hyperparameters. The state-of-the-art placers [1], [2], [8], [9],
[18]–[20] adopt nonlinear analytical models as they approximate
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HPWL more accurately, have closed-form gradient representations,
and can be naturally optimized by gradient descent.

Some works have been seeking new ways to optimize HPWL.
The Bivariate-Gradient-Based (BiG) model [21], inspired by [22],
calculates gradients with respect to coordinates by applying bivari-
ate functions that approximate bivariate maximum or minimum to
improve numerical stability and CPU runtime. Subgradient-based
approaches [23] directly optimize the non-smooth ℓ1 wirelength with
the B2B model [7], [14], using the Polak-Ribière-Polyak conjugate
subgradients method [23], [24].

The WA model [16], [17] has a lower approximation error bound
than the LSE model [15], but it still have to face numerical stability
and non-convexity issue. In comparison, the BiG model [21] has
the advantages of numerical stability and cheap computation, but it
relies on a bivariate wirelength model that needs to be specified.
Non-smooth optimization approaches do not require any differentiable
approximations, but they may encounter an issue of slow and poor
convergence.

In this paper, we propose a new differentiable wirelength model
using the Moreau envelope [25] to approximate HPWL. The proposed
model is superior to previous models in numerical stability, convexity,
and approximation error. We will also propose algorithms to compute
the objective and gradients. To make such computation possible, we
build upon the proximal mapping of the HPWL model. The major
contributions are summarized as follows.

• We derive the explicit representations of proximal mapping of the
non-smooth HPWL function and propose a water-filling algorithm
similar to that in communication systems [26]–[29] to solve the
proximal mapping and Moreau envelope problem.

• We provide theoretical and experimental analysis to compare
the proposed wirelength model and the widely-used weighted-
average model [16], [17] and verify its feasibility.

• Experimental results show that the proposed wirelength model
can achieve up to 5.4% HPWL improvements and over 1% on
average for the ISPD2006 contest benchmarks [30]. In addition,
we also achieve up to 3.0% HPWL improvements and over 1.5%
on average on the recent ISPD2019 contest benchmarks [31].

The rest of the paper is organized as follows. Section II introduces
some preliminaries, including foundations of nonlinear placement,
wirelength models, and the Moreau envelope. Section III presents the
algorithms of the proposed methods. Then, Section IV gives some
theoretical properties of our wirelength model. Section V presents
experimental results and some related analysis on the adopted bench-
marks, followed by the conclusion in Section VI.

II. PRELIMINARIES

A. Analytical Global Placement

Circuit placement usually consists of three steps: global placement,
legalization, and detailed placement. At the global placement stage, we
aim to find good cell locations with small total wirelength such that



the overlaps are controlled at a low level. A typical nonlinear global
placement problem is formulated as

min
x,y

∑
e∈E

We(x,y) + λD(x,y), (1)

where E is the net set, We(·) is the net wirelength function of net e ∈
E, D(x,y) models the cell density penalty, and λ is the corresponding
density weight in the objective.

The wirelength model is the detailed representation of the wirelength
function We(x,y). For simplicity, we also use x,y to represent
corresponding pin coordinates ignoring pin offsets in this Section II.
Then, the most widely-adopted HPWL model is defined as W (x,y) =∑

e∈E We(x,y), where the net HPWL of e ∈ E is

We(x,y) = max
i∈e

xi −min
i∈e

xi +max
i∈e

yi −min
i∈e

yi. (2)

The HPWL function defined in Equation (2) is convex and continu-
ous but not everywhere differentiable. Fortunately, it has a simple and
clean formulation. Therefore, many approximation models have been
proposed. Here we focus on the nonlinear models.

B. Nonlinear Differentiable Models

Since most analytical placement algorithms expect to optimize
HPWL, we are going to discuss nonlinear differentiable HPWL-
based wirelength models. Consider a net containing n pins with
horizontal coordinates x ∈ Rn. There are two widely-used exponential
approximations, the log-sum-exp (LSE) model [15] and the weighted-
average (WA) model [16], [17],

We(x) ≈W γ
e,LSE(x) = γ ln

n∑
i=1

exp

(
xi

γ

)
+ γ ln

n∑
i=1

exp

(
−xi

γ

)
,

We(x) ≈W γ
e,WA(x) =

∑n
i=1 xi exp

(
xi
γ

)
∑n

i=1 exp
(

xi
γ

) −

∑n
i=1 xi exp

(
−xi

γ

)
∑n

i=1 exp
(
−xi

γ

) ,

(3)
where γ is a hyperparameter to control the tradeoff between the
accuracy and differentiability. When γ → 0+, the approximation
will be arbitrarily close to the real HPWL function. Usually at the
earlier stages of global placement, γ is set to a large value so that
the objective can be very smooth, and decreases as the number of
iterations increases.

C. Moreau Envelope

The general Moreau envelope [25] is defined for functions satis-
fying specific constraints on a real Hilbert space. In our placement
applications, we only consider lower bounded closed convex functions
h(x) defined in Rn to simplify the notations. For any t > 0, let
H(u,x) = h(u) + 1

2t
∥u − x∥22, then the Moreau envelope ht and

the proximal operator are defined by

ht(x) = min
u∈Rn

H(u,x), proxth(x) = argmin
u∈Rn

H(u,x). (4)

Note that the proximal mapping may or may not have a closed-form
representation, and it may or may not be easy to calculate, up to the
form of function h(·). Also, we do not require function h to be smooth.

Under the constraints of h(·) specified above, the Moreau envelope
ht is a natural differentiable approximation of h, and its gradient is
globally Lipschitz continuous. More specifically, the envelope theo-
rem [32] states that

∇ht(x) =
1

t
(x− proxth(x)) . (5)

Since limt→0+ ht(x) = h(x) converges pointwise, t is considered to
be the approximation precision, similar to γ in LSE [15] and WA [16].
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Fig. 1 (a) The non-convexity of the Weighted-Average (WA) [16] on
a simple 3-pin net to approximate ∆x = max{xmin, x, xmax} −
min{xmin, x, xmax}. (b) The average approximation error of different
models LSE [15], WA [16] and Moreau Envelope against the smooth-
ing parameter γ or t for 4-pin nets, under fixed ∆x = 200.

The interesting point is that, in global placement, we are inspired
to consider the net HPWL We, which has a clean and straightforward
formulation. In this paper, we propose an algorithm to compute its
Moreau envelope W t

e and use W t
e + t as the approximated wirelength

model so that the entire objective is everywhere differentiable.

D. Comparison between WA and the Moreau Envelope models

In this subsection, we will briefly compare WA [16] and the Moreau
envelope model. Equation (3) uses exponential terms to assign weights
to each coordinate. A larger coordinate xi has a large weight in the
smooth maximum, as exp(xi

γ
) would occupy a larger proportion.

1) Numerical Stability: The exponential terms are sensitive to the
coordinate. Note that the ∆x will usually be hundreds or even over
thousands in actual placement, so the γ should not be very small,
as a small γ will be likely to result in a numerical overflow. This
phenomenon is also stated in [21]. Nearly all exponential models like
the LSE [15] and WA [16] models have to face such an issue.

2) Non-Convexity: There is no theoretical or experimental guaran-
tee of convexity of the WA [16] model. Let us take a 3-pin net as an
example and conduct a toy experiment on its horizontal pin coordinate
x ∈ R3. Assume that we fix the ∆x = 100, i.e., let x = (0, x, 100)⊤

without loss of generality where x ∈ [0, 100]. We plot the function
curve of W γ

e,WA({0, x, 100}) for some γ values in Fig. 1(a). As shown
in the figure, even for the 3-pin net, the WA model can be non-convex.
For high-degree nets, it will get more complicated. Although the
optimization process of real placement problems is far more obscure
than imagined, a convex wirelength model is usually preferred. As a
comparison, the Moreau envelope approximation is always convex [25]
for HPWL.

3) Approximation Error: The net wirelength models can be high-
dimensional and thus extremely difficult to analyze. We conduct a
toy experiment on the smoothing parameters γ (for LSE [15] and
WA [16]) and t. Given a fixed range ∆x = xmax − xmin = 200,
we randomly generate horizontal coordinates x ∈ R4 for different
smoothing parameters 3000 times, calculate the approximated ∆x
using different wirelength models, take the average, and draw curves
in Fig. 1(b).

Although the smoothing parameters here have different mathemat-
ical meanings in different wirelength models, the advantage of our
proposed model on the approximation error is still well-illustrated
in Fig. 1(b). It is worth mentioning that a lower approximation error
does not always imply better solution quality after placement, as
the optimization procedure is so complicated that it can be easily
influenced by various hidden factors. In addition to the approximation



Algorithm 1 GRADIENT ALGORITHM

Require: The horizontal (or vertical) pin coordinates x ∈ Rn, the
smoothing parameter t > 0.

1: Sort pin coordinates x such that x1 ≤ · · · ≤ xn;
2: Apply the WATER-FILLING ALGORITHM described in Algo-

rithm 2 to solve equations
n∑

i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t

to obtain water-filling parameters τ1 and τ2;
3: if τ1 > τ2 then
4: Calculate average pin coordinate x̄ = 1

n

∑n
i=1 xi;

5: Assign τ1 ← x̄;
6: Assign τ2 ← x̄;
7: end if
8: Given τ1 and τ2, calculate gradient g = ∇W t

e (x) according to
Corollary 1;

9: return the required gradient g;

error, the gradient properties should also be carefully considered,
which will be discussed in Section IV.

III. ALGORITHM

We adopt the Moreau envelope model as a differentiable approxima-
tion of net HPWL, which requires the proximal mapping of HPWL. In
this paper, we use the rectified linear unit (ReLU) activation function
η+ = max{η, 0} to represent the positive part of η ∈ R.

A. The Gradient of the Moreau Envelope

Without loss of generality, consider a single net e connecting n pins
p1, · · · , pn with horizontal coordinates x ∈ Rn. The horizontal part
of HPWL function is represented by

We(x) = max
1≤i≤n

xi − min
1≤i≤n

xi. (6)

The horizontal and vertical directions are symmetric, so we only focus
on the horizontal direction for analysis.

At each placement iteration, we are required to calculate the gradient
of the wirelength model w.r.t. the pin coordinates x. The overall
algorithm to calculate gradient g of the Moreau envelope W t

e (x)
under the smoothing parameter t is decribed in Algorithm 1. The
following Theorem 1 states the representation of the proximal mapping
proxtWe

(x). Then Corollary 1 extends Theorem 1 and tells us how to
calculate gradient g given parameters τ1 and τ2. The detailed algorithm
of calculating parameters τ1 and τ2 is described in Algorithm 2.

Theorem 1. The proximal mapping of t·We for a positive real number
t > 0 is given by proxtWe

(x) = u∗ where

u∗
i =


τ2, if xi > τ2
xi, if τ1 ≤ xi ≤ τ2
τ1, otherwise

(7)

is defined for any i = 1, · · · , n, such that
n∑

i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t, (8)

if the solution τ1, τ2 to Equation (8) satisfy τ1 ≤ τ2, otherwise u∗

is determined by the average coordinate u∗
i = 1

n
e⊤x for any index

i = 1, · · · , n.

Theorem 1 discusses the explicit representation of the horizontal part
of HPWL w.r.t. pin locations. This is the core of the approximation.
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Fig. 2 The illustration of water-filling to solve τ1 in Equation (8).

However, the proof is complicated and out of scope, and thus not
attached due to page limit. Note that it is NOT a complete closed-form
representation, as we still need to solve Equation (8) for τ1 and τ2.
The water-filling algorithm to solve these equations will be discussed
in Section III-B. Before that, we state the following corollary.

Corollary 1. Consider the horizontal part of the net HPWL We(x) =
max1≤i≤n xi − min1≤i≤n xi, its Moreau envelope function W t

e is
everywhere differentiable. The gradient is g = ∇W t

e (x) where

gi =


1
t
(xi − τ2), if xi > τ2;

0, if τ1 ≤ xi ≤ τ2;
1
t
(xi − τ1), otherwise

(9)

is defined for any i = 1, · · · , n, such that
n∑

i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t, (10)

if the solution τ1, τ2 to Equation (10) satisfy τ1 ≤ τ2, otherwise
g = ∇W t

e (x) is determined by the average coordinate: gi =
1
t
xi − 1

tn

∑n
k=1 xk for any index i = 1, · · · , n.

This corollary can be directly verified by the Moreau envelope
gradient ∇W t

e (x) =
1
t
(x− proxtW t

e
(x)) according to Equation (5),

where the proximal mapping proxtW t
e
(x) is given in Theorem 1.

B. Water-filling Algorithm

Equation (7) and Equation (8) give an explicit representation of the
proximal mapping, where the values of τ1 and τ2 are not represented
in closed-form. Therefore, we must solve equations in Equation (8)
first to obtain the exact value of proxtWe

(x).
We take τ1 as an example, i.e., we are going to solve the equation∑n
i=1(τ1−xi)

+ = t. Suppose we have a 4-pin net with pin coordinate
x1, x2, x3, x4, illustrated in Fig. 2(a). We use a bar graph to illustrate
the distribution, with a symbolic horizontal axis. Assume that each bar
has width 1 and height xi for i = 1, 2, 3, 4, then we are going to find
a value τ1 such that the blue region has a total area t.

The process for obtaining the exact value of τ1, similar to that in
the communication engineering, is called water-filling. One can simply
imagine that we have an amount t of water in total, and want to pour
it into a reservoir with an uneven bottom [29]. The final level τ1 the
water rise to is the target we desire.

To solve the water-filling, we first sort the pin coordinates. The
statistics of sorted pin coordinates is illustrated in Fig. 2(b). On
the surface, there seems to be no difference compared to Fig. 2(a).
However, once we have the sorted value of pin coordinates, or sorted
indices, the process can be solved in O(n) time where n stands for
the number of pins connected by this net. The detailed algorithm to
solve the equation

∑n
i=1(τ1 − xi)

+ = t is described in Algorithm 2.
The process of water-filling in Algorithm 2 is very intuitive. Assume

that we have sorted the pin coordinates such that x1 ≤ x2 ≤ · · · ≤ xn.
Since we have n pins in this net, we have n−1 bottoms x1, · · · , xn−1



Algorithm 2 WATER-FILLING ALGORITHM

Require: The sorted coordinates x ∈ Rn such that x1 ≤ x2 ≤ · · ·xn.
1: Initialize water trial q = 0, the bottom index k = 1;
2: while k < n do
3: Calculate the amount of water we need to fill in one bottom

q′ ← xk+1 − xk;
4: Accumulate water trial q ← q + kq′ because we need to fill

in k bottoms;
5: if q > t then
6: Break the loop;
7: end if
8: Proceed to the next bottom k ← k + 1;
9: end while

10: if q < t then
11: Calculate τ1 ← xn + 1

n
(t− q);

12: else
13: Calculate τ1 ← xk+1 − 1

k
(q − t);

14: end if
15: return the required level value τ1;

to fill in before we make the bottoms of this “reservoir” even.
Therefore, we create a trial and fill in each bottom one by one to
check whether the current total trial is larger than the target amount t
of water. More specifically, we will find k such that xk ≤ τ1 < xk+1

in Algorithm 2.
Another interpretation of this algorithm is the Abel transformation

for discrete sequences [33]:

k∑
i=1

(τ1 − xi) = k(τ1 − xk) +

k−1∑
i=1

i(xi+1 − xi), (11)

where k is taken such that xk ≤ τ1 < xk+1, or k = n if τ1 ≥ xn.
Clearly, we have k(τ1 − xk) ≤ k(xk+1 − xk) if τ1 < xn, indicating

k−1∑
i=1

i(xi+1 − xi) ≤
n∑

i=1

(τ1 − xi)
+ <

k∑
i=1

i(xi+1 − xi), (12)

when x are sorted. Therefore, given t > 0, we are supposed to find
the index k such that either

k−1∑
i=1

i(xi+1 − xi) ≤ t <

k∑
i=1

i(xi+1 − xi) (13)

or t ≥
∑n−1

i=1 i(xi+1 − xi) is satisfied (k = n for this case). After
sorting the pin coordinates, Equation (13) can be solved in O(n) time
with a single traversal. The part of solving τ2 given t is similar.

Generally speaking, Algorithm 2 can be super fast as it visits n
pins at most. The bottleneck is the sorting before each water-filling.
Since we may have millions of pins in a design, an efficient sorting
algorithm is critical.

C. Nonlinear Optimization

The update schemes of the precision γ in WA [16] and t in ours are
also essential to the solution quality. The ePlace [18] algorithm and
related placers [20] use a form of γ(ϕ) = γ0

(
w

(x)
bin + w

(y)
bin

)
· 10kϕ+b

to update the parameter γ according to overflow ϕ. Higher overflow
requires a large γ to sacrifice precision for better differentiability. To
better adapt to the proposed wirelength model, we use the following
tangent-based update scheme

t(ϕ) =
t0
2

(
w

(x)
bin + w

(y)
bin

)
tan

(π
2
ϕ− δ

)
, (14)

where t0 is the initial value, ϕ is the density overflow, w(x)
bin and w

(y)
bin

stand for the horizontal and vertical bin size, respectively, and δ is
a small positive number to avoid numerical overflow. For example, a
configuration that δ = 10−4 and t0 = 4 will normally give a good
result for most cases.

We follow a moderate scheme similar to DREAMPlace3.0 [34] and
elfPlace [35] to update density weight λ in Equation (1) iteratively:

λk+1 = λk + αk,

αk =

(
αH −

αH − αL

1 + ln(1 + βDk
D0

)

)
αk−1,

(15)

where Dk is the density at the k-th iteration. The parameters αH ≥
αL > 1 depict how fast the density weight increases. The parameter
pair (αL, αH) is set to (1.01, 1.02) by default. The hyper-parameter β
is set to 2000 in our experiments. Note that we do not use the quadratic
penalty in our formulation, so β is simply a tunable parameter to adjust
the step size αk of density weight without any physical meaning. Here
α0 is (αL − 1)λ0, and λ0 is determined according to ePlace [18].

IV. WIRELENGTH MODEL ANALYSIS

The HPWL model has specific properties. By controlling the preci-
sion, the approximation models should also preserve similar properties.

A. Approximation Bound

Theorem 2. Assume that there are nmax ≥ 1 pins sharing the
maximum coordinates, and nmin ≥ 1 pins sharing the minimum
coordinates. Then, we have

− t

2

(
1

nmax
+

1

nmin

)
≤W t

e (x)−We(x) ≤ 0, (16)

for any positive parameter t > 0.

Theorem 2 gives a lower bound that describes how well the Moreau
envelope function generally approximates the original one. Similar to
LSE [15] and WA [16], the Moreau envelope we use here can also
approximate HPWL in arbitrary precision. The proof is complicated
and out of scope, and thus not attached due to page limit.

B. Gradient Properties

Ideally, when the smoothing parameter tends to zero, the gradient
of any differentiable model should tend to a subgradient of We.

Theorem 3. Consider the weighted-average model W γ
e,WA(x) defined

by Equation (3) of a net with xmax > xmin. Assume that there are
nmax pins sharing the maximum coordinates, and nmin pins sharing
the minimum. Then, the gradient limit g = limγ→0+ ∇W

γ
e,WA exists

and it is determined by

gi =


1

nmax
, if xi = xmax;

0, if xmin < xi < xmax;
− 1

nmin
, if xi = xmin.

(17)

Besides, g(x) ∈ ∂We(x) is a subgradient of We.

Theorem 4. Consider the Moreau envelope W t
e (x). Then, we always

have ∇W t
e = g when t is small enough, where g is determined

by Equation (17).

If we only consider the maximum part, the subgradients of max(x)
form a convex hull: conv{ei : xi = xmax}, where ei is the unit vector
with the i-th entry being one. The components of any subgradient
should sum to 1. The differentiable approximation models should also
satisfy such a property.

Theorem 5. The smooth maximum in the weighted-average model has
a gradient whose components sum to 1.



TABLE I The Statistics of the ISPD2006 [30] and ISPD2019 [31]
Contest Benchmark Suites.

Benchmark #Movable #Fixed #Nets #Pins

ISPD2006
[30]

adaptec5 842482 646 867798 3433359
newblue1 330137 337 338901 1223165
newblue2 440239 1277 465219 1761069
newblue3 482833 11178 552199 1881267
newblue4 642717 3422 637051 2455617
newblue5 1228177 4881 1284251 4849194
newblue6 1248150 6889 1288443 5200208
newblue7 2481372 26582 2636820 9971913

ISPD2019
[31]

ispd_test1 8879 0 3153 17203
ispd_test2 72090 4 72410 318245
ispd_test3 8208 75 8953 30271
ispd_test4 146435 7 151612 436707
ispd_test5 28914 8 29416 80757
ispd_test6 179865 16 179863 793289
ispd_test7 359730 16 358720 1584844
ispd_test8 539595 16 537577 2376399
ispd_test9 899325 16 895253 3957481
ispd_test10 899325 79 895253 3957499

Corollary 2. The weighted-average wirelength W γ
e,WA(x) defined

by Equation (3) has a gradient whose components sum to 0.

Theorem 6. Let g be gradient of the Moreau envelop ∇W t
e (x), then

we have
∑

i:xi≥τ2
gi = 1 and

∑
i:xi≤τ1

gi = −1.

Corollary 3. The Moreau envelope model W t
e (x) has a gradient

whose components sum to 0.

Corollary 3 indicates that W t
e (x) preserves the gradient properties

like Corollary 2. No matter what wirelength model is adopted, the
total gradients w.r.t. all pins should sum to zero.

V. EXPERIMENTAL RESULTS

We use benchmarks from the ISPD2006 [30] and ISPD2019 [31]
contests. The circuit statistics are shown in TABLE I. Compared to
the ISPD2006 contest [30] targeting at wirelength only, recent contest
benchmarks may focus more on other objectives like routability,
timing, and region-constrained.

We implemented our model in C++/CUDA based on the open-source
analytical placer DREAMPlace [20]. The following experiments are
conducted on a 64-bit Linux workstation with Intel Xeon 2.90GHz
CPUs and an NVIDIA GeForce RTX 3090 GPU.

We compare wirelength and runtime results using BiG CHKS [21],
LSE [15], and WA [16] on ISPD2006 benchmarks [30] in TABLE II
and on ISPD2019 benchmarks [31] in TABLE III.

In our experiments, we use the ePlace [18] algorithm to perform
analytical placement and DREAMPlace [20] as the placer because
it has enabled high-performance GPU-accelerated techniques to ob-
tain high-quality results extremely fast. For a fair comparison on
wirelength optimization, we follow the settings of [21] on ISPD2006
benchmarks [30]. Considering that the reported wirelength and runtime
results of BiG CHKS and BiG WA in [21] are roughly equal, we
re-implement the BiG model proposed in [21] with CHKS bivariate
function [36] in DREAMPlace [20]. The CHKS function [36] is more
representative of bivariate functions.

After global placement, legalization [37], and detailed placement,
we evaluate the results and list them in TABLE II. We incorporate
ABCDPlace [38] as our detailed placement engine to fully leverage
the GPU resources. Since the original binary of BiG in [21] is
unavailable, as notified by the author, so we cite the performance
directly from [21], listed in the column named “BiG CHKS Reported
in [21]” in TABLE II. There exists a quality gap between their reported
results and ours, so we also list the results of executing the binary of
NTUPlace3 [8] on our machine for reference. The wirelength results
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Fig. 3 (a) The wirelength curve against density overflow during
global placement for ISPD2006 newblue1. (b) The wirelength
curve against density overflow during global placement for ISPD2019
ispd19_test10. The overflow decreases as the nodes spread out.

in TABLE II are evaluated by NTUPlace3 [8] for a fair comparison.
TABLE II shows that we can achieve more than 1% improvements
on ISPD2006 [30] after detailed placement. It is worth mentioning
that the maximum improvement is over 5% on newblue1 which
has large movable macros. TABLE II indicates that the wirelength
improvements are preserved after detailed placement.

We also test our wirelength model on the recent ISPD2019 bench-
marks [31]. Since NTUPlace3 [8] and NTUplace4dr [9] binary exe-
cutable files currently do not support ISPD2019 [31], we only compare
different models incorporated in DREAMPlace [20] in TABLE III. As
shown in the table, the achieved improvement is more than 1.5% and
almost 2% on the recent ISPD2019 benchmarks [31].

To visualize the trend of wirelength during global placement,
we take newblue1 in ISPD2006 [30] and ispd19_test10 in
ISPD2019 [31] as examples and plot the curves in Fig. 3. We can
achieve approximately 5.4% and 1.6% improvement, respectively,
compared to WA [16] after detailed placement.

From Fig. 3, we can observe that the wirelength result obtained
with our model is better at the same density overflow during global
placement on the adopted cases. The density overflow roughly reflects
the overall cell overlap. Therefore, a smaller wirelength at the same
density overflow implies better placement quality.

VI. CONCLUSION

In this paper, we propose a novel HPWL-based differentiable wire-
length model. We have made theoretical and experimental comparisons
of the widely-used WA model [16] and our Moreau envelope model. It
has been shown that our model has the advantage of numerical stability
and convexity, which is preferred in numerical optimization. Moreover,
our model has a better approximation error bound. Experimental
results show that our model can rapidly produce better placement
solutions achieving up to 5.4% HPWL improvement and more than 1%
improvement on average compared to the most widely-used nonlinear
wirelength models with GPU acceleration. Since further improvement
on HPWL is challenging, our future work shall focus on novel
optimizers to generally improve the analytical placement quality.
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