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Outline

We first illustrate our motivation in the block that briefly describes

different wirelength models.

We derive the representations of proximal mapping of the

non-smooth HPWL function.

The water-filling algorithm is applied to solve the proximal mapping

and Moreau envelope problem.

Wirelength Models and Approximations

Steiner Tree Clique Star HPWL

N/A N/A

Table 1. Examples of different wirelength models. The first row shows models using `1
distance, while the second shows those using `2 distance.

Moreau Envelope

For any t > 0, the Moreau envelope function ht and the proximal

mapping prox is defined by

ht(x) = min
u∈Rn

{
h(u) +

1

2t
‖u − x‖22

}
,

proxth(x) = argmin
u∈Rn

{
h(u) +

1

2t
‖u − x‖22

}
.

Convergence. ht(x) approximates h(x): limt→0+ ht(x) = h(x).
Differentiability. ht(x) is differentiable: ∇xh

t(x) = 1
t
(x − proxth(x)).

Intuition: Replace h(x) with the net HPWL We(x) = maxi xi − mini xi for

an approximation of HPWL, as long as proxtWe
(x) is cheap to compute.
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Gradient Property

Consider the horizontal part of We, the gradient of Moreau envelope

function Wt
e is g = ∇Wt

e(x) where

gi =


1
t
(xi − τ2), if xi > τ2;

0, if τ1 ≤ xi ≤ τ2;
1
t
(xi − τ1), otherwise

(1)

is defined for any i = 1, · · · , n, such that
n∑

i=1

(xi − τ2)
+ =

n∑
i=1

(τ1 − xi)
+ = t, (2)

if the solution τ1, τ2 to (2) satisfy τ1 ≤ τ2, otherwise g = ∇Wt
e(x) is

determined by the average coordinate: gi =
1
t
xi − 1

tn

∑n
i=1 xi for any

index i = 1, · · · , n.

Water-Filling for Gradient Computation
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Figure 1. The illustration of water-filling to solve τ1 in Equation (2).

The water-filling algorithm is applied to solve equations (2) for τ1 (similar

for τ2). Then we can calculate the gradient ∇Wt
e(x) by (1) accordingly.

Experimental Results
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Conclusions

We propose a novel HPWL-based differentiable wirelength model.

The derivation of proximal mapping will enlighten more promising

research on numerical optimization of global placement.
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