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Abstract
In this paper, we focus on studying robust deep stereo vision

of autonomous driving systems and counteracting adversarial at-
tacks against it. Autonomous system operation requires real-time
processing of measurement data which often contain significant
uncertainties and noise. Adversarial attacks have been widely stud-
ied to simulate these perturbations in recent years. To counteract
these attacks in autonomous systems, a novel defense method is
proposed in this paper. A stereo-regularizer is proposed to guide the
model to learn the implicit relationship between the left and right
images of the stereo-vision system. Univariate and multivariate
functions are adopted to characterize the relationships between the
two input images and the object detection model. The regularizer is
then relaxed to its upper bound to improve adversarial robustness.
Furthermore, the upper bound is approximated by the remainder
of its Taylor expansion to improve the local smoothness of the loss
surface. The model parameters are trained via adversarial train-
ing with the novel regularization term. Our method exploits basic
knowledge from the physical world, i.e., the mutual constraints of
the two images in the stereo-based system. As such, outliers can be
detected and defended with high accuracy and efficiency. Numerical
experiments demonstrate that the proposed method offers superior
performance when compared with traditional adversarial training
methods in state-of-the-art stereo-based 3D object detection models
for autonomous vehicles.
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1 Introduction
With the arrival of the artificial intelligence era, autonomous

driving systems based on deep neural networks (DNN) have trig-
gered a new revolution in traveling, and have a high potential to
change the development of cities. An autonomous driving system
needs to complete the following tasks: sensing, decision-making,
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Figure 1: The structure of a typical stereo-based multi-task
object detection model. There are two sibling branches, e.g.,
RPN modules. Each branch takes left and right images as
input respectively. The extracted object proposals are con-
catenated or reshaped into a single feature map for further
processing, e.g., regressing 3D boundary cube, and predicting
viewpoints.

planning, and control. Among these, sensing is considered as the
most fundamental task and of vital importance. In recent years,
vision and LiDAR-based 3D object detection systems which utilize
deep neural networks have been widely used as the sensing systems
[1].

Stereo-based 3D object detection is a vision-based system which
fully exploits sparse, dense, semantic, and geometrical information
in stereo imagery. Most of these models, e.g., Faster R-CNN [2],
utilize large feature networks as their backbone to extract features
and use region proposal networks (RPNs) to generate object propos-
als which are then refined in subsequent modules to get the exact
bounding boxes and class labels. With this rich information, we
can get more accurate keypoints, viewpoints, object dimensions,
and bounding boxes [3–6]. Usually, the left and the right images
cooperate with each other in the stereo-vision system, as shown in
Figure 1. 3D spatial knowledge is highly dependent on the left and
right stereo-pair images. Contrary to stereo systems, monocular
3D object detection approaches suffer from the lack of accurate
depth information, and as a result, cannot provide comparable per-
formance [5]. In addition to vision-based systems, complex real
environments make manufacturers adopt LiDAR-based systems
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at the same time. LiDAR systems generate 3D point cloud data
to model the 3D structures of scenes, either by projecting them
into a bird’s view or directly learning the 3D representations for
classification and regression [7–10].

Although deep learning algorithms have demonstrated superior
performance in many circumstances, it has been recently shown
that these algorithms are vulnerable to perturbations. This security
risk is especially dangerous for 3D object detection in autonomous
driving. Consequently, the concept of adversarial attacks [11] came
into being to measure these perturbations. Typically, adversarial
perturbations are crafted to be imperceptible to human observers
and indistinguishable from the original image. This is achieved by
constraining the ℓp norm of the adversarial image to a pre-defined
value that ensures human imperceptibility from a pixel-difference
perspective. However, adversarial examples can cause large errors
in the detection model when added to images. To date, several adver-
sarial attack algorithms have been designed to attack DNN models
[11–19]. [11] first demonstrated the existence of perturbations to
natural images which can fool DNN models into misclassification.
To generate adversarial images more efficiently, [12] proposed a
novel method termed ‘fast gradient sign method’ (FGSM) to gener-
ate the perturbations by computing the gradient of the loss function.
Intuitively, this means optimizing each input image pixel through
its gradient to maximize the loss while model parameters are kept
unchanged. FGSM utilizes the linearity hypothesis of DNN mod-
els, i.e., designs of deep learning models encourage linear behavior
for computational gains. The basic iterative method (BIM) [16] ex-
tended FGSM by iteratively take multiple small steps to adjust the
perturbation direction. Projected gradient descent (PGD) [17] fur-
ther studied the adversarial perturbations from the perspective of
optimization. PGD initializes the search for an adversarial image at
a random point within the perturbation range. The noisy initializa-
tion creates a stronger attack than previous methods. Attacking the
object detection model is more challenging compared to attacking
the classification model as it needs to mislead the multiple region
proposals. [20] attacks detectors via expectation over transforma-
tion (EOT) technique – a method that computes the perturbation by
adding random distortions (e.g., resizing, rotation, etc.) to natural
images. [18] attacks the shapes of bounding boxes and classifica-
tion labels simultaneously. [19] and [21] focus on attacking more
relevant objects by splitting the whole image into subregions, e.g.,
foreground and background, or several superpixels. Adversarial
examples also exist in the physical world. Some adversarial images
and road signs are printed to fool deep vision models [16, 22]. Adver-
sarial T-shirts can evade person detection systems, even with only
a few adversarial patches on the clothing [23, 24]. [25] generates
adversarial 3D objects via transformation-based methods.

Correspondingly, to improve robustness against attacks, certain
adversarial defense algorithms have been proposed. Currently, de-
fense methods develop along three directions: using modified train-
ing or modified inputs, modifying networks, and using external
add-on networks [26]. A majority of the literature that introduced
new adversarial attack methods simultaneously train the models
with their attacked inputs [12, 16, 17] - a practice termed as adver-
sarial training. Some modified inputs by conducting preprocessing
operations, e.g., random resizing [27] and data compression [28].
SafetyNet [29] proposed to append an SVM classifier to the models

such that SVM can use the discrete codes computed by ReLUs. For
an input image, its discrete codes are compared against the codes
of training data to determine whether it is an adversarial image.
Generative adversarial networks (GANs) [30, 31], composed of a
generator and a discriminator, add two novel modules to help gen-
erate perturbations and discriminate adversarial inputs. Outside of
these outstanding works, to the best of our knowledge, there has
been no work done on defending against attacks on stereo-based 3D
object detection models. Although we can directly impart reason-
able robustness via brute-force adversarial training with adversarial
images as inputs, this strategy ignores the physical characteristics
of stereo vision.

In this paper, we propose a defense method based on adversarial
training with a novel and physically meaningful regularization term.
Stereo-based detection models normally utilize the implicit spatial
information from the left and right images to regress proposals
independently, i.e., the sibling branches in Figure 1. Meanwhile, the
concatenated features from these two images are further fused to
learn model information, i.e., the single branch in Figure 1. Con-
sidering these two types of mechanisms that can be modeled as
univariate and multivariate functions, a novel stereo-based regu-
larizer is proposed. The regularizer is further relaxed to its upper
bounds which ease the optimization process. To maximize the local
smoothness of the loss surface, the upper bound is further approxi-
mated by the remainders of Taylor expansions. With these features,
our novel defense method can counteract adversarial attacks effi-
ciently.

The rest of our paper is organized as follows. Section 2 introduces
the problem to be addressed and preliminaries. Section 3 explains
our proposed defense techniques in detail. Section 4 summarizes
the overflow defense flow. Section 5 demonstrates the experiments
and results, followed by conclusion in Section 6.

2 Preliminaries
2.1 Adversarial Training

Adversarial training can be traced back to the rise of adversarial
attack algorithms. The typical form of most adversarial training
algorithms involve training the target model on adversarial images
generated via the attack method. Notably, most adversarial training
methods perform the following min-max training strategy shown
in Equation (1).

min
θ

max
δ

L(x + δ ,θ ;y),

s.t. ∥δ ∥p ≤ ϵ,
(1)

where θ represents the model parameters, δ is the perturbation, y
is the ground truth and L(x + δ ,θ ;y) is the loss function. ∥ · ∥p is
the ℓp -norm, which constrains the perturbation within ϵ such that
the perturbation is imperceptible to cameras and human eyes.

2.2 Stereo-based 3D Object Detection
Stereo-based 3D object detection [5, 6] has proved a success

in object detection in autonomous driving systems. Stereo-based
systems can detect and associate objects simultaneously using the
left and right images through exploiting semantic and geometric
information in stereo imagery. The network architecture can be
briefly divided into two parts [5], as shown in Figure 1. The first
module contains two sibling Stereo RPNs which extract features and
generate object bounding proposals for the left and right images
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Figure 2: The generated object proposals and the final de-
tected objects.

independently. Relying on the sibling features extracted in the first
module, the subsequent module fuses the features and predicts the
boundary cube, keypoint, and other related spatial information.
The final detection results are jointly determined by the region
proposals. An example is shown in Figure 2.

2.3 Problem Formulation
Denote xl and xr as the input left and right images respectively.

The object bounding boxes in the left and right images are bl and
br respectively and the object class label is y. Given a stereo 3D
object detection model with parameters θ and loss function L, our
task is to solve the following min-max problem:

min
θ

max
δl ,δr

L(xl + δl ,xr + δr ,θ ;bl ,br ,y),

s.t. ∥δl ∥p ≤ ϵ, ∥δr ∥p ≤ ϵ,
(2)

where δl and δr represent the perturbations on the left and right
images. δl and δr are both constrained within the manipulation
budget ϵ . In the following sections, we use Lo to denote the above
original L(·) loss function for brevity.

3 Defense Algorithm
As previously mentioned, the stereo-based 3D object detection

model can handle various tasks. Different tasks can be modeled as
different forms of functions. For example, the sibling RPN modules
generate bounding boxes for the left and right images respectively
(as shown in Figure 3). Therefore we can model this part as two
independent univariate functions. The regularization term should
constrain both of these two functions. Regressing the 3D bounding
box or predicting the viewpoint can be represented as a multivari-
ate function. The embedded features which are learned from the
left-right stereo pair are jointly used as inputs to the multivariate
function. Consequently, the regularization term should be able to
handle multivariate functions. Both of the two regularization terms
are optimized by relaxation and approximation, to improve local
smoothness of the loss surface.

3.1 Stereo-based Regularizer
The two regressed bounding boxes from the left and right images

share a high intersection over union (IoU). This phenomenon is

Left Box

Right Box

Figure 3: Bounding boxes regressed from the left and right
images.

consistent with the pre-existing understanding that stereo cameras
capture the same field of view from a rectified stereo-pair with a
small level of disparity. However, the two resulting bounding boxes
contain differences that are influenced by physical factors such as
the distance between the car and the object, the object orientation
with respect to the stereo camera, etc. These physical factors vary
with environments, which make them expensive to be measured
accurately. For simplicity, we compute the distance between the two
bounding boxes to characterize the effects of the practical physical
factors.

Let fl (xl ) and fr (xr ) represent two univariate functions, to repre-
sent the features extracted from the left image xl and right image xr
respectively. Therefore, the distance between the bounding boxes
predicted from the two images is defined as:

d (xl ,xr ) = ∥ fl (xl ) − fr (xr )∥n . (3)

As mentioned before, the physical characteristics are measured with
d (xl ,xr ). After attacking the images, the corresponding distance
is computed as:

d (xl + δl ,xr + δr ) = ∥ fl (xl + δl ) − fr (xr + δr )∥n . (4)

To improve the robustness of the detection system, we hope
that these physical characteristics are well reserved. Therefore, the
regularization term for the sibling branches is defined as:

Lb = | d (xl + δl ,xr + δr ) − d (xl ,xr ) |, (5)

where | · | computes the absolute value. With Lb and the original
loss function Lo , the updated optimization objective function is
L = Lb + Lo . Note that as shown in Equation (2), the regulariza-
tion term is minimized with respect to θ . Minimizing Equation (5)
would possibly result in inflexible optimization and ambiguous con-
vergence status [32]. The straightforward hazard is that pushing
d (xl ,xr ) close to zero makes the model confuse the left and right
images. So is for d (xl + δl ,xr + δr ). For example, d (xl ,xr ) = 0
would result in fl (xl ) = fr (xr ). Although the original loss term Lo
would alleviate this hazard as it computes the errors between the
predicted bounding boxes and ground truths, Lb would no longer
be a helper and would become a burden. This contradicts our initial
intuition.

We add a marginm to reinforce the optimization of the distance
functions [32, 33]. Take d (xl ,xr ) as an example. fl (xl ) and fr (xr )
are in symmetric positions in d (xl ,xr ). This means that adding a
positive margin to fl (xl ) is equivalent to adding a negative margin
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to fr (xr ). The margin-based distance function is shown in Equa-
tion (6).

d (xl ,xr ) = ∥ fl (xl ) − fr (xr ) +m∥n ,

d (xl + δl ,xr + δr ) = ∥ fl (xl + δl ) − fr (xr + δr ) +m∥n .
(6)

The same marginm is shared in the two distance metrics because
we believe that the model should be able to recover the same results
after been attacked.

The tasks which use the fused features learned from the early
module can be modeled as multivariate functions. For example, the
viewpoint prediction function can be represented as fm (xl ,xr ), and
the resultant vector with perturbation becomes fm (xl +δl ,xr +δr ).
We hope the model can get the same result after the images are
attacked, therefore the regularization term Lm to be minimized is
defined as:

Lm = ∥ fm (xl + δl ,xr + δr ) − fm (xl ,xr )∥n . (7)

Different from Equation (6), we do not add a margin here because
the features learned from the perturbated images should be equal
to the original features. With Lm , the update optimization objective
function is L = Lo + Lb + Lm .

3.2 Local Smoothness Optimization
Recent work has demonstrated that the robustness of models

usually suffers from the non-linearity of loss surface and gradient
obfuscation.Manymethods have been proposed to improve the local
smoothness [34–36]. Equation (6) and Equation (5) is transformed
to a nested ∥ · ∥ formulation shown in Equation (8).

Lb =∥ ∥ fl (xl + δl ) − fr (xr + δr ) +m∥n − ∥ fl (xl ) − fr (xr ) +m∥n ∥1.
(8)

Equation (8) with nested norm parameters is challenging to be
solved. Moreover,m is a hyper parameter that needs to be deter-
mined through adversarial training. Besides, the difference between
two terms in ∥ · ∥ is at a high magnitude, while the loss surface
usually has a low magnitude. Inspired by recent work which ap-
proximates the regularization term by the remainder of its Taylor
expansion [34, 35], we propose to relax Equation (8) as Equation (9).
The detailed relaxation process is attached in Appendix A.

Lb = ∥ ∥ fl (xl + δl ) − fr (xr + δr ) +m∥n − ∥ fl (xl ) − fr (xr ) +m∥n ∥1

≤ ∥ fl (xl + δl ) − fr (xl ) ∥n + ∥ fl (xr + δr ) − fr (xr ) ∥n

≤ ∥ δl∇xl fl (xl ) ∥n + γl (ϵ,xl ) + ∥ δr∇xr fr (xr ) ∥n + γr (ϵ,xr ),
(9)

where δl∇xl fl (xl ) is the first-order term in the Taylor expansion
of fl (xl ), and δr∇xr fr (xr ) is the first-order term in the Taylor
expansion of fr (xr ). γl (ϵ,xl ) and γr (ϵ,xr ) are the maximums of the
high-order remainders of the Taylor expansions. According to the
inner maximization operation in Equation (2), they are defined as:

hl (ϵ,xl ) = ∥ fl (xl + δl ) − fl (xl ) − δl∇xl fl (xl ) ∥n ,

hr (ϵ,xr ) = ∥ fr (xr + δr ) − fr (xr ) − δr∇xr fr (xr ) ∥n ,

γl (ϵ,xl ) = max
∥δl ∥p ≤ϵ

hl (ϵ,xl ), γr (ϵ,xr ) = max
∥δr ∥p ≤ϵ

hr (ϵ,xr ),
(10)

where hl and hr represent the high-order remainders for the left
and right images respectively.

With Equation (9), we can not only erasem, but also relax Equa-
tion (8) to its upper bound. Considering the trade-off between com-
putational workload and model accuracy, the higher order remain-
ders, e.g., the 2-nd gradient is not computed. The insights behind
Equation (9) is straightforward: the difference between fl (xl + δl )
and fl (xl ) is constrained by the first-order gradient term and the
high-order remainder of the Taylor expansion of fl (xl +δl ). γl and
γr are good measures of how linear the surfaces are within the
perturbation range ϵ . This kind of quality is called local smoothness
measure. By minimizing the smoothness term, we will maximize
the smoothness of the loss surface and therefore improve the model
robustness.

As to the classification regularizer Lm , it follows a similar relax-
ation strategy. fm (xl + δl ,xr + δr ) is approximated by:

fm (xl+δl ,xr+δr ) ≈ fm (xl ,xr )+δl∇xl fm (xl ,xr )+δr∇xr fm (xl ,xr ).
(11)

Thus we can form the following bound:
Lm = ∥ fm (xl + δl ,xr + δr ) − fm (xl ,xr ) ∥n

≤ ∥ δl∇xl fm (xl ,xr ) + δr∇xr fm (xl ,xr ) ∥n + γm (ϵ,xl ,xr ),
(12)

where γm (ϵ,xl ,xr ) is the maximum of the high-order remainder
hm (ϵ,xl ,xr ). They are defined as follows:
hm (ϵ,xl ,xr ) = ∥ fm (xl + δl ,xr + δr ) − fm (xl ,xr )

− δl∇xl fm (xl ,xr ) − δr∇xr fm (xl ,xr ) ∥n ,

γm (ϵ,xl ,xr ) = max
∥δl ∥p ≤ϵ, ∥δr ∥p ≤ϵ .

hm (ϵ,xl ,xr ).
(13)

Combining Equation (10) and Equation (13) together, we define
the regularization term for high-order remainder as Lh , as shown
in Equation (14).

Lh = hl (ϵ,xl ) + hr (ϵ,xr ) + hm (ϵ,xl ,xr ). (14)

Similarly, we combine all of the first-order gradient term together,
and then we have the regularization term L∇ defined as follows:

L∇ = ∥ δl∇xl fl (xl ) ∥n + ∥ δr∇xr fr (xr ) ∥n

+ ∥ δl∇xl fm (xl ,xr ) + δr∇xr fm (xl ,xr ) ∥n
(15)

The overall stereo-based regularizer is Lh + L∇. Together with
the original loss function Lo in Equation (2), we can derive the
following min-max problem formulation:

min
θ

La = Lo + L∇ + [max
δl , δr

Lh ]

s.t. ∥δl ∥p ≤ ϵ, ∥δr ∥p ≤ ϵ,
(16)

where La is defined as the summation of the training error together
with the regularization terms.

4 Overall Flow
In the previous section, we discuss the stereo-based regularizer in

detail. Afterward, local smoothness is considered and the originally
proposed regularizer is relaxed to obtain the local smoothness. An
adversarial training strategy is adopted in this paper.

We iteratively optimize perturbations δl , δr , and model parame-
ters θ . The pseudo-code of the overall optimization training flow
is shown in Algorithm 1. The advantages of using ℓ1-norm over
ℓ2-norm in terms of robustness analysis procedures are largely
recognized across the scientific literature [37]. To improve model
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Table 1: Statistical Results of Adversarial Attacks

Model AP2d (%) AOS (%) AP3d (%) APbv (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

No Attack [5] 99.28 91.09 78.62 98.42 89.43 76.94 54.10 34.44 28.15 68.24 46.84 39.34

FGSM, ϵ = 0.7 88.29 76.45 62.39 87.54 74.11 60.36 40.52 32.94 27.56 15.52 12.19 10.05
FGSM, ϵ = 2 76.82 60.49 49.67 74.73 57.84 47.35 26.21 21.35 16.81 13.64 7.7 6.14

PGD, ϵ = 0.7 69.55 58.94 48.04 66.72 56.04 45.59 22.52 18.88 15.32 7.02 5.53 4.29
PGD, ϵ = 2 53.01 43.11 34.21 51.48 40.23 31.80 9.60 7.61 6.23 3.82 2.22 1.95

Table 2: Statistical Results of Adversarial Defenses

Testing Images Defense Method AP2d (%) AOS (%) AP3d (%) APbv (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

FGSM, ϵ = 0.7 Direct + FGSM 87.58 81.54 71.53 87.25 80.11 62.42 41.95 30.62 28.89 21.57 19.62 16.56
SmoothStereo 88.38 82.74 73.94 88.89 81.87 63.63 45.51 31.01 26.61 24.50 20.88 18.26

FGSM, ϵ = 2 Direct + FGSM 84.73 70.82 57.90 84.13 69.19 55.61 40.15 30.57 24.42 16.21 13.03 10.54
SmoothStereo 85.95 72.64 61.22 81.65 74.83 60.00 41.43 31.63 23.79 18.25 14.76 12.53

PGD, ϵ = 0.7 Direct + PGD 73.37 61.82 56.66 73.04 60.46 50.04 27.47 20.08 18.74 13.77 7.10 9.30
SmoothStereo 75.67 61.58 59.73 73.43 62.27 52.82 24.88 20.90 16.99 12.44 11.73 9.46

PGD, ϵ = 2 Direct + PGD 54.46 49.11 40.44 53.37 46.23 38.07 14.39 10.38 9.32 5.84 4.65 3.29
SmoothStereo 55.29 49.38 41.92 53.47 47.27 40.60 18.11 12.42 9.43 6.82 4.52 3.94

Algorithm 1 Adversarial Training of Stereo-based Object De-
tection Model
Input: Training set {(x1l ,x

1
r ,b

1
l ,b

2
r ,y

1), . . . , (xNl ,x
N
r ,b

N
l ,b

N
r ,y

N )},
batch size B, # of iterations for outer optimization Io , # of
iterations for inner optimization Ii , model parameters θ ,
learning rate η, perturbation range ϵ .

1: for i = 1 → Io do
2: Sample a batch B from the training set;
3: Generate Initial δl and δr for B, in perturbation range ϵ ;
4: for j = 1 → Ii do
5: Calculate Lh in Equation (14) for the batch B;
6: Update δl and δr via back-propagation with Lh as the

loss function;
7: end for
8: Compute L∇ with δl and δr , according to Equation (15);
9: Compute La = Lo + L∇ + Lh with δl and δr ;
10: Update θ via back-propagation with La as the loss function;
11: end for

robustness, ℓ1-norm is used as the norm in Equation (6) and Equa-
tion (7).

5 Experimental Results
In this section, we evaluate our defense method on the challeng-

ing KITTI object detection benchmark [38]. KITTI set is divided
into three categories: Easy, Moderate, and Hard, which reflect the
difficulties of the object detection tasks. The state-of-the-art Stereo-
based 3D object detection model from [5] is used as the target
detection model. Two popular and powerful attack methods are
implemented to attack the detection model, i.e., FGSM [12] and
PGD [17]. Direct adversarial training, proposed in [17] is used to

defend against the adversarial attacks, and results are compared
with our novel defense method. For brevity, our method is shorted
as SmoothStereo.

The result statistics are listed in Table 1. AP2d represents the
average detection precision of the 2D bounding box. AOS repre-
sents the average orientation similarity of the joint 3D detection
[38]. AP3d represents the average detection precision of the 3D
bounding box. APbv represents the average localization precision of
bird’s eye view. The error statistics are computed according to boxes
with IoU ≥ 0.7. Note that in real environments, the perturbations
are usually not overly abnormal. Greater perturbation ranges lead
to stronger attacks. For balance, in our experiments, we take two
perturbation values as examples, i.e., ϵ = 0.7 and ϵ = 2. In each
experiment, the left and right images share the same perturbation
range ϵ . The optimization iteration of PGD images is 2. It is evident
from Table 1 that PGD produces much lower accuracy rates, and is
hence a much stronger adversary compared to FGSM. This phenom-
enon is consistent with people’s experience. Even with a moderate
ϵ = 2, PGD can degrade the model performance by nearly half.

5.1 Defense against FGSM Attacks
Figure 4 shows an example of the FGSM attack and the results

of different defense methods. The adversarial image misleads the
model to misclassify one car and incorrectly predict the object
orientation. Direct adversarial training still loses that car, while mis-
classifying the granite steps as a car. In comparison, our method can
correctly predict the locations and directions of the cars. Moreover,
our regularization and smoothness terms are also able to outper-
form natural detections in some cases. This is shown in Figure 4
where our robust model correctly detects a car which was pre-
viously misclassified on the unperturbed model. This proves the
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Figure 4: Examples of results on FGSM attacks. The images from left to right are: original detection results (ground-truth),
adversarial images generated via FGSM with ϵ = 2, defense results via direct adversarial training, and defense results via our
SmoothStereo.

Figure 5: Example of results on PGD attacks. The images from left to right are: original detection results (ground-truth), ad-
versarial images generated via PGD with ϵ = 2, defense results via direct adversarial training, and defense results via our
SmoothStereo.

local smoothness of our method. The statistical results are listed in
Table 2.

5.2 Defense against PGD Attacks
Figure 4 shows an example of the PGD attack and the results of

defense methods. The original model loses the car in adversarial
images. Intuitively, this can be considered a misclassification and
the model incorrectly perceives class ‘Car’ as class ‘Background’.
Direct adversarial training [17] can correct the model and predict
the car successfully. In comparison, our SmoothStereo method
not only predicts the car, but also finds the nearest object which
hinders the car. The results prove that our method can also improve
robustness of the model while improving the local smoothness. The
statistical results are listed in Table 2.

In summary, the results show that our method can efficiently
improve local smoothness of the detection model and improve pre-
diction results. It is also shown that out novel regularization, which
considers local smoothness and stereo information, can significantly
boost detection performance of the original model as well.

6 Conclusion
To counteract adversarial attacks and improve the robustness of

object detection models for autonomous driving systems, a novel
defense method which specifically considers the physical meaning

of the Stereo-based 3D object detection model is proposed in this
paper. Our regularizer can help the model learn the relative rela-
tionship of the bounding boxes between the left and right images,
which can be modeled as two univariate functions. The regular-
izer is also capable of handling the branch which is modeled as
a multivariate function. These regularizers are further relaxed to
their upper bounds and approximated by first-order remainders of
Taylor expansions. With this relaxation and approximation, we can
maximize the local smoothness of the loss surface to improve the
robustness. It is also shown in the results that our novel regular-
ization considering local smoothness and stereo information can
boost the detection performance of the original model as well.
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A Relaxation of Equation (8)
According to the triangle inequality:

| |a | + |b | | ≤ |a ± b | ≤ |a | + |b |, (17)

which is one of the defining property of the normed vector space
[39], Equation (8) can be relaxed to a upper bound:
Lb = ∥ ∥ fl (xl + δl ) − fr (xr + δr ) +m∥n − ∥ fl (xl ) − fr (xr ) +m∥n ∥1

≤ ∥ fl (xl + δl ) − fr (xr + δr ) +m − (fl (xl ) − fr (xr ) +m) ∥n

= ∥ (fl (xl + δl ) − fl (xl )) − (fr (xr + δr ) − fr (xr )) ∥n

≤ ∥ fl (xl + δl ) − fl (xl ) ∥n + ∥ fr (xr + δr ) − fr (xr ) ∥n .
(18)

The left and right images are in the symmetric positions in Equa-
tion (18), i.e., fl (xl + δl ) − fr (xr + δr ) leads to the same deduced
results with fr (xr +δr ) − fl (xl +δl ). Further, fl (xl +δl ) can be ap-
proximated by its first-order Taylor expansion fl (xl )+δl∇xl fl (xl ).
Thus we can have the following bound:

∥ fl (xl + δl ) − fl (xl ) ∥n

≈∥ δl∇xl fl (xl ) + fl (xl + δl ) − fl (xl ) − δl∇xl fl (xl ) ∥n

≤∥ δl∇xl fl (xl ) ∥n + ∥ fl (xl + δl ) − fl (xl ) − δl∇xl fl (xl ) ∥n

≤∥ δl∇xl fl (xl ) ∥n + γl (xl , ϵ),

(19)

where γl (xl , ϵ) is defined as the maximum of the remainder of the
first-order Taylor expansion of fl (xl + δl ), i.e.:

γl (xl , ϵ) = max
∥δl ∥p ≤ϵ

∥ fl (xl + δl ) − fl (xl ) − δl∇xl fl (xl ) ∥n . (20)

Similarly, the term for the right image is relaxed as follow:

∥ fr (xr + δr ) − fr (xr ) ∥n ≤ ∥ δr∇xr fr (xr ) ∥n + γr (xr , ϵ). (21)

Given Equation (19) and Equation (21), Lb is further relaxed to it
upper bound, as shown in Equation (22).
Lb = ∥ ∥ fl (xl + δl ) − fr (xr + δr ) +m∥n − ∥ fl (xl ) − fr (xr ) +m∥n ∥1

≤ ∥ δl∇xl fl (xl ) ∥n + γl (xl , ϵ) + ∥ δr∇xr fr (xr ) ∥n + γr (xr , ϵ).
(22)
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