
Application-Specific Network-on-Chip Synthesis: Cluster Generation
and Network Component Insertion

Wei Zhong† , Bei Yu‡ , Song Chen† , Takeshi Yoshimura† , Sheqin Dong‡ , and Satoshi Goto†
†Graduate School of Information Production and Systems, Waseda University, Kitakyushu, Japan,

‡Department of Computer Science & Technology, Tsinghua University, Beijing, China,
†{wzhong@ruri., chensong@aoni., t-yoshimura@, goto@}waseda.jp

‡{b-yu07@mails., dongsq@mail.}tsinghua.edu.cn

Abstract1

Network-on-Chips (NoCs) have emerged as a paradigm for design-
ing scalable communication architecture for System-on-Chips (SoCs).
In NoC, one of the key challenges is to design the most power-
performance efficient NoC topology that satisfies the application
characteristics. In this paper, we present a three-stage synthesis
approach to solve this problem. First, we propose an algorithm [floor-
planning integrated with cluster generation (FCG)] to explore optimal
clustering of cores during floorplanning with minimized link and
switch power consumption. Then, based on the size of applications,
an Integer Linear Programming (ILP) and a heuristic method (H)
are also proposed to place switches and network interfaces on the
floorplan. Finally, a power and timing aware path allocation algorithm
(PA) is carried out to determine the connectivity across different
switches. Experimental results show that, for small applications, the
NoC topology synthesized by FIP (FCG+ILP+PA) method can save
27.54% of power, 4% of hop-count and 66% of running time on
average. And for large applications, FHP (FCG+H+PA) synthesis
method can even save 31.77% of power, 29% of hop-count and
94.18% of running time on average.

Keywords

networks on chips, floorplanning, topology synthesis

1. Introduction

Network-on-Chips (NoCs) have been proposed as a solution for
addressing the global communication challenges in System-on-Chip
architectures that are implemented in nanoscale technologies [1] [2].
In NoCs, instead of the traditional non-scalable buses, on-chip micro-
networks are used to interconnect the various cores. NoCs have better
modularity and design predictability when compared to bus based
systems.

NoCs can be utilized as regular architectures like a mesh or
torus, or application-specific architectures. Regular NoC architectures
offer lower design time, and are useful when implemented in a
generic multiprocessor environment such as the MIT RAW [3].
On the other hand, application-specific NoC architectures consist
of heterogeneous cores and memory elements which have vastly
different sizes. The application-specific NoC architecture has been
demonstrated to be superior to regular architectures in terms of power,
area and performance [4]. This paper concentrates on the synthesis
method of application-specific NoC topologies.

A NoC with fewer switches will lead to longer core to switch
links, causing higher link power consumption. On the other hand,

1This research was supported by a grant of Knowledge Cluster Initiative
2nd stage implemented by Ministry of Education, Culture, Sports, Science
and Technology(MEXT) and CREST (Core Research for Evolutional Science
and Technology) JST, Japan.

when many smaller switches are used, the flows have to traverse
more switches, leading to larger switch power consumption. Thus,
for the NoC topology synthesis procedure, proper switch number
needs to be determined, which will have a large influence on the total
power consumption. Moreover, as the physical information of cores
and network components (such as switches and network interfaces)
also influence the link power consumption, their positions should be
considered during topology generation.

A lot of works have been done to synthesize the application-
specific NoC topology. In [5], a two-step topology synthesis pro-
cedure is proposed. But as the min-cut partition is carried out before
floorplanning, physical information such as the distances among cores
can not be taken into consideration. In [6], two heuristic algorithms
are proposed to examine different set partitions. But the partition
is carried out only based on communication flow and a physical
network topology has to be generated for each set partition. In
[7], a novel NoC topology generation algorithms were presented,
however their solutions only consider topologies based on a slicing
structure where switch locations are restricted to corners of cores. In
[8] and [9], synthesis approaches for designing power-performance
efficient NoC topology are proposed. But, the physical locations of
the cores are assumed as inputs and in order to obtain the optimal
switch number, the authors explore the designs with several different
partition numbers. Moreover, as the switches located by the authors
resulting in overlaps with cores, they have to reuse the floorplanner to
remove the overlaps. In [10] a partition-driven floorplaning algorithm
is proposed. But the authors assume optimal switch number is
given as an input, and apply min-cut partitioning every iteration in
simulated annealing. The switch and network interface positions are
located separately and switches are inserted into whitespace one by
one. Besides, the authors use CBL [11] to represent floorplans, which
uses lots of dummy blocks to ensure good solutions, on penalty of
longer running time.

In this paper, under the consideration of both communication
requirements and physical information among cores, partitioning is
integrated into the floorplanning phase to explore the optimal switch
number for clustering the cores with minimized link and switch
power consumption. Then, an Integer Linear Programming (ILP)
method is proposed for small applications to determine the optimal
positions of the switches and network interfaces on the floorplan.
A heuristic method (H) is also proposed for large applications by
applying a two-step insertion (ILP formulation for switches and min-
cost max-flow algorithm for network interfaces) to locate positions
with minimized link power consumption. At last, a power and timing
aware path allocation algorithm (PA) [5] is carried out to determine
the connectivity across the different switches which are free of
deadlock.

The rest of this paper is organized as follows. Section 2 presents
the approach used for topology synthesis. Section 3 presents the FCG

978-1-61284-914-0/11/$26.00 ©2011 IEEE 144 12th Int'l Symposium on Quality Electronic Design

Fig. 1. NoC Design Approach Overall

algorithm, which integrates partitioning into floorplanning phase.
Section 4 presents an ILP formulation and a heuristic method to
determine the positions of switches and network interfaces. Section
5 presents the power and timing aware path allocation algorithm.
Experimental results and conclusions are presented in Sections 6 and
7, respectively.

2. Design Approach

Fig.1 shows the approach used for NoC topology synthesis. The
input of the synthesis procedure is a Core Communication Graph
(CCG), which could be represented by a directed graph 𝐺 = (𝑉,𝐸).
Each vertex 𝑣𝑖 ∈ 𝑉 represents a core and the edge 𝑒𝑖𝑗 with the
weight 𝑤𝑖𝑗 represents the communication requirement between core
𝑐𝑖 and 𝑐𝑗 . In the core specification file, the name and size of different
cores are obtained as inputs. In addition, NoC design parameters such
as the NoC operating frequency and latency constraints are obtained.
For the synthesis procedure, the area, power and timing models of
the NoC switches and links are also taken as inputs.

As the topology synthesis problem is NP-Hard [12], we present
efficient heuristics to synthesize the best topology for the design.
Floorplanning integrated with Clustering Generation (FCG) integrates
the partitioning and floorplanning to explore the optimal clustering of
cores with minimized power consumption. Then, an Integer Linear
Programming (ILP) and a heuristic method (H) are proposed to
place switches and network interfaces on the floorplan, so that
accurate power and delay can be obtained for the wires. At last,
a path allocation algorithm (PA) [5] is carried out, which takes linear
combination of power consumption and hop-count as objective, to
determine the connectivity across different switches.

The output of the synthesis procedure is an optimized application-
specific NoC topology with pre-determined paths on network to
route the traffic flows and the floorplan result of cores, switches and
network interfaces in the NoC with minimized power consumption.

3. Floorplanning integrated with Cluster Generation

Fig.2 shows the flow of the proposed algorithm. The initial solution

Fig. 2. Floorplanning integrated with Cluster Generation (FCG)

of floorplan is generated by a fixed-outline floorplanning tool IARFP
[13], which drives the floorplan with the objective evaluated by
the linear combination of the area costs and the wirelength. The
step Initial Partitionning will be generated based on the Core
Communication Graph (CCG) by a min-cut bi-partitioning algorithm
and is assumed as the input of the following Floorplanning and
Clustering, which integrate the partitioning and floorplanning to
explore optimal clustering of cores with minimized link and switch
power consumption. After floorplanning, the clusters with zero core
will be ignored and the optimal switch number and connectivity
between cores and switches will be determined.

In Fig.2, for the required operating frequency of the NoC, the
maximum size of the switch 𝑚𝑎𝑥 𝑠𝑤 𝑠𝑖𝑧𝑒 is obtained as an
input. Initial Partitionning apply a recursive min-cut bi-partitioning
algorithm on CCG, according to the communication requirements and
physical locations of the cores, until each cluster has the core number
smaller than 𝑚𝑎𝑥 𝑠𝑤 𝑠𝑖𝑧𝑒. In partition, we define new edge weight
𝑤′

𝑖𝑗 in CCG as:

𝑤′
𝑖𝑗 = 𝛼𝑤 × 𝑤𝑖𝑗

𝑚𝑎𝑥 𝑤
+ (1− 𝛼𝑤)× 𝑚𝑖𝑛 𝑑𝑖𝑠

𝑑𝑖𝑠𝑖𝑗
(1)

where 𝑤𝑖𝑗 denotes communication requirement between core 𝑖 and
core 𝑗, 𝑑𝑖𝑠𝑖𝑗 denotes distance between core 𝑖 and 𝑗, 𝑚𝑎𝑥 𝑤 is the
maximum communication requirement over all flows and 𝑚𝑖𝑛 𝑑𝑖𝑠
is minimum distance among cores.

This step is to generate an initial partition, ensuring those cores
with larger communication requirements and less distances are as-
signed to the same cluster and using the same switch for communi-
cation.

Once the initial partition is generated, the next step is to explore
optimal clustering of cores during floorplanning. This step is carried
out at Select insertion point and cluster for the removed core, and
the flow is listed as follows:

a. Compute the floorplan of cores except the removed one.
b. Enumerate possible insertion points based on the floorplan

information obtained in step 𝑎, and for each insertion point,
calculate the candidate cluster of the removed core by rough
power evaluation.

c. Select a fixed number of candidate insertion points (CIPs) for
the removed core by rough cost evaluations.

d. Choose for the removed core one of the candidate insertion
points selected in step 𝑐, and assign the cluster for the removed
core.

In step 𝑏, we use 𝑅𝑘 to represent the bounding resources for cores
in cluster 𝑘, and 𝐶𝑘 represents the set of cores in 𝑘th cluster. So,
if we insert the removed core 𝑐𝑚 into (𝑥, 𝑦), we first calculate the
candidate cluster set 𝐶𝐶𝑆𝑚(𝑥, 𝑦), which is composed of clusters
whose 𝑅𝑘 covered (𝑥, 𝑦). This step is used to ensure for every cluster
𝑘 ∈ 𝐶𝐶𝑆𝑚(𝑥, 𝑦), the distance of the removed core 𝑐𝑚 to all the
cores in cluster 𝑘 will be taken into a small range, hence can use the
same switch for communication. The rough power consumption of
𝑐𝑚 to cluster 𝑘 (𝑘 ∈ 𝐶𝐶𝑆𝑚(𝑥, 𝑦)) can be calculated as:

𝑃𝑚
𝑘 (𝑥, 𝑦) =

∑

𝑐𝑖 /∈𝐶𝑘,𝑖≤𝑛𝑐

𝑐𝑟 𝑐𝑜𝑟𝑒𝑖,𝑚 ∗ (∣𝑥𝑐𝑖 − 𝑥∣+ ∣𝑦𝑐𝑖 − 𝑦∣) (2)

where 𝑐𝑖 denotes the 𝑖th core, 𝑐𝑟 𝑐𝑜𝑟𝑒𝑖,𝑚 represents communication
requirements between core 𝑐𝑚 and 𝑐𝑖, (𝑥𝑐𝑖 , 𝑦𝑐𝑖) is the coordinate
of core 𝑐𝑖 and 𝑛𝑐 represents the number of cores. The rough power
consumption 𝑃𝑚(𝑥, 𝑦) can be evaluated as:

𝑃𝑚(𝑥, 𝑦) = 𝑚𝑖𝑛 {𝑃𝑚
𝑘 (𝑥, 𝑦)}, ∀𝑘 ∈ 𝐶𝐶𝑆𝑚(𝑥, 𝑦) (3)

the cluster 𝑘 (𝑘 ∈ 𝐶𝐶𝑆𝑚(𝑥, 𝑦)) with the smallest 𝑃𝑚
𝑘 (𝑥, 𝑦) will be

assumed as the candidate cluster of core 𝑐𝑚 for the insertion point
(𝑥, 𝑦), denoted as 𝐶𝐶𝑚(𝑥, 𝑦), and the corresponding 𝑃𝑚

𝑘 (𝑥, 𝑦) will
be evaluated as the 𝑃𝑚(𝑥, 𝑦) during the rough cost evaluation in step
𝑐.

In step 𝑐, every insertion point in Sequence-Pair with the corre-
sponding (𝑥, 𝑦) is evaluated by the linear combination of the area
costs, wire length and rough power consumption 𝑃𝑚(𝑥, 𝑦) related
to the removed core 𝑐𝑚.

In step 𝑑, we insert core 𝑐𝑚 into Sequence-Pair at each CIP and
evaluate all the CIPs selected in step 𝑐 accurately:

Φ = 𝜆𝑎𝐴+ 𝜆𝑤𝑊 + 𝜆𝑝𝑃 + 𝜆𝑠𝑆 (4)

where 𝐴 represent area of the floorplan; 𝑊 represent the total wire
lengths; 𝑃 represent the total link power and 𝑆 represents the switch
size of candidate cluster 𝑘 (𝑘 = 𝐶𝐶𝑚(𝑥, 𝑦)) in CIP. The total link
power 𝑃 can be evaluate as:

𝑃 =
∑

𝑖≤𝑛𝑐

∑

𝑗 ∕=𝑖,𝑗≤𝑛𝑐

𝑐𝑟 𝑐𝑜𝑟𝑒𝑖,𝑗 ∗ (∣𝑥𝑐𝑖 − 𝑥𝑐𝑗 ∣+ ∣𝑦𝑐𝑖 − 𝑦𝑐𝑗 ∣) (5)

and 𝑆 is involved to punish the cost if the cluster 𝑘 with its size bigger
than 𝑚𝑎𝑥 𝑠𝑤 𝑠𝑖𝑧𝑒, which can not support the chip frequency. The
parameters 𝜆𝑎, 𝜆𝑤, 𝜆𝑝, 𝜆𝑠 can be used to adjust the relative weighting
between the contributing factors.

If the best one of CIPs shows an improvement, the corresponding
insertion point (𝑥, 𝑦) will be the new position of the removed core
𝑐𝑚, and its the candidate cluster 𝐶𝐶𝑚(𝑥, 𝑦) in CIP will include the
core 𝑐𝑚. Otherwise, an acceptable probability will be calculated.

After floorplanning, the clusters with zero core will be ignored and
the optimal switch number is determined. The connectivity between
cores and switches is also established, which can fully support the
chip operating frequency.

4. Switch and Network Interface Insertion

New switches and network interfaces will be included in the NoC
topology so their physical positions must be determined to estimate
the link power and delay. Due to the restriction that switches and
network interfaces cannot be placed on the core, the location must
be within a whitespace.

TABLE I
NOTATION USED IN ILP FORMULATION

𝑛𝑐 number of cores(network interfaces).

𝑛𝑠𝑤 number of clusters(switches).

𝑛𝑔 number of grids with non-zero capacity.

𝐶𝑘 set of cores in 𝑘th cluster.

𝐶𝑂𝑅𝐸𝑆 set of cores, 𝐶𝑂𝑅𝐸𝑆 = {𝑐1 . . . 𝑐𝑛𝑐}.

𝑐𝑖 the 𝑖th core (1 ≤ 𝑖 ≤ 𝑛𝑐).

𝑛𝑖𝑖 the 𝑖th network interface(NI).

𝑠𝑤𝑖 the 𝑖th switch.

𝑔𝑖 the 𝑖th grid.

𝑐𝑎𝑝(𝑔𝑖) capacity of the grid 𝑔𝑖.

(𝑥𝑐𝑖 , 𝑦𝑐𝑖) coordinate of the core 𝑐𝑖.

(𝑥𝑔𝑖 , 𝑦𝑔𝑖) coordinate of grid 𝑔𝑖.

𝑎𝑖,𝑚 whether insert 𝑛𝑖𝑚 into grid 𝑔𝑖, 𝑎𝑖,𝑚=1,

if insert 𝑛𝑖𝑚 into 𝑔𝑖, otherwise 𝑎𝑖,𝑚=0.

𝑏𝑗,𝑘 whether insert 𝑠𝑤𝑘 into grid 𝑔𝑖, 𝑏𝑗,𝑘=1,

if insert 𝑠𝑤𝑘 into 𝑔𝑗 , otherwise 𝑏𝑗,𝑘=0.

To solve this kind of problem, an even grid structure is used, whose
size 𝑃 ×𝑄 is determined by a specified individual grid size. Given a
floorplan result, we calculate the amount of whitespace in each grid
𝑔𝑖, denoted as 𝑤𝑠(𝑔𝑖). Let A be the area of a switch or network
interface. The capacity 𝑐𝑎𝑝(𝑔𝑖) of a grid 𝑔𝑖, i.e., the number of
switches or network interfaces that can be located at 𝑔𝑖, is defined
as 𝑐𝑎𝑝(𝑔𝑖) = ⌊𝑤𝑠(𝑔𝑖)/𝐴⌋.
4.1 ILP Formulation

Instead of inserting switches and network interfaces separately, we
formulate the problem as an Integer Linear Programming (ILP) which
can insert switches and network interfaces to the optimal position
simultaneously with the minimized link power consumption. We want
to minimize the following cost:

𝑐𝑜𝑠𝑡 = 𝑃𝑐2𝑛𝑖 + 𝑃𝑛𝑖2𝑠𝑤 + 𝑃𝑠𝑤2𝑠𝑤 (6)

where 𝑃𝑐2𝑛𝑖 and 𝑃𝑛𝑖2𝑠𝑤 denotes the power consumption between
cores to network interfaces and network interfaces to switches respec-
tively and 𝑃𝑠𝑤2𝑠𝑤 is the power consumption of interconnects among
switches. TABLE I shows the notations used in the ILP formulation.

Let 𝑎𝑖,𝑚 denotes whether to choose grid 𝑔𝑖 to insert network
interface 𝑛𝑖𝑚 and 𝑏𝑗,𝑘 denotes whether to choose grid 𝑔𝑗 to insert
switch 𝑠𝑤𝑘. 𝑎𝑖,𝑚 = 1 if grid 𝑔𝑖 is assigned to 𝑛𝑖𝑚, otherwise
𝑎𝑖,𝑚 = 0. 𝑏𝑗,𝑘 = 1 if grid 𝑔𝑗 is assigned to 𝑠𝑤𝑘, otherwise 𝑏𝑗,𝑘 = 0.

If grid 𝑔𝑖 is assigned to 𝑛𝑖𝑚, the sum of the Manhattan distances
between a network interface 𝑛𝑖𝑚 and the corresponding core 𝑐𝑚 is
given by:

𝑑𝑖𝑠𝑖𝑛𝑖𝑚,𝑐𝑚 = ∣𝑥𝑔𝑖 − 𝑥𝑐𝑚 ∣+ ∣𝑦𝑔𝑖 − 𝑦𝑐𝑚 ∣ (7)

where (𝑥𝑔𝑖 , 𝑦𝑔𝑖) represents the coordinate of grid 𝑔𝑖 and (𝑥𝑐𝑚 , 𝑦𝑐𝑚)
is the coordinate of the core 𝑐𝑚.

The distance between network interface 𝑛𝑖𝑚 and the corresponding
core 𝑐𝑚 is calculated as:

𝑑𝑖𝑠 𝑛𝑖𝑐𝑚 =

𝑛𝑔∑

𝑖=1

𝑎𝑖,𝑚 ⋅ 𝑑𝑖𝑠𝑖𝑛𝑖𝑚,𝑐𝑚 (8)

Let 𝐶𝑘 be the set of cores in the 𝑘th cluster. We have ∀𝑖, 𝑗,
𝐶𝑖∩𝐶𝑗 = 𝜙 and

∪𝑛𝑠𝑤

𝑘=1
𝐶𝑘 = 𝐶𝑂𝑅𝐸𝑆. For each network interface

𝑛𝑖𝑒 with its core 𝑐𝑒 ∈ 𝐶𝑘, the distance between 𝑛𝑖𝑒 and the switch
𝑠𝑤𝑘 is denoted as 𝑑𝑖𝑠 𝑛𝑖𝑠𝑒,𝑘:

𝑑𝑖𝑠 𝑛𝑖𝑠𝑒,𝑘 =

𝑛𝑔∑

𝑖=1

𝑛𝑔∑

𝑗=1

𝑎𝑖,𝑒 ⋅ 𝑏𝑗,𝑘 ⋅ 𝑑𝑖𝑠𝑔𝑖,𝑗 (9)

where 𝑑𝑖𝑠𝑔𝑖,𝑗 is the distance between grid 𝑔𝑖 and grid 𝑔𝑗 :

𝑑𝑖𝑠𝑔𝑖,𝑗 = ∣𝑥𝑔𝑖 − 𝑥𝑔𝑗 ∣+ ∣𝑦𝑔𝑖 − 𝑦𝑔𝑗 ∣ (10)

The distance between switch 𝑠𝑤𝑑 and switch 𝑠𝑤𝑡 is denoted as
𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡:

𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡 =

𝑛𝑔∑

𝑖=1

𝑛𝑔∑

𝑗=1

𝑏𝑖,𝑑 ⋅ 𝑏𝑗,𝑡 ⋅ 𝑑𝑖𝑠𝑔𝑖,𝑗 (11)

However, the equation for 𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡 and 𝑑𝑖𝑠 𝑛𝑖𝑠𝑒,𝑘 above are
illegal in an ILP because they are non-linear. As a result, we introduce
boolean variables 𝛾𝑖𝑑,𝑗𝑡 and 𝜆𝑖𝑒,𝑗𝑘 to replace 𝑏𝑖,𝑑 ⋅𝑏𝑗,𝑡 and 𝑎𝑖,𝑒 ⋅𝑏𝑗,𝑘,
respectively, and enforce the following artificial constraints in our
ILP:

𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡 =

𝑛𝑔∑

𝑖=1

𝑛𝑔∑

𝑗=1

𝛾𝑖𝑑,𝑗𝑡 ⋅ 𝑑𝑖𝑠𝑔𝑖,𝑗

𝑏𝑖,𝑑 + 𝑏𝑗,𝑡 − 𝛾𝑖𝑑,𝑗𝑡 ≤ 1 (12)

𝑏𝑖,𝑑 − 𝛾𝑖𝑑,𝑗𝑡 ≥ 0

𝑏𝑗,𝑡 − 𝛾𝑖𝑑,𝑗𝑡 ≥ 0

Because of constraints(12), and the fact that 𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡 appears in
the cost function to be minimized, 𝛾𝑖𝑑,𝑗𝑡 will be equal to 0 unless
both 𝑏𝑖,𝑑 and 𝑏𝑗,𝑡 are 1. Similarly, 𝑑𝑖𝑠 𝑛𝑖𝑠𝑒,𝑘 can be re-written.

Let 𝑐𝑟 𝑐𝑜𝑟𝑒𝑚 be the communication requirement of the core 𝑐𝑚,
and 𝑐𝑟 𝑠𝑤2𝑠𝑤𝑑,𝑡 be the communication requirement between switch
𝑠𝑤𝑑 and switch 𝑠𝑤𝑡. To minimize the total power consumption of the
links, we need to minimize the length of the links weighted by their
communication requirement values, so that higher communication
requirements are shorter than lower ones. Formulating the objective
function mathematically, we get:

𝑐𝑜𝑠𝑡 =

𝑛𝑐∑

𝑚=1

𝑑𝑖𝑠 𝑛𝑖𝑐𝑚 ⋅ 𝑐𝑟 𝑐𝑜𝑟𝑒𝑚

+

𝑛𝑠𝑤∑

𝑘=1

∑

𝑐𝑒∈𝐶𝑘

𝑑𝑖𝑠 𝑛𝑖𝑠𝑒,𝑘 ⋅ 𝑐𝑟 𝑐𝑜𝑟𝑒𝑒 (13)

+

𝑛𝑠𝑤∑

𝑑=1

𝑛𝑠𝑤∑

𝑡 ∕=𝑑

𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡 ⋅ 𝑐𝑟 𝑠𝑤2𝑠𝑤𝑑,𝑡

The ILP formulation for optimizing switch and network interface
positions is as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 (14)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠(7)− (13)
𝑛𝑔∑

𝑖=1

𝑎𝑖,𝑒 = 1, ∀𝑒 ∈ {1 . . . 𝑛𝑐}
𝑛𝑔∑

𝑗=1

𝑏𝑗,𝑘 = 1, ∀𝑘 ∈ {1 . . . 𝑛𝑠𝑤}

𝑛𝑐∑

𝑒=1

𝑎𝑖,𝑒 +

𝑛𝑠𝑤∑

𝑘=1

𝑏𝑖,𝑘 ≤ 𝑐𝑎𝑝(𝑔𝑖), ∀𝑖 ∈ {1 . . . 𝑛𝑔}

𝑎𝑖,𝑒, 𝑏𝑗,𝑘, 𝜆𝑖𝑒,𝑗𝑘, 𝛾𝑖𝑑,𝑗𝑡 = 0 𝑜𝑟 1

We adopted 𝐶𝑏𝑐 [14] as our ILP solver to obtain the optimum
solutions. For small applications (12 cores, 3 switches), the optimal
solution can be obtained in few seconds. However, computationally,
ILP is one of the known NP-hard problems, it will be very time-
consuming for large applications.

4.2 Heuristic Algorithm

Instead of inserting switches and network interfaces simultane-
ously, we propose two exact methods to insert switches and network
interfaces separately, which will be very fast for large applications.
We notice that, even for large applications, the switch number will
be small. Hence, the switch insertion problem is formulated as an
Integer Linear Programming solved by the ILP solver 𝐶𝑏𝑐. And
network interface insertion problem is formulated as a min-cost max-
flow problem.

4.2.1 Switch Insertion

In [10], authors insert switches one by one. Here, we formulate
switch insertion problem as an Integer Linear Program (ILP) which
can insert switches simultaneously to minimize link power consump-
tion between switches. The objective is to minimize the following
cost:

𝑐𝑜𝑠𝑡 = 𝑃𝑐2𝑠𝑤 + 𝑃𝑠𝑤2𝑠𝑤 (15)

where 𝑃𝑐2𝑠𝑤 denotes power consumption of interconnects between
cores to the corresponding switches.

If switch 𝑠𝑤𝑘 is assigned into grid 𝑔𝑗 , the distances from core
𝑚 ∈ 𝐶𝑘 to switch 𝑠𝑤𝑘 is denoted as 𝑑𝑖𝑠 𝑐𝑠𝑗𝑚,𝑘.

𝑑𝑖𝑠 𝑐𝑠𝑗𝑚,𝑘 = ∣𝑥𝑔𝑗 − 𝑥𝑐𝑚 ∣+ ∣𝑦𝑔𝑗 − 𝑦𝑐𝑚 ∣ (16)

So, we formulate the objective function mathematically and we
get:

𝑐𝑜𝑠𝑡 =

𝑛𝑠𝑤∑

𝑘=1

𝑛𝑔∑

𝑗=1

𝑏𝑗,𝑘 ⋅
∑

𝑚∈𝐶𝑘

𝑑𝑖𝑠 𝑐𝑠𝑗𝑚,𝑘 ⋅ 𝑐𝑟 𝑐𝑜𝑟𝑒𝑚 (17)

+
∑

𝑑

∑

𝑡

𝑑𝑖𝑠 𝑠𝑤𝑑,𝑡 ⋅ 𝑐𝑟 𝑠𝑤2𝑠𝑤𝑑,𝑡

The ILP formulation for optimize switch positions is written as
follow:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑠𝑡 (18)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠(10), (11), (12), (16)− (17)
𝑛𝑔∑

𝑖=1

𝑏𝑖,𝑘 = 1, ∀𝑘 ∈ {1 . . . 𝑛𝑠𝑤}
𝑛𝑠𝑤∑

𝑘=1

𝑏𝑖,𝑘 <= 𝑐𝑎𝑝(𝑔𝑖), ∀𝑖 ∈ {1 . . . 𝑛𝑔}

𝑏𝑖,𝑘, 𝛾𝑖𝑑,𝑗𝑡 = 0 𝑜𝑟 1

4.2.2 Network Interface Insertion

Once the switch positions are obtained, the next step is to find the
optimal positions of network interfaces. Previous work [10] carried
out min-cost max-flow algorithm to assign network interfaces into
grids. We also use this method to locate network interfaces but
introduce a more accurate link power evaluation model other than
the distance between each network interface to the corresponding
switch.

When insert a network interface 𝑛𝑖𝑚 of 𝑐𝑚(∈ 𝐶𝑘) into grid 𝑔𝑖,
the distance between 𝑛𝑖𝑚 to the core 𝑐𝑚 and switch 𝑠𝑤𝑘 can be

calculated as:

𝑑𝑖𝑠𝑖𝑛𝑖𝑚 = 𝑑𝑖𝑠𝑖𝑛𝑖𝑚,𝑐𝑚 + (∣𝑥𝑔𝑖 − 𝑥𝑠𝑤𝑘 ∣+ ∣𝑦𝑔𝑖 − 𝑦𝑠𝑤𝑘 ∣) (19)

where 𝑑𝑖𝑠𝑖𝑛𝑖𝑚,𝑐𝑚 is the distance between 𝑛𝑖𝑚 and 𝑐𝑚 defined in
Equation(7), and (𝑥𝑠𝑤𝑘 , 𝑦𝑠𝑤𝑘) is the coordinate of the switch 𝑠𝑤𝑘.
We define communication requirement of core 𝑐𝑚 as 𝑐𝑟 𝑐𝑜𝑟𝑒𝑚, and
the power consumption for inserting 𝑛𝑖𝑚 to grid 𝑔𝑖 is evaluated as:

𝑃𝑖,𝑚 = 𝑐𝑟 𝑐𝑜𝑟𝑒𝑚 ⋅ 𝑑𝑖𝑠𝑖𝑛𝑖𝑚 (20)

Let𝑁𝐼 represents the set of network interfaces and𝐺𝑅𝐼𝐷𝑆 repre-
sents the set of grids with non-zero capacity. For each 𝑔𝑖 ∈ 𝐺𝑅𝐼𝐷𝑆,
its capacity is denoted as 𝑐𝑎𝑝(𝑔𝑖). The network graph 𝐺 = (𝑉,𝐸)
is constructed as follows:

∙ 𝑉 = {𝑠, 𝑡} ∪𝑁𝐼 ∪𝐺𝑅𝐼𝐷𝑆.
∙ 𝐸 = {(𝑠, 𝑛𝑖𝑚)∣𝑛𝑖𝑚 ∈ 𝑁𝐼} ∪ {(𝑛𝑖𝑚, 𝑔𝑖)∣∀𝑔𝑖 ∈
𝐺𝑅𝐼𝐷𝑆} ∪ {(𝑔𝑖, 𝑡)∣𝑔𝑖 ∈ 𝐺𝑅𝐼𝐷𝑆}.

∙ Capacities:
𝐶(𝑠, 𝑛𝑖𝑚) = 1, 𝐶(𝑛𝑖𝑚, 𝑔𝑖) = 1, 𝐶(𝑔𝑖, 𝑡) = 𝑐𝑎𝑝(𝑔𝑖).

∙ Cost: 𝐹 (𝑠, 𝑛𝑖𝑚) = 0, 𝐹 (𝑛𝑖𝑚, 𝑔𝑖) = 𝑃𝑖,𝑚, 𝐹 (𝑔𝑖, 𝑡) = 0.

Network interface insertion can be done efficiently by min-cost
max-flow algorithms running in polynomial time [15].

5. Power and Timing Aware Path Allocation

During the procedure of establishing physical links and paths for
traffic flows, we take linear combination of power consumption and
hop-count as objective. In this procedure, the flows are ordered in
decreasing rate requirements, and the bigger flow are assigned first
by applying Dijastra’s shortest path algorithm. When opening a new
physical link, we also check whether the switch size is small enough
to satisfy the particular frequency of operation. In [5] and [16],
the authors present methods to remove both routing and message
dependent deadlocks when computing the paths. We also use the
methods to obtain paths that are free of deadlock.

6. Experimental Result

The proposed methods have been implemented in C++ language
and run on an IBM workstation (3.2 GHz and 3GB RAM) with Linux
OS. We use hMetis [17] as our partitioning tool to generate the initial
partition. Besides, we adopted 𝐶𝑏𝑐 [14] as our ILP solver.

6.1 Method of Power Evaluation

In NoC architecture, the total power consumption includes dynamic
power and the related leakage power. The power consumption can be
calculated as2:

𝑃 =
∑

𝑖∈𝑁𝐿

(𝐸𝑖
𝑙 ∗ 𝑓 ∗ 𝑐𝑟𝑖 + 𝑙𝑃 𝑖

𝑙) +
∑

𝑘∈𝑆𝑊

(𝐸𝑘
𝑠 ∗ 𝑓 ∗ 𝑐𝑟𝑘 + 𝑙𝑃 𝑘

𝑠) (21)

where 𝑁𝐿 and 𝑆𝑊 represents the set of network links and switches
respectively. 𝐸𝑖

𝑙 and 𝐸𝑘
𝑠 are the bit energy of link 𝑖 and switch 𝑘

respectively. 𝑓 is the operating frequency. 𝑐𝑟𝑖 and 𝑐𝑟𝑘 denotes the
communication requirements passing on link 𝑖 and switch 𝑘. The
leakage power of link 𝑖 and switch 𝑘 are denoted as 𝑙𝑝𝑖𝑙 and 𝑙𝑝𝑘𝑠
respectively. The leakage power and bit energy of switches with
different example port configurations in 70nm technology are showed
in TABLE II. Power consumption of links is listed in TABLE III. The
power consumption is estimated using power simulator Orion [18].

2Here we ignore the internal power consumption of cores and network
interfaces as they are constant and will not change with their positions in the
NoC topology.

TABLE II
POWER CONSUMPTION OF SWITCHES

Ports (in x out) 2x2 3x2 3x3 4x3 4x4 5x4 5x5

Leakage power (W) 0.0069 0.0099 0.0133 0.0172 0.0216 0.0260 0.0319

Bit energy (pJ/bit) 0.3225 0.0676 0.5663 0.1080 0.8651 0.9180 1.2189

TABLE III
POWER CONSUMPTION OF LINKS

Wire length (mm) 1 4 8 12 16

Leakage power (W) 0.000496 0.001984 0.003968 0.005952 0.007936

Bit energy (pJ/bit) 0.6 2.4 4.8 7.2 9.6

6.2 Results and Discussion

Four sets of benchmarks are used to evaluate the proposed al-
gorithm. The first set of benchmarks are three video processing
applications obtained from [19], including VOPD, MPEG4, and
MWD. The next set of benchmarks are obtained from [20], including
263decmp3dec, 263encmp3dec and mp3encmp3dec. The benchmark
D 38 tvopd is obtained from [8]. Finally, we generate several larger
synthetic benchmarks from the above applications.

We compared the proposed method with another three-stage syn-
thesis approach PDF [10], which applies a partition-driven floor-
planning based on a given switch number and, in the second stage,
places switches and network interfaces separately on the floorplan.
The authors also carry out a power and timing aware algorithm as
its third stage for path allocation. The data are averages of 10 runs.

TABLE IV shows the comparison of the topologies synthesized by
the proposed method and PDF. The column Power means the actual
power consumption and Hop Count means average number of hops.
FIP means the FCG algorithm combined with an Integer Linear Pro-
gramming (ILP) to insert switches and network interfaces simultane-
ously, and a power and timing aware path allocation algorithm (PA).
FHP combined FCG with the heuristic method (H) and path allocation
algorithm (PA). IMP shows the improvement of the proposed method.
In PDF, partition number (=3) is given as an input and switches and
network interfaces are inserted separately. Compared with PDF, FIP
(FCG+ILP+PA) synthesis method can save 27.54% of power, 4% of
hop-count and 66% of running time on average. The heuristic method
FHP (FCG+H+PA) also saves 21.55% power, 5% of hop-count and
96.39% of running time on average. As FIP integrates the partitioning
and floorplanning to explore the optimal clustering of cores, and
inserts switches and network interfaces simultaneously, a significant
power and hop-count reduction could be achieved. Moreover, PDF
applies min-cut partitioning every iteration in simulated annealing,
and uses CBL [11] as the floorplan representation, which uses lots
of dummy blocks to ensure good solutions on penalty of longer
running time. On the other hand, FIP applies a recursive min-cut
bi-partitioning algorithm only once to generated an initial partition
and adjusts the clustering of cores during floorplanning (based on a
very fast floorplanner IARFP [13], Sequence-Pair representation), a
large reduction of running time could be achieved.

For further demonstrating the effectiveness, we carried out FHP
(FCG+H+PA) method for large applications. As is shown in TABLE
V, for large applications such as D 43, compared with PDF, FHP
reduces power consumption from 454.1 mW to 296.29 mW, hop-
count from 1.33 to 1.05 and running time from 608.95 s to 10.91
s. Generally, 31.77% of power consumption, 29% of hop-count and
94.18% of running time can be saved for large applications base on
FHP method.

TABLE IV
NOC SYNTHESIS RESULTS FOR SMALL APPLICATIONS

Benchmark V# E# Part# Power(mW) Hop Count Time(s)
PDF FIP FHP PDF FIP IMP(%) FHP IMP(%) PDF FIP FHP PDF FIP IMP(%) FHP IMP(%)

MPEG4 12 13 3 3 3 52.2 21.17 -59.44 24.21 -53.62 1.16 1 1 10.54 3.32 -68.5 0.42 -96.02

MWD 12 12 3 2.8 2.8 7.93 6.89 -13.11 7.23 -8.8 1.33 1.16 1 10.61 6.47 -39.02 0.44 -95.85

VOPD 12 14 3 2.4 2.4 35.61 24.31 -31.73 27.62 -22.44 1 1 1 11.02 5.48 -50.27 0.37 -96.64

263decmp3dec 14 15 3 3.6 3.6 153.86 126.79 -17.59 138.03 -10.29 1 1 1.14 17.12 4.73 -72.37 0.51 -97.02

263encmp3dec 12 12 3 3 3 1885.1 1590.1 -15.65 1618.23 -14.16 1 1.07 1.06 9.92 2.1 -78.83 0.44 -95.56

mp3encmp3dec 13 13 3 3.2 3.2 164.89 119.19 -27.72 131.93 -20 1 1 1 15.17 1.98 -86.95 0.42 -97.23

Avg - - - - - - - -27.54% - -21.55% 1.08 1.04 1.03 - - -66% - -96.39%

TABLE V
NOC SYNTHESIS RESULTS FOR LARGE APPLICATIONS

Benchmark V# E# Part# Power(mW) Hop Count Time(s)
PDF FHP PDF FHP IMP(%) PDF FHP PDF FHP IMP(%)

D 38 tvopd 38 47 3 8 147.96 91.27 -38.3 1.33 1.03 112.81 11.58 -89.73

D 36 36 43 3 8 289.69 215.09 -25.75 1.33 1.03 191.37 10.93 -94.29

D 43 43 54 3 9 454.1 296.29 -34.75 1.33 1.05 608.95 10.91 -98.21

D 50 50 57 3 12 225.8 161.98 -28.26 1.33 1.06 784.09 43.15 -94.5

Avg - - - - - - -31.77% 1.33 1.04 - - -94.18%

7. Conclusions

In this paper, a FCG algorithm is proposed which integrate the
partitioning and floorplanning to explore optimal clustering of cores
with minimized power consumption. For small applications, an Inte-
ger Linear Programming (ILP) method is proposed to place switches
and network interfaces optimally on the floorplan, so that accurate
power and delay are obtained for the wires. For large applications,
a heuristic algorithm is also proposed which is efficient for switches
and network interfaces insertion. Experimental results show that our
NoC topology leads to a large reduction in power consumption, hop-
count and running time. In future, we plan to extend the synthesis
approach to three-dimension which needs to meet the TSV constraints
and technology requirements in 3-D NoCs.

REFERENCES

[1] W. J. Dally and B. Towles, ”Route Packet, Not Wires: On-Chip
Interconnection Networks”, In Proceedings of DAC, June 2002.

[2] L. Benini and G. De Micheli, ”Networks on chips: A new SoC
paradigm”, IEEE Computer, pp. 70-78, January 2002.

[3] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, et al., ”The
RAW Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs”, IEEE Micro, pages 25-
35, 2002.

[4] A. Jalabert, S. Murali, L. Benini, et al., ”xpipesCompiler: A tool
for instantiating application specific Networks on Chip”, DATE,
2004.

[5] S. Murali, P. Meloni, et al., ”Designing Application-Specific
Networks on Chips with Floorplan Information”, ICCAD, 2006.

[6] S. Yan and B. Lin, ”Application-specific Network-on-Chip ar-
chitecture synthesis based on set partitions and Steiner Trees”,
ASPDAC, 2008.

[7] K. Srinivasan, K. S. Chatha and G. Konjevod, ”Linear pro-
gramming based techniques for synthesis of network-on-chip
architectures”, IEEE Trans. on VLSI, 2006.

[8] S. Murali, C. Seiculescu, L. Benini, G. De Micheli, ”Synthesis
of Networks on Chips for 3D Systems on Chips”, ASPDAC,
2009.

[9] C. Seiculescu, S. Murali, et al., ”SunFloor 3D: A Tool for
Networks on Chip Topology Synthesis for 3D Systems on
Chips”, DATE, 2009.

[10] B. Yu, S. Dong, S. Chen, S. Goto, ”Floorplanning and Topology
Generation for Application-Specific Network-on-Chip”, ASP-
DAC, 2010.

[11] X. Hong, S. Dong, ”Non-slicing floorplan and placement using
corner block list topological representation”, IEEE Trans. on
CAS, 2004.

[12] A. Pinto, et al., ”Efficient Synthesis of Networks on Chip”,
ICCD, 2003.

[13] S. Chen, T. Yoshimura, ”Fixed-Outline Floorplanning: Block-
Position Enumeration and a New Method for Calculating Area
Costs”, IEEE Trans. On CAD, 2008.

[14] 𝐶𝑏𝑐 ILP solver, http://projects.coin-or.org/Cbc.
[15] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:

Theory, Algorithms, and Applications. Prentice Hall/Pearson,
2005.

[16] A. Hansson, et al., ”A Unified Approach to Constrained Map-
ping and Routing on Network-on-Chip Architectures”, Proc.
CODES-ISSS, 2005.

[17] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, ”Multilevel
Hypergraph Partitioning: Application in VLSI Domain”, DAC,
1997.

[18] H. Wang, X. Zhu, L. Peh, et al., ”Orion: A Power-Performance
Simulator for Interconnection Networks”, Int. Symp. on Microar-
chitecture, 2002.

[19] D. Bertozzi, et al., ”NoC Synthesis Flow for Customized Do-
main Specific Multiprocessor Systems-on-Chip”, IEEE Trans.
on Parallel and Distributed Systems, 2005.

[20] K. Srinivasan, K. Chatha, et al., ”Linear programming based
techniques for synthesis of network-on-chip architectures”, IEEE
Trans. on VLSI, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

