
A Revisit to Voltage Partitioning Problem

Tao Lin, Sheqin Dong, Bei Yu
Department of Computer Science & Technology

Tsinghua University
Beijing, China 100088

lin-t08, dongsq, yu-b07
@mails.tsinghua.edu.cn

Song Chen, Satoshi Goto
Graduate School of IPS

Waseda University, Kitakyushu, Japan 808-0135
chensong@aoni.waseda.jp

goto@waseda.jp

ABSTRACT
We revisit voltage partitioning problem when the mapped
voltages of functional units are predetermined. If energy
consumption is estimated by formulation E = CV 2, a pub-
lished work claimed this problem was NP -hard. We clarify
that it is polynomial solvable, then propose an optimal al-
gorithm, its time complexity is O

`

nk + k2d
´

which is best
so far, where n, k, and d are respectively the numbers of
functional units, available supply voltages, and voltages em-
ployed in the final design. In reality, considering leakage
power the energy-voltage curve is not simply monotonically
increasing and there is still no optimal polynomial time algo-
rithm. However, under the assumption that energy-voltage
curve is quasiconvex, which is also a good approximation
to actual situation, the optimal solution can be got in time
O

`

nk2
´

. Experimental results show that our algorithms are
more efficient than previous works.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithm, Design

Keywords
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1. INTRODUCTION
Power consumption is a critical problem in modern VLSI

design. With the increasing of power density, thermal issue
has a great impact on the reliability of circuit. Multiple
supplied voltages(MSV) design was suggested to trade off
power and timing.

There are many previous works about the application of
MSV. [2][8][9][12] integrated MSV to floorplanning and place-
ment, [7][10][11][13] applied MSV in the post-floorplanning
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Algorithm Time Complexity Space Complexity

[14] O
`

n2d
´

O (nd)
[6] O (nkd) O (n)

Ours O
`

nk + k2d
´

O (n + kd)

Table 1: The time and space complexity of algo-
rithms when the energy is estimated by E = CV 2

Algorithm Time Complexity Space Complexity

[5] O
`

nkd2
´

O (nk)

Ours O
`

nk2
´

O (nk)

Table 2: The time and space complexity of algo-
rithms for actual situation

and post-placement stages, [3][5][6][14] considered MSV in
high level synthesis. Gu et al.[14] used a novel slack distri-
bution determine the mapped voltages of functional units
under timing constrains, and then an optimal voltage parti-
tioning algorithm for energy saving was proposed to generate
voltage island. Liu et al.[6] dealt with the same problem as
[14], he claimed that it was NP -hard, and gave a provably
good approximation algorithm.

Considering leakage power, high-level supplied voltage does
not mean high energy consumption. Sengupta et al.[5] ex-
tended the voltage partitioning problem for reality and pro-
posed a greedy heuristic algorithm which is suboptimal. In
this paper, we revisit this problem and summarize our con-
tributions as follows.

• In the ideal situation that the energy consumption is
estimated by the formulation E = CV 2, we prove that
voltage partitioning problem for energy saving is not
NP-hard, but polynomial solvable. We also propose an
optimal algorithm which is more efficient than [6] and
[14], see Table 1.

• In reality, energy consumption is not monotonically in-
creasing with the increase of supplied voltage. Under
the assumption that the energy-voltage curve is qua-
siconvex, we can get the optimal voltage partition in
the running time that is comparable to [5], see Table
2.

The remainder of this paper is organized as follows. We
review the voltage partitioning problem in section 2. Sec-
tion 3 proves this problem can be solved in polynomial time
in ideal situation. Our optimal algorithm is proposed in
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Table 3: Capacitances and Mapped Voltages Table
Function Unit u1 u2 u3 u4 u5 u6
Capacitance(pF) 1.0 2.0 1.5 3.0 1.5 2.0
Mapped Voltage(V) 0.8 0.8 1.0 1.0 1.2 1.6

Section 4. Section 5 extends the problem when the energy-
voltage curve is quasiconvex. Experimental results show in
section 6. Finally, section 7 concludes this paper.

2. PROBLEM REVIEW
In the context, the mapped voltages of functional units

have been predetermined according to [14], We define the
voltage partitioning problem for energy saving as follows(we
refer to some definition from [6]).

Definition 2.1. Given a set A of k available voltages,that
A = {va

1 , va
2 , · · · , va

k}, a set F of p function units, that F =
{u1, u2, · · · , up}. Each functional unit ui has a mapped volt-
age vi(vi ∈ A) and a capacitance ci, and its energy consump-

tion in supplied voltage va
j (va

j ≥ vi) is enij = ci ∗
`

va
j

´2
.

The energy of the set en (F ) =
Pp

i=1
ci × v2 (F ), where

v (F ) = maxi=1,··· ,p vi. And s (i) is the final voltage that
is assigned to ui.

Problem 1. (VPP) Given a positive integer d,a set A of
k available voltages, that A = {va

1 , va
2 , · · · , va

k), and a set Γ
of n functional units, that Γ = {u1, u2, · · · , un}. Each func-
tional unit ui has a mapped voltage vi(vi ∈ A) and a capaci-
tance ci. Find a voltage partition {F1, F2, · · · , Fd} such that
∪d

i=1Fi = Γ, Fi∩∀i6=j = ∅, Fi 6= ∅, ∀1 ≤ i, j ≤ d,and the total

energy
Pd

i=1
en (Fi) is the minimum.

Problem 2. (OVPP) Given a positive integer d, a set A
of k available voltages, that A = {va

1 , va
2 , · · · , va

k), and an or-
dered list L of n functional units, L = 〈u1, u2, · · · , un〉.Each
functional unit ui has a mapped voltage vi(vi ∈ A),v1 ≤ v2 ≤
· · · ≤ vn, and a capacitance ci. Find an ordered d-partition
〈L1, · · · , Ld〉, such that Li = 〈up, up+1, · · · , uq〉 , |Li| 6= 0, p =

q−|Li|+1, q =
Pi

j=1
|Lj |, and the total energy

Pd

i=1
en (Li)

is the minimum.

See the example shown in Table 3. If we partition the
functional units set Γ = {u1, u2, · · · , u6} into 3 disjoint sub-
sets, F1 = {u1, u2, u3, u4} , F2 = {u5} , F3 = {u6}, then
en (F1) = (1.0 + 2.0 + 1.5 + 3.0) × 1.02 = 7.5, en (F2) =
1.5 × 1.22 = 2.16, en (F3) = 2.0 × 1.62 = 8.96, the total
energy is

P3

i=1
en (Fi) = 14.78.

3. POLYNOMIAL SOLVABLE
Liu et al.[6] claimed that VPP was NP -hard and the opti-

mal solution of OVPP was at most α2 times the best solution
of VPP, where α is the constant ratio of the maximum to the
minimum available voltages. In this section, we prove that
OVPP is not approximate to VPP, in fact they are equal, if
the energy-voltage curve is monotonically increasing.

Definition 3.1. In a partition set Fq(1 ≤ q ≤ d) for
VPP, Let vmax = max{i|ui∈Fq} vi, vmin = min{i|ui∈Fq} vi.

∀ui ∈ Γ, if vmin ≤ vi ≤ vmax, then ui ∈ Fq. We say that Fq

is continuous.

Lemma 3.1. In the optimal solution for VPP, ∀ui, uj ∈
Γ, if vi = vj , then s (i) = s (j).

Proof. Proof by contradiction. Suppose s (i) 6= s (j),
without loss of generality, let s (i) < s (j). So we can get a
better solution if we assign s (i) to uj .

Lemma 3.2. We can get a optimal solution for VPP, that
∀ui, uj ∈ Γ, if vi = vj, then they are partitioned to the same
set.

Proof. Suppose in the optimal solution for VPP, there
are two functional units ui and uj , that satisfies vi = vj ,
but in the different partition sets Fp and Fq . According to
lemma 3.1, s (i) = s (j), so we can merge Fp and Fq without
loss of optimality.

Lemma 3.3. There is an optimal solution for VPP, that
each partition set F is continuous.

Proof. Suppose a partition set Fq is not continuous in
the optimal solution for VPP, let vmax = max{i|ui∈Fq} vi,

vmin = min{i|ui∈Fq} vi. So there is some functional unit,

ui( vmin ≤ vi ≤ vmax), that is not belong to Fq.
We show that s (i) is impossible to be less than vmax,

because we can assign s (i) to the function units, whose
mapped voltages are between vmin and s (i) in Fq , to get a
better solution.

We also show that s (i) is impossible to be greater than
vmax, because we can assign vmax to ui to get a better so-
lution.

To sum up, s (i) = vmax. Including lemma 3.2, we estab-
lish this lemma.

Theorem 1. VPP is equal to OVPP,and it is not NP-
hard.

Proof. VPP is equal to OVPP according to lemma 3.3.
Since OVPP is polynomial solvable, VPP is not NP -hard iff
P 6= NP .

4. OPTIMAL ALGORITHMS
We first review the previous optimal algorithms for OVPP.

Gu et al.[14] used the dynamic programming, because OVPP
has the optimal subtraction. Liu et al.[6] took note of that
the functional units, which had the same mapped voltage,
were not necessary to be divided to different partition sets in
the optimal solution, then speeded up the dynamic program-
ming. The time complexity of [14] and [6] are respectively
O

`

n2d
´

and O (nkd).

input : n functional units, k available voltages in
technology library, partition number d

output: optimal voltage partition for energy saving
Construct a DAG = (V, E), V = {i|va

i ∈ A} ∪ {0},
E = {eij |j > i};
Compute the cost of each edge in the DAG;
Find the shortest max-d-stop path in the DAG;

Algorithm 1: Optimal Algorithm for VPP

Now we propose an optimal algorithm for VPP. The frame-
work of our algorithm is shown in Algorithm 1. Let Ui

denote the set in which each functional unit has the same
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Figure 1: The DAG in ideal situation when k = 5, d =
3. The edges and nodes of shortest d-stop path are
respectively colored red and green.

mapped voltage va
i , Pij denote the total energy consump-

tion of Ui in the supply voltage va
j (va

j ≥ va
i ). We construct a

DAG = (V, E), V = {i|va
i ∈ A}∪{0}, E = {eij |j > i}. Each

edge eij has a cost, that can be presented as cost (eij) =
P

i+1≤z≤j Pzj , which is also the part of energy consumption
when choosing va

i and va
j as supplied voltage, but not va

i+1,
. . . , va

j−1.

Definition 4.1. A path ρ = (0, n1, n2, · · · , k) is called a
max-d-stop path if it has at most d nodes excluding the
start node 0. If it has exactly d nodes excluding 0, we call it
d-stop path.

Theorem 2. A d-stop path and a feasible solution

of OVPP is one-to-one mapping, and the shortest d-stop

path is corresponding to the optimal solution of OVPP.

Proof. Let n0 = 0 and va
0 = 0. For any d-stop path

ρ = (0, n1, n2, · · · , k), we can divide functional units set Γ =
{u1, u2, · · · , un} into d disjoint sets F1, F2, · · · , Fd, that Fi =
˘

ui|ui ∈ Γ ∩ va
ni−1

< vi ≤ va
ni

¯

, vice versa. It is apparently

that cost
`

eni−1ni

´

= en (Fi), so the cost of ρ is equal to
Pd

i=1
en (Fi). The theorem is established.

Fig. 1 shows an example. Suppose the path ρ = (0, 1, 3, 5)
is the shortest d-stop path in DAG, the corresponding par-
tition sets are: F1 = {ui|vi ≤ va

1} , F2 = {ui|v
a
1 < vi ≤ va

3},
F3 = {ui|v

a
3 < vi ≤ va

5}. The total energy consumption is
P

e∈ρ
e = e01 + e13 + e35.

We analyze the time complexity of our algorithm. The
construction of DAG need O (nk). The shortest d-stop path
in DAG can be found in O (|E|d), where |E| = O

`

k2
´

. So

the total running time is O
`

nk + k2d
´

.

5. QUASICONVEX ASSUMPTION
Since the actual energy-voltage curve may not be mono-

tonically increasing, OVPP is no more equal to VPP. Sen-
gupta et al.[5] proposed a greedy heuristic algorithm whose
time complexity is O

`

nkd2
´

, but there is still no optimal
algorithm in the polynomial running time. However, under

the assumption that the energy-voltage curve is quasiconvex,
it is polynomial solvable using the similar method.

We construct the same DAG = (V, E) as section 4, but
the cost of edge is computed in the different way. For any
functional unit um, We mark om as the voltage in which
its energy consumption is minimum, the edge set E can be
divided into three disjoint parts Ω1m, Ω2m, Ω3m. Let va

0=0,
the three disjoint parts can be represented as follows:

Ω1m =
˘

eij |v
a
i < vm ∩ v

a
j ≥ vm

¯

(4)

Ω2m =
˘

eij |vm ≤ v
a
i < om ∩ v

a
j > v

a
i

¯

(5)

Ω3m = E − Ω1m − Ω2m (6)

The contribution to each edge contrium (e) is shown be-
low:

8

>

<

>

:

cm ×
`

va
j

´2
if eij ∈ Ω1m;

min
n

0, cm ×
h

`

va
j

´2
− (va

i )2
io

if eij ∈ Ω2m;

0 if eij ∈ Ω3m.

(7)

Fig. 2 depicts the three edge sets vividly, Suppose a func-
tion unit um, its mapped voltage vm = va

2 (the red vertex),
and om = va

3 (the yellow vertex), so the three disjoint sets
are Ω1m(the blue edges),Ω2m(the green edges), and Ω3m(the
black edges). Next,we prove its correctness.

Lemma 5.1. For any path ρ from 0 to k in DAG = (E, V ),
∀um ∈ Γ,

P

{e|e∈E∩e∈ρ} contrium (e) = min{i|i∈V ∩i∈ρ} enmi.

Proof. Let ρ1 denote the section of ρ, that each node
i of ρ1 satisfies vm ≤ va

i ≤ om, ρ2 denote the section of
ρ, that each node i of ρ2 satisfies om < va

i ≤ va
k . Ap-

parently
P

{e|e∈E∩e∈ρ} contrium (e) =
P

{e|∈ρ1} e + elf =

min{i|i∈V ∩i∈ρ} enmi, where l is the last node of ρ1, f is the
first node of ρ2.

Theorem 3. Under the assumption that the energy-voltage
curve is quasiconvex, the shortest max-d-stop path in the
DAG is corresponding to the optimal solution of VPP.

Proof. For any path ρ from 0 to k in DAG = (V, E),
P

{e|e∈ρ} cost (e) =
Pn

i=1

P

{e|e∈ρ} contriui
(e), which is also

equal to
Pn

i=1
min{j|j∈V ∩j∈ρ} enij according to lemma 5.1.

And the partition number is not allowed to exceed d, so the
theorem is established.

Time Complexity
The construction of DAG need O

`

nk2
´

, plus the time of

finding shortest max-d-stop path, which is also O
`

k2d
´

, the

total time complexity is O
`

nk2
´

.

6. EXPERIMENTAL RESULTS
We implemented our algorithms in C++ on a PC(3.0GHz

CPU, 1GB Memory) running linux OS. We also implemented
Liu et al.’s algorithm for comparison. Same as [6], the five
available voltages in technology library are: 0.8, 1.0, 1.2, 1.4,
1.6(V), the capacitance is randomly generated with means
20 pF by [4]. The only difference is that, for every functional
unit the mapped voltage is among the k available voltages
with the same possibility in our experiment, because how to
compute its value is another problem that will not affect the
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Figure 2: The DAG = (V, E) when k = 5, d = 3 and
the energy-curve is convex in the discrete available
voltages.

correctness and efficiency of algorithms. To verify the opti-
mality, we also formulate the voltage partitioning problem
as an integer linear programming(ILP) and solve it by open
source ILP solver CBC [1].

Table 4 reports experimental results. We can see that,
Liu et al.’s algorithm and ours, both achieved the optimal
power saving, and our algorithm is at least twice as fast as
Liu et al.’s. It can be predictable that our algorithm is much
more efficient than Liu et al.’s due to its low time complexity.

For reality, when k and d is small(for example k = 5, d =
3), Liu et al.’s algorithm and the greedy heuristic algorithm
works well. However, with the increasing of k and d, both
of them may be slow and get into sub-optimal solution. But
our algorithm is still efficient and exact.

7. CONCLUSIONS
We have proved that the voltage partitioning problem for

energy saving is polynomial solvable when the mapped volt-
ages of functional units are predetermined and the energy
consumption is estimated by E = CV 2, then proposed a
very efficient algorithm to solve it. We also extended this
problem for reality. Under the assumption that the energy-
voltage curve is quasiconvex, our algorithm is still very effi-
cient and keep optimal.
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