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The advanced sensor system is composed of various hardware
circuits. It is principal to achieve desired hardware reliability
and efficiency. With continued scaling, the sensitivity to aging-
associated wear-out phenomena has significantly increased. Con-
sequently, electrical signals (e.g., current) will shift from their
nominal values, which causes a gradual circuit failure, inaccu-
rate measurement and sensing. Besides, overheat temperatures
cause the reduction of the mean time between failures for the
printed circuit board (PCB) layout in the sensor system. There-
fore, methodologies for hardware reliability are required. On the
processing unit, with the rapid development of convolutional
neural networks (CNNs), many innovative applications of artifi-
cial intelligence have been promoted. Nevertheless, the massive
CNNs’ parameters bring huge challenges to model storage and
data transfer on the resource-limited hardware. Thus, the po-

tence of the sensor system necessitates methodologies for hard-



ware efficiency.

This thesis endeavors to present our research about several
novel methodologies for hardware reliability and efficiency. Our
research includes Bayesian modeling in hardware measurement
calibration optimization, graph learning in hardware aging ver-
ification optimization, deep learning in thermal-driven hard-
ware design optimization, and Bayesian modeling in hardware-
efficiency CNNs optimization.

Firstly, Bayesian modeling methodology is studied for sensor
measurement calibration optimization. During the application
process, due to the inevitable slow-aging effect, sensor measure-
ment and sensing have errors. We propose a spatial correlation
model to achieve a robust calibration and a better trade-off be-
tween accuracy and runtime.

Secondly, the graph learning methodology is investigated for
sensor hardware aging verification in the verification stage. Due
to expensive transient simulation and user-defined stress con-
ditions, the traditional model-based methodology may bring a
long design-validation cycle and inaccurate results. We present
a heterogeneous graph convolutional network to achieve signifi-
cant speedup while maintaining a low accuracy loss.

Thirdly, CNNs are leveraged to guide sensor hardware design
for thermal optimization in the design stage. The traditional
verification then fix approaches are ill-equipped when faced with
the ever-growing thermal violations. We devise CNNs-based

thermal-driven PCB routing methodology to achieve thermal

ii



well PCB layout design.

For hardware-efficiency CNNs optimization, to reduce param-
eters in grouped convolution-based CNNs, Bayesian learning-
based framework to compress grouped convolutional layers in
grouped convolution-based CNNs is firstly proposed. With our
proposed framework, the grouped convolutional layer is com-
pressed by sharing parameters among different groups.

The proposed methodologies are demonstrated in extensive
experiments on advanced industrial benchmarks and open source
academic benchmarks. These methodologies can accelerate hard-
ware reliability validation, achieve a better trade-off between

accuracy and runtime, and enable hardware efficiency.
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Chapter 1

Introduction

With the development of electronic and computer engineering,
the advanced sensor system is widely used in many areas, such
as smart building. The advanced sensor system is composed
of various hardware circuits, as shown in Fig. 1.1. The typ-
ical hardware circuits contain the integrated-circuit (IC) and
the printed circuit board (PCB). Large numbers of tiny MOS-
FETs (metal oxide semiconductor field effect transistors) inte-
grate into a small chip, which is called IC. While PCB me-
chanically supports and electrically connects electronic compo-
nents (e.g., ICs) using conductive tracks, pads and other features
etched from one or more sheet layers of copper laminated onto
and/or between sheet layers of a non-conductive substrate. In
the advanced sensor system, typical ICs are designed for various
sensors, radio-frequency modules and processing units. Typical
sensors and radio-frequency modules are implemented by ana-

log circuits while processing units are implemented by digital
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circuits. ICs and PCBs are the hardware fundamental of the
sensor system. Some advanced applications are implemented in

processing units to control the whole system.

Advanced Sensor
System

A4

Hardware

RN

Integrated Circuit PCB

el N

Sensor RF module Processing unit

ql SYN48OR
W Cpgang

Figure 1.1 Advanced sensor system.

\
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In order to achieve reliability and efficiency of sensor system,
traditional design flow is shown in Fig. 1.2. The main steps con-
tain the circuit topology design, placement, routing, post-layout
simulation, verification, fabrication and system design. Accord-
ing to the system specifications, the engineers will design some
circuits. The designed circuits consist of the circuit topology
and design parameters. To commit the designs to manufac-
ture, some advanced electronic design automation (EDA) tools
are used to facilitate map design to the layout. Typically, this

process contains placement and routing. Placement is placing
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all instances or components on the layout without overlapping
and satisfying some special constraints and design rules. While
routing is to connect all the nets on the layout without any de-
sign rule violations. Note that this flow can be used in analog
circuits, digital circuits and PCB designs. To achieve hardware
reliability, reliability verification needs to be performed after the
design is finished while before the design is fabricated. Besides,
once the hardware is fabricated, reliability is only achieved in
the system level, such as calibration. When all hardware designs
are finished, some advanced applications are employed in the
processing unit to control the whole system. Recently, convo-
lutional neural networks (CNNs) have achieved impressive suc-
cesses in various applications. They are also used to calibrate
sensor [124], data analysis and prediction and estimation. To
achieve hardware efficiency, these applications, including CNNs

needs to be well customized.

1.1 Challenges

In spite of the great successes in the advanced sensor system,
there are also various emerging challenges in hardware reliability
and efficiency. The issues can be categorized into two parts.
Firstly, traditional design flow rarely focuses on the reliabil-
ity, which causes unreliable hardware circuits. These unreliable
hardware circuits have a shorter lifetime so that it ultimately

brings a fateful consequence, such as measurement errors. Thus
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Figure 1.2 Design flow.

measurements need to be calibrated to extend the lifetime of
sensors when sensors have unreliable effects. However, sen-
sor calibration is hard to achieve perfect measurement recon-
struction while replacing frequently unreliable hardware circuits
bring extra cost. In order to achieve a good reliability, reliabil-
ity needs be considered in design, verification and application
stages. However, reliability verification is very time-consuming
since some computational expensive analytic models are imple-

mented in these reliability simulation. In addition, reliability
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do not be considered in the design stage so that it is difficult to
achieve design closure.

Secondly, the development of CNNs has catalyzed many inno-
vative applications. However, large model size hinders the broad
deployment of CNNs on resource-constrained hardware since
data transfer will consume runtime and hardware resource. In
order to fully exploit the capability of CNNs, designing hardware-
efficiency learning models become essential. Particularly, since
CNNs has covered a wide range of applications and scenar-
ios, the methodologies of enabling hardware-efficiency learning
should contain general techniques so that CNNs can be per-

formed in hardware with high efficiency.

1.2 Thesis Overview

This thesis attempts to investigate several methodologies light-
ening the aforementioned issues mainly at hardware reliability
and efficiency.

Our first contribution is calibrating measurement errors caused
by sensor aging issue. Sensor drift is an intractable obstacle to
practical temperature measurement in the intelligent electronic
system. In this thesis, we propose a sensor spatial correlation
model. Given prior knowledge, Maximum-a-posteriori (MAP)
estimation is performed to calibrate drifts. MAP is formu-
lated as a non-convex problem with three hyper-parameters. An

alternating-based method is proposed to solve this non-convex
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formulation. Cross-validation, Gibbs Expectation-maximum (EM)
and variational Bayesian EM are further exploited to determine
hyper-parameters. Experimental results on widely used bench-
marks from the simulator EnergyPlus demonstrate that com-
pared with state-of-the-art methods, the proposed framework
can achieve a robust drift calibration and a better trade-off be-
tween accuracy and runtime. On average, compared with state-
of-the-art, the proposed framework can achieve about 3x accu-
racy improvement. In order to attain the same drift calibration
accuracy with variational Bayesian EM, Gibbs EM needs 10000
samples, which will incur a 30X runtime overhead.

The second contribution of the thesis is improving the ef-
ficiency of reliability verification. With continued scaling, the
transistor aging induced by hot carrier injection (HCI) and bias
temperature instability (BTI) causes an increasing failure of
nanometer-scale ICs. Compared with digital ICs, analog ICs are
more susceptible to aging effects. The industrial large-scale ana-
log ICs bring grand challenges in the efficiency of aging verifica-
tion. In this thesis, we propose a heterogeneous graph convolu-
tional network (H-GCN) to fast estimate aging-induced transis-
tor degradation in analog ICs. To characterize the multi-typed
devices and connection pins, a heterogeneous directed multi-
graph is adopted to efficiently represent the topology of analog
ICs. A latent space mapping method is used to transform the
feature vector of all typed devices into a unified latent space. We

further extend the proposed H-GCN to be a deep version via ini-
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tial residual connections and identity mappings. The extended
deep H-GCN can extract information from multi-hop devices
without an over-smoothing issue. A probability-based neigh-
borhood sampling method on the bipartite graph is adopted
to ease the model training on large-scale graphs and achieve
good scalability. Experiments on very advanced dnm indus-
trial benchmarks show that, compared with traditional graph
learning methods and static aging reliability simulations by an
industrial design-for-reliability (DFR) tool, the proposed deep
H-GCN can achieve more accurate estimations of aging-induced
transistor degradation. Compared with the dynamic and static
aging reliability simulations, our extended deep H-GCN on av-
erage can achieve 241x and 39x speedup, respectively.

The third contribution is integrating thermal reliability into
design stage. The thermal effect has an impact on the reliabil-
ity of PCB layout. Routing is one of the key steps to reduce
the PCB layout heat. The traditional verification-then-fix ap-
proaches are ill-equipped when faced with the ever-growing vi-
olations of thermal limits. In this thesis, we propose TRouter,
a thermal-driven PCB routing framework via CNNs. CNNs are
leveraged to predict thermal distribution by taking the routing
layout as an input. A gradient in each routing grid cell obtained
from the backpropagation (BP) of CNNs is integrated into a
full-board routing algorithm to guide thermal-driven routing.
To achieve a significant speedup, an adaptive-size bounding-box

is adopted to reduce routing search space. We conduct experi-
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ments on open-source benchmarks to illustrate our TRouter can
achieve significant speedup and thermal well layouts, comparing
with state-of-the-art PCB routing algorithm.

Our fourth contribution is designing a hardware-efficiency
convolution. Compared with traditional convolutions, grouped
convolutional neural networks are promising for both model per-
formance and network parameters. However, existing models
with the grouped convolution still have parameter redundancy.
In this thesis, concerning the grouped convolution, we propose a
sharing grouped convolution structure to reduce parameters. To
efficiently eliminate parameter redundancy and improve model
performance, we propose a Bayesian sharing framework to trans-
fer the vanilla grouped convolution to be the sharing struc-
ture. Intra-group correlation and inter-group importance are
introduced into the prior of the parameters. We handle the
Maximum Type II likelihood estimation problem of the intra-
group correlation and inter-group importance by a group LASSO
type algorithm. The prior mean of the sharing kernels is itera-
tively updated. Extensive experiments are conducted to demon-
strate that on different grouped convolutional neural networks,
the proposed sharing grouped convolution structure with the
Bayesian sharing framework can reduce parameters and improve
prediction accuracy. The proposed sharing framework can re-
duce parameters up to 64.17%. For ResNeXt-50 with the sharing
grouped convolution on ImageNet dataset, network parameters

can be reduced by 96.875% in all grouped convolutional layers,
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and accuracies are improved to 78.86% and 94.54% for top-1
and top-5.

The structure of the thesis is organized as follows. Chap-
ter 2 provides a comprehensive review about the works in this
thesis. Chapter 3 introduces the first contribution with corre-
sponding technique details. Chapter 4 illustrates the the second
contribution. Chapter 5 gives an illustration about the third
contribution and the last contribution is shown in Chapter 6.

Chapter 7 concludes this thesis.

O End of chapter.



Chapter 2

Literature Review

In this chapter, we will review some related literatures about our
works proposed in this thesis. This thesis works on hardware re-
liability and efficiency. It contains the sensor calibration, analog
aging degradation estimation, thermal-driven PCB routing, and
grouped convolution neural networks compression. Next we will

give literature review from these aspects.

2.1 Sensor calibration

Although advanced technologies in the semiconductor industry
and micro-electromechanical systems are developed in recent
years, in practice, sensors outputs exist errors, which are one
of the major barriers to the use of sensor networks. There are
three main types of errors: gain, drift and noise [92]. Compared
with gain and noise, the sensor drift is considered with vital
importance since it has a significantly negative effect on mea-

surement accuracy in aged sensors [2]. Although sensors with

10
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high accuracy and reliability can be deployed, these sensors al-
ways have expensive prices.

The sensor calibration is studied in many previous research
works. These works can be classified into micro- and macro-
calibration or non-blind, semi-blind and blind calibration [110,
151]. The micro-calibration is a cumbersome method that each
sensor is individually tuned so that the ground-truth data can
be recovered from measurements [89].

In the macro-calibration schemes, data from uncalibrated
sensors are collected to optimize the overall system performance.
Therefore, macro-calibration schemes are widely used in prac-
tice. For macro-calibration schemes, according to information
whether they need, there are three categories of sensor calibra-
tion: non-blind, semi-blind and blind. In the non-blind cali-
bration, one or more than one prior knowledge is adopted to
calibrate measurements (e.g., the ground-truth data measured
by some of sensors with high accuracy [32] and the distances be-
tween sensors and the sink node [129]). However, extra costs are
required to obtain this information. For example, several sen-
sors with high accuracy have to be deployed to obtain ground
truth data, and a Global Position System module is installed in
Sensors.

In order to reduce extra costs, some works focused on semi-
blind calibration schemes. In [53], only partial position infor-
mation and the ground-truth data are required to calibrate all

measurements. In order to further decrease extra costs, blind
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calibration schemes were proposed.

In literature about the blind calibration, there are two mod-
els to estimate measurement errors: the first-order autoregres-
sion (AR) model and the signal space projection (SSP) model.
For the AR model, assuming that errors are a time series fol-
lowing Gaussian distribution with zero-mean and constant vari-
ance, adaptive filters such as Kalman filter [72,126], unscented
Kalman [116] filter and particle filter are adopted to track the
error in each time slot so that the measurement can be cali-
brated [116,126]. In the AR model, however, it is assumed that
only one sensor has measurement error in each time instant. In
fact, this assumption is hard to satisfy in practice.

The calibration problem is naturally studied extensively to be
a sparse reconstruction problem, where a sparse set of sensors
are assumed to have significant drifts. Balzano and Nowak [15]
first proposed SSP, in which the measured data are over-sampled
by sensors. In other words, the sensor number is more than
the variance source number. Therefore, the ground-truth vector
has one or more than one null-space. Assuming that sensors are
free-aged and free-error in the initial time, this null space can be
obtained by principal component analysis or independent com-
ponent analysis [30]. In addition, assuming that measurement
errors are sparse, the error can be estimated by sparse regression
techniques, such as the maximum likelihood estimation [125] and
deep learning [124]. In [125], Wang et al. adopt temporal sparse
Bayesian learning (TSBL) [156] to calibrate time-variant and
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incremental drifts for the sparse set of sensors. However, due
to the sparsity assumption, not all sensors can be calibrated.
In addition, since the observation matrix is directly determined
by drift-free measurement, the method cannot calibrate drifts if
signals lie in a time-variant subspace.

Very recently, in order to calibrate all sensors, Ling and
Strohmer presented three models, which are formulated as bilin-
ear inverse problems [75]. However, these models heavily rely on
partial information about the sensing matrix. For the temper-
ature sensor calibration in a smart building, the sensing matrix
depends on the weather, the position of sensors and parame-
ters of the building, e.g., material characteristics, geometry and
equipment power per area [25,26,73]. In practice, it is hard to
obtain this complex and tedious information. As a result, these
models cannot be directly used to calibrate temperature sensors
in a smart building.

According to the discussion above, previous works cannot
handle the situation where dense aged sensors have measurement
errors meanwhile there is no partial information, such as weather

and material, provided for calibration.

2.2 Analog aging degradation estimation

With continued scaling, the susceptibility of nanometer-scale
transistors to aging-related wear-out phenomena has increased

significantly in ICs [105]. As illustrated in Fig. 2.1, two primary
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aging-related wear-out mechanisms of semiconductor based mi-
croelectronic devices are BT and HCI [145]. BTT mechanism is
that accumulated holes in silicon/oxide interface result in break-
ing of Si-H bonds as shown in Fig. 2.1(a). HCI mechanism is that
due to high electric field in drain side, hot carriers cause breaking
of Si-H bond and traps oxide bulk as shown in Fig. 2.1(b) [16].
These aging effects cause transistor parameters, e.g., threshold
voltage, to shift from their nominal values over time, resulting
in a gradual circuit failure. Compared with digital ICs, analog
ICs are more susceptible to these transistor parameters.

In order to save development costs and provide the opportu-
nity for interactive feedback during the design process, estimat-
ing aging-induced transistor degradation before committing the
design to silicon is a key step. In the industry, according to the
estimated aging-induced transistor degradation, the aging viola-
tions can be judged. If there are one or more aging violations in
the aging verification, as a typical verification-then-fix approach,
the DFR designer will go back to the design stages to fix them.
Besides, compared with pre-layout netlists, post-layout netlists
contain parasitic capacitances and resistances. Thus the aging
reliability simulation on post-layout netlists has more accurate
judgment. However, post-layout netlists have a larger scale size
than pre-layout netlists so that they bring grand challenges in
the efficiency of aging verification.

In the industry, as shown in Fig. 2.2, a traditional aging reli-

ability simulator is adopted to verify the circuit reliability. The
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Figure 2.1 BTI and HCI mechanisms.

typical aging reliability simulation is classified into static simu-
lation and dynamic simulation [114]. They both take a circuit
netlist and its stress conditions (stimuli) as inputs. A fresh sim-
ulation is performed to obtain the fresh transistor parameters.
According to the fresh transistor parameters, the stress simu-
lation is performed to get device degradations. By using the
device degradations, the aging simulation is adopted to obtain
the aging transistor parameters. At last, the shift values from
fresh transistor parameters to the aging transistor parameters
are output to judge the circuit reliability. Compared with the
static simulation, the traditional dynamic simulation considers
dynamic stress conditions such as clock speeds in the fresh sim-
ulation and the aging simulation stages so that it needs a large
number of accepted transient steps. Thus the dynamic aging
reliability simulation can obtain a more accurate aging-induced
transistor degradation while takes more time. Nevertheless,
the accuracy of traditional dynamic aging reliability simulation

heavily relies on the given dynamic stress conditions.
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Figure 2.2 The traditional aging reliability simulation.

Modeling aging-induced transistor degradation has been widely
studied in the literature. Tu et al. adopted a voltage-controlled
current source model to predict HCI issues in the design stage
[117]. A transistor drain-current surrogate model was developed
to explore the effects of degradation on analog circuits [144].
Other analytical models were also surveyed and concluded in
[16]. However, there are also several limitations and drawbacks
to these analytical models. Firstly, a correct judgment on the
reliability of the circuits heavily relies on the appropriate stress
conditions [104]. The static aging reliability simulation causes
inaccurate judgment on the aging-prone transistors since the
dynamic stress conditions are completely ignored. Secondly, it
is time-consuming to achieve accurate detections since the dy-
namic aging simulation needs a large number of accepted tran-
sient steps. It is usually difficult to find a compromise between

computational complexity and model accuracy.
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CNNs, as a data-driven approach, have achieved great suc-
cesses in circuit design, such as the design-for-manufacturability
24, 36]. Typically, the aging reliability simulations are per-
formed on circuit netlists. Intuitively, an analog IC netlist can
be naturally represented as a graph. However, the graph is ir-
regular grid-based data, which is not as straightforward as the
convolution and pooling in traditional CNNs. GCNs were pro-
posed to perform machine learning tasks on these irregular grid-
based data [40,60]. Recently, GCNs were adopted to predict
observation point candidates on the design-for-testability [86],
select timing models [85], estimate layout parasitics [99], anno-
tate netlists [35, 64], guide placement [71] and tune transistor
sizing [120]. However, the analog IC netlists have heterogene-
ity since typical analog ICs contain multi-typed basic devices
(e.g., transistor, resistor) and multi-typed connection pins (e.g.,
drain, gate). Typically, exiting GCNs adopt one-hot encoding
to distinguish among multi-typed basic devices and connection
pins. However, it will miss some structural information among
multi-typed nodes as well as unstructured content associated
with each node [20].

Despite GCN can achieve enormous successes in the graph
learning task, it is very shallow. Such a shallow model limits its
ability to extract information from multi-hop devices. Simply
stacking more layers and adding non-linearity may cause perfor-
mance degradation, due to the over-smoothing phenomenon [70].

Very recently, several arts try to tackle the over-smoothing issue.
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Jumping knowledge networks (JKNets) combine the output of
each layer to the last layer to keep the local properties of the node
representations [137]. A few edges are randomly removed from
the input graph in DropEdge to alleviate the over-smoothing
issue [101]. Simplifying GCNs captures higher-order features in
the graph by using the k-th power of the graph convolution in
each neural network layer [131]. Personalized PageRank is gen-
eralized to an arbitrary graph diffusion process in graph diffusion
convolution [61,62]. GCNs with initial residual connections and
identity mappings (GCNII) ensure that the final representation
of each node retains at least a fraction from the input layer, even
if many layers are stacked [22]. Nevertheless, these models do
not consider the heterogeneity of the graph.

According to the discussion above, the typical homogeneous
GCNs and their shallow structure brings performance degrada-

tion in the analog aging degradation estimation.

2.3 Thermal-driven PCB routing

The thermal effect has an impact on the reliability of the PCB
layout. Specifically, overheat temperatures on the PCB lay-
out cause the reduction of the mean time between failures [18].
Routing is one of the key steps to reduce the PCB layout tem-
peratures since the thermal distribution is sensitive to locations
of the segment and via in the post-routing layout. In order

to achieve PCB reliability, the traditional verification-then-fix
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approaches are used in the traditional PCB design flow.

In the traditional PCB design flow, many advanced routing
algorithms are adopted to automatically route all nets in both
academia and industry. The PCB routing algorithms are clas-
sified into the escape routing and the area routing [139]. They
both assume that the PCB designs contain only ball grid array
(BGA) packages. The escape routing is to route the I/O pads or
solder bumps on a die or package to the lines that can escape to
the area surrounding the die to be routed out of the package or
its immediate surroundings [140]. While the area routing is to
connect the previously escaped routes of I/O pads and usually
subject to an upper/lower bound of routed length for each con-
nection [94]. The escape routing can be further categorized into
the ordered escape and the unordered escape. The former needs
to route the connections with specific ordering on the boundary
while the latter needs not. Based on the traditional escape rout-
ing and area routing, some excellent arts were proposed to route
all nets under considering complicated constraints or differential
pairs [31,141]. However, escape routing and area routing may be
inappropriate for dealing with irregularities of non-BGA. Very
recently, a unified routing framework was proposed to handle
such designs with the routing of power/ground nets, differen-
tial pairs, signal nets and irregularities of non-BGA packages
together [74].

After a PCB layout is well-designed, some advanced and com-

plex analytical models in the thermal simulation are used to
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verify the thermal distribution. The thermal simulation pro-
vides a chance for interactive feedback for reliability during the
design process. In these analytical models, the thermal distribu-
tion can be calculated by solving the heat equations [153, 154].
This requires assuming the amount of heat generated by differ-
ent components, pads, vias and segments then calculating the
temperature increase in different regions of the board by solv-
ing the steady-state heat equations. However, the traditional
verification-then-fix approaches are ill-equipped when faced with
the ever-growing violations of thermal limits. In other words,
as shown in Fig. 2.3, if there are one or more thermal viola-
tions detected by thermal simulation, the designers will go back
to the previous routing step to fix them. Thus the traditional
verification-then-fix approaches have a low efficiency to achieve
a thermal well PCB layout and reach design closure.

In order to improve the efficiency of design and verification,
several analytical performance models were integrated into a
router to improve routing quality [28,45]. However, the thermal
model is very complex so that it is difficult to directly integrate
1t into a router.

Recently, CNNs are adopted for fast predictions and esti-
mations after the knowledge is acquired from large amounts of
historical data. In computer-aided design (CAD) field, CNNs
were leveraged to detect reliability violations [136,159] and pre-
dict routability [135]. However, these detections and predictions

cannot provide any guidance for previous design stages. Very
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Figure 2.3 The typical verification-then-fix routing approach and our

thermal-driven routing flow.

recently, CNNs-based performance models were used to guide
performance-driven placement [77,78]. However, the typically
simulated annealing methodology brings expensive computation
since the inference of the CNN-based performance model has to
be performed in each search step [71]. Moreover, the convolu-
tional generative adversarial networks were developed to pre-
dict the congestion heatmap, which was further used to avoid
unnecessary searches and accelerating the overall routing pro-
cess [160]. Besides, a generative neural network was proposed
to provide routing guidance via mimicking the sophisticated
manual layout approaches [161]. However, these routers do not
be directly driven by specific layout performance or reliability.

Since the relationship between routing and thermal distribu-
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tion is extremely complex. In other words, the high tempera-
ture area is not straightforwardly set as a keepout or large cost
area. While other factors such as neighborhood environments
and thermal dissipation ability need to be considered. Thus the
routing cannot be simply guided by predicted thermal distribu-
tion obtained from inference of CNN-based performance model,
as previous works [160,161]. Thus, these routers do not be di-
rectly driven by specific layout performance or reliability. To our
best knowledge, none of the prior art handles the performance-

or reliability-driven routing problem via deep learning or CNNs.

2.4 Grouped convolutional neural networks

compression

CNNs have achieved impressive successes in various applications
of computer vision, such as object recognition [43, 76], object
detection [36,38,79], and video analysis [142]. To handle com-
plicated applications, CNN models become deeper and wider,
which causes massive network parameters. The massive net-
work parameters, however, bring huge challenges to model stor-
age, data transfer, computation overhead, and energy consump-
tion [113,143]. Besides, the massive network parameters may
contain redundancy, which causes overfitting and performance
degradation.

The grouped convolution has been adopted to decrease pa-

rameter redundancy and improve accuracy in popular CNNs,
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such as AlexNet [63] and ResNeXt [134]. The vanilla grouped
convolution is shown in Fig. 2.4(a), where the inputs, the weights,
and the outputs are divided into several groups to perform the
convolution operation. In practice, the grouped convolution is
proven to be able to alleviate overfitting and improve the model
accuracy, outperforming its counterpart, e.g., non-grouped ResNet
vs. grouped ResNeXt [134,155]. Moreover, the grouped convo-
lution is also proven to be more efficient and effective than wider
and deeper networks [134].

Although the grouped convolution has the aforementioned
advantages, the network parameters may still have redundancy.
Various arts are proposed to reduce parameter redundancy. These
methods can be classified into two types: model compression
methods and architecture design methods [123]. Although ex-
isting compression methods have good compression performance
in the traditional convolution models, they may lead to perfor-
mance degradations while being applied to grouped convolutions
since they ignore the diversities of importances and correlations
(i.e., inter-group importance and intra-group correlation) among
the different parameter groups. Without specific optimization
techniques, directly training models with these group architec-
tures may also degrade the performance.

The wider and deeper CNN models bring great challenges
to model storage, computation, data communication, and sys-
tem power consumption [66]. Therefore, many model compres-

sion methods were proposed to address these challenges. Con-
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Figure 2.4 The vanilla grouped convolution and our proposed sharing grouped
convolution (2 groups, the blue boxes are the input features, the orange
boxes are the kernels, the green boxes are the output features. H and W are
height and weight of the input features. C7 and C'o are the numbers of the
input and output channels. Ci" and C'o' are the numbers of the input and
output channels in each group. k is kernel size): (a) The vanilla grouped
convolution. Each group has its own weights. (b) Our proposed sharing

grouped convolution. All of these groups share the same weights.

sequently, the model compression can reduce the inference run-
time. The inference runtime consists of memory access and com-

putation [113,143], where memory access is usually the runtime

bottleneck [127].
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Typical model compression methods can be categorized into
model pruning, bit quantization, low-rank approximation, and
knowledge distillation [147]. Model pruning methods can be
used to prune parameters in different manners, e.g., channel-
wise and depth-wise prunings [42,44,47,69,80,128,150], or struc-
tural and non-structural prunnings [119, 121]. In particular,
attention statistics were adopted to evaluate the importance
of channels so that channels can be pruned by the evaluation
[138]. The low-rank approximation and the model parameters
sparsification can accelerate inference and reduce model stor-
age [21,23,57,67,84,90,93]. Due to the redundancy of the
data precision, bit quantization approaches learn low-bit rep-
resentations of features and parameters [41,130]. Therefore, bit
quantization approaches are very useful for model deployment
tasks on domain-specific hardware [143]. Different from other
categories, knowledge distillation methods facilitate the train-
ing of lightweight models by using knowledge learned from large
networks [21,57].

Although these compression methods have good compression
performance in the traditional convolution, they may lead to
performance degradation for the grouped convolution since they
ignore the diversities of inter-group importance and intra-group
correlation among the parameter groups.

Considering the aforementioned drawbacks in model com-
pression methods, some works adopt other ways to design ef-

ficient architectures to improve network performance. Various
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parameter normalization layers were proposed to avoid perfor-
mance degradation, such as batch normalization, switchable nor-
malization, exemplar normalization [54,83,106, 107, 148]. How-
ever, these normalization schemes cannot remove parameter re-
dundancy even make the networks cumbersome. Besides, some
tricky neural architecture search methods are proposed to de-
termine network configurations [56]. Some works replace large
filters with smaller ones [43,48]. In order to further eliminate
redundancies, some arts adopt separable convolution [68], that
is replacing a 3D convolution with multiple 2D convolutions.
For example, a 3D convolution is factorized to be two 2D ones
in Inception V3 [115]. The pre-defined sparse 2D kernels are
used to make a trade-off between accuracy and energy consump-
tion [66]. The depthwise separable convolution is adopted in
MobileNets [46] and Xception [27].

In particular, the grouped convolution is an efficient archi-
tecture outperforming its counterpart, e.g., non-grouped ResNet
vs. grouped ResNeXt [134,155]. The grouped convolution was
firstly proposed in AlexNet [63], which allocates models on two
GPUs to facilitate parallelism. The grouped convolution adopts
the sparse convolution connections between input and output
channels, by dividing the input channels, output channels, and
their connections into several groups as shown in Fig. 2.4(a).
Compared with the traditional convolutions with “fully con-
nected” features and weights, the parameters and computation

costs are reduced.
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The successes of grouped convolution have inspired its wide
applications, e.g., ShuffleNet [152] and CondenseNet [48]. Re-
cently, to improve the model accuracy, an interleaved grouped
convolutions were designed to further improves parameter ef-
ficiency and classification accuracy [149]. Wu et al. proposed
a group normalization layer, where the mean and variance are
computed within each group [133]. A dynamic grouped convo-
lution was designed with different numbers of channels in the
same layer [112,155]. A fully learnable grouped convolution was
proposed to freely choose the grouping strategy in the training
stage [123]. The optimal channel permutation was developed
to explore group configuration [158]. However, the correlation
among parameters and groups does not be considered so that
these methods will cause performance degradation.

According to the discussion, these is no art about grouped

convolution compression.

2.5 Summary

According to our literature review, there are several challenges

in hardware reliability and efficiency:

e Previous sensor calibration works cannot handle the situ-
ation where dense aged sensors have measurement errors
meanwhile there is no partial information, such as weather

and material, provided for calibration;
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e The typical homogeneous GCNs and their shallow struc-
ture brings performance degradation in the analog aging

degradation estimation;

o None of the prior art handles the performance- or reliability-
driven routing problem via deep learning or CNNs to achieve

design closure;

e These is no art about grouped convolution compression by

considering the correlation among parameters and groups.

In this thesis, we will propose methodologies to handle these

challenges to achieve hardware reliability and efficiency.

O End of chapter.



Chapter 3

Sensor Calibration

3.1 Preliminary

In smart building, several low-cost sensors are deployed to sense
in-building temperatures. Furthermore, all sensors are non-
removable once they are deployed in smart building. Besides,
due to a slow-aging effect, all sensors have unknown time-invariant
drifts. As shown in Fig. 3.1, unlike communication channels
[156], for a sensor signal to be output, i.e., current (I,,), it is
contaminated by a time-invariant drift. Sensor 1 has a drift €; so
that its transfer function shifts downward denoted by the blue
line in Fig. 3.1. While Sensor 2 has a drift €5 so that its transfer
function shifts upward denoted by the red line in Fig. 3.1. In
order to achieve high-accurate measurements, drifts need to be
estimated and calibrated. Based on the above description, we

define the sensor drift calibration problem as follows.

Problem 1 (Sensor Drift Calibration). Given the measurement

29
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Figure 3.1 Drift vs. temperature [10].

values sensed by all sensors during several time-instants, drifts

will be accurately estimated and calibrated.

3.2 Mathematical Formulation

We assume that n sensors are deployed to sense in-building tem-
peratures in a smart building. During a short time after new
sensors are deployed, drifts are assumed to be insignificant in all
sensors. Furthermore, as in [125], we assume that all sensors are
drift-free during my initial time-instants. Due to over-sampling,
as illustrated in [15,125], signals measured by sensors lie in a low
dimensional subspace. Furthermore, in a smart building, all ac-
tual temperatures measured by sensors have a high correlation,
for example, the dense deployment of sensors. Therefore, we

build a linear model among all actual temperatures as follows:

l‘l(k) ~ Z ai,jxﬁ-k) - a; 0, k = 1, 27 s, Mo, (31>
j=1j#i

()

where ;" is the ground-truth temperature sensed by ith sensor

at kth time-instant. a;; is the drift-free model coefficient. We
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define ¢ £ [xil),mg), e ,xg), e ,:U,(@mO)]T, a; = [aio, a1,
Giis1, 5 ain) ER", a2 [a],af, -, al]" € R,

Due to a slow-aging effect, all sensors have unknown time-
invariant drifts. For multiple measurements during a short pe-
riod, all sensors are assumed to suffer a time-invariant drift. As
shown in Fig. 3.1, unlike communication channels [156], electric
signal output, e.g., current (I, ), by electronic devices causes a
time-invariant drift. During m time-instants, Equation (3.1) is

naturally extended as

fgk) + € =~ Z &Z’j(.f?;k) + Gj) + dLO; k= 1L,2,---,m, (32)
j=1j#i

where i'gk)

is the measurement value sensed by ith sensor at
kth time-instant. In particular, in order to obtain enough
information, we assume mg,m > n. For ith sensor, ¢ is a
time-invariant drift calibration, which is independent of time-
instant k. a;; is the model coefficient when all sensors have un-

. . . . . . ~ A
known time-invariant drifts. We vectorize these variables as £ =

NONG N IR PN A A ST
[:131 T R ) ] 7ai—[ai,07"'7ai,i—1a ai,i+17"'>ai,n]

A~ A /\T /\T ATT 2 A T
eR" a=la,,ay, - ,a, €R" and € = [e,€9, -+ ,€6,] €
Rn

Note that Equation (3.2) is the essential in our proposed sen-
sor spatial correlation model. Furthermore, the model error in
Equation (3.2) is assumed to follow identical independent Gaus-
sian distribution with zero-mean and unknown precision (inverse

variance) dyg. Therefore, the likelihood function P(&|a, €) is de-
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fined as follows:

i 00 = N ()
P(x|a, €) x exp(—; ; kz:;[xl + € -
n .

= D (i + ) —awl?)
j=1j#i

However, the likelihood function P(x|a, €) cannot be directly
used to calibrate drifts using maximum likelihood estimation
(MLE) since it has not enough information. Therefore, we need
give two priors in development.

For all sensors, drifts are assumed to follow identical indepen-

dent Gaussian distribution with zero-mean and unknown preci-

sion d, as follows:

P(e) x exp(—% Z €2). (3.4)

i=1

In addition, we assume that the model coefficient a; ; follows
identical independent Gaussian distribution. Intuitively, a; ; has
high dependency on a; ; in statistics. Furthermore, the probabil-
ity density function of a; ; is assumed to take a maximum value
at a; j. Therefore, the prior mean of a; ; is a; ;. In addition, in or-
der that each model coefficient a; ; is provided with a relatively
equal probability to deviate from the corresponding drift-free

model coefficient a; j, the precision of model coefficient a; ; is
defined to be Aa;?

.+, where A is a nonnegative hyper-parameter
9.

to control the precision of a; ;. Therefore, each model coefficient

a; j follows identical independent Gaussian distribution with a; ;
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mean and Aa; ; precision [51,52,118]. For all model coefficients,

we have

P(a) o exp Z Z azjj—ai,j)Q : (3.5)

i=1 j= o,ﬁéz ,J
This prior manner is named Bayesian Model Fusion, which was
developed to combine the early-stage information and the late-
stage information using Bayesian inference in Computer-Aided
Design applications [51,52,118].
In order to calibrate drifts for all sensors, the posterior P(a, €| )
needs to be maximized in MAP estimation manner. According
to Bayes’ rule, the posterior P(a, €|) can be expressed by two

priors and the likelihood function as follows
P(a,e|lx) x P(x|a,e) - P(a) - P(e). (3.6)

Taking the logarithm, MAP can be transferred to be the equiv-

alent formulation as follows:

m

n
. (K (k)
n;nen do E E [arg )-i—ei — g ai;( x -i—ej) a; 0]

1=1 k=1 j=1,5%#i

+)\Z Z a”)Z—l—(SGZ;e?.

i=1 j=0,j#i ’]

(3.7)

To calibrate these unknown drifts in all sensors, Formulation
(3.7) will be optimized efficiently. Next, we will propose an ef-

ficient alternating-based method to optimize Formulation (3.7).
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3.3 Alternating-based Optimization

There are two challenges for Formulation (3.7): how to handle
Formulation (3.7) and how to induce hyper-parameters A, §y and
de. Formulation (3.7) is a non-convex problem, thus it is difficult
to obtain an optimal solution. In this section, we propose a
fast and efficient alternating-based optimization methodology
to optimize Formulation (3.7) by alternatively updating in each
iteration.

According to the alternating-based methodology, at each it-
eration, the values of a and € are updated by optimizing Formu-
lation (3.7) w.r.t. @ and €. Furthermore, note that with fixed
drift calibration variable €, Formulation (3.7) w.r.t. a is regarded
as a convex unconstrained Quadratic Programming (QP) prob-
lem, which can be solved by Gaussian elimination [39]. How-
ever, the computational complexity of Gaussian elimination is
O(n®) (n is the sensor number) if all model coefficients a are
calculated in one sub-formulation [39]. Consider that Formula-
tion (3.7) w.r.t. @ can be decomposed into n independent sub-
Formulations w.r.t. a;. In order to reduce computational com-
plexity, instead of calculating all model coefficients a in one
sub-formulation, a; will be calculated in ith sub-formulation
(¢ = 1,2,---,n). As a result, the computational complexity
of Gaussian elimination is O(n?) in total for n sub-formulations.

Formulation (3.7) w.r.t. @ is decomposed into n independent
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sub-formulations w.r.t. a; as follows:

m n
. ~(k ~ ~(k ~
nqm 5() Z[IZ( ) + € — Z ai’j(xg- ) + Gj) - CLZ'70]2
i k=1 j=1,j#i (3.8)
+ )\ Z CLZ] Cli’j)Q,
J=0,j#i ’j

with the first-order optimality condition:

do Z(jgk) + €) Z &i’j@é_k) +e) +aig| + )\(—2@”) =0,
k=1 j=1
(3.9)

where t = 0,1,---,i — 1,24+ 1,--- ,n. In particular, we define
a;; = —1 and i'ék) + €9 2 1. The system of linear equations (3.9)
can be addressed by Gaussian elimination [39].

In the same manner, with fixed model coefficients a, Formu-
lation (3.7) w.r.t. the drift calibration € can also be regarded to

be a convex unconstrained QP problem as follows:

n

min &> S e D aE o) -

i=1 k=1 j=1,j#i
n
E 2
+ 56 61 9
1=1

with the corresponding first-order optimality condition:

5022 athaw (2% 4 &) + o) | + Geer =0, (3.11)

1=1 k=1 j=1
wheret =1,2,---,n
A local optimum can be obtained by the proposed alternating-

based method while the convergence speed and solution quality
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Algorithm 1 Alternating-based Method

Require: Sensor measurements @&, prior a and hyper-parameters A\, dg, de.

1: Initialize a < a and € < 0;

2: repeat

3: for i < 1 ton do

4 Fix €, solve the system of linear equations (3.9) using Gaussian
elimination to update a;;

5: end for

6: Fix a, solve the system of linear equations (3.11) using Gaussian
elimination to update €;

7: until Convergence

8: return a and e.

depend on the initialization of variables. In our proposed frame-
work, two priors are given for model coefficients a and drift
calibration €. Therefore, in order to achieve a better conver-
gence speed and solution quality, the prior means a and 0 are
used to initialize variables a and €. We continue to update
a and € until convergence. The convergence condition is that
the relative difference of drift calibration € between current and
previous iterations is less than a threshold. In summary, our
proposed alternating-based method is shown in Algorithm 1. In
fact, if the quadratic objective functions (3.7) w.r.t. @ and €
are strictly convex with lower-bounded Hessians, the proposed

alternating-based method can achieve convergency of Formula-
tion (3.7) [37,87].
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3.4 Estimation of Hyper-Parameters

It is important to induce the aforementioned three hyper-parameters
so that drifts can be accurately calibrated and meanwhile the
over-fitting can be avoided [91]. In this section, Cross-validation,
Gibbs EM and variational Bayesian EM are utilized to induce

hyper-parameters, respectively.

3.4.1 Unsupervised Cross-validation

Cross-validation is a simple method to select hyper-parameters
[33]. Although there are three hyper-parameters A, g, de in
Formulation (3.7), instead of determined by cross-validation in-
dividually, we design two ratios \/dy and 6./dy which demand
certain values. As shown in Fig. 3.2, we partition temperature
measurements during m time-instants into s non-overlapping
parts. Given each combination of ratios candidates \/dy and
de/do, in each run, one of the s parts is exploited to estimate the
model error and the rest s — 1 parts are used to calculate model
coefficients and drift calibration. In addition, different groups
will be selected for error estimation in different runs. In the
same manner, each run gives a model error e, (r = 1,2,--- | s)
estimated from a part of temperature measurements. The model
error is defined as follows.

- n
~(k . Ak .
€r - Z [xz( ) + € — Z ai,j(lé ) + Ej) — CLZ"()]2. (312)
f=tr=m 1 j=Lj#
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The final model error is computed as the averagee = > °_, e,/s.
Then two ratios A/dy and d./dy corresponding to the minimum
average model error are chosen.

The pseudo-code of the unsupervised Cross-validation is shown
in Algorithm 2. We input sensor measurements &, the drift-free
model coefficients a, the number of folds for Cross-validation s
and several hyper-parameters candidates. Then the sensor mea-
surements are split into s non-overlapping parts as illustrated in
Fig. 3.2. Formulation (3.7) on model training set is optimized by
Algorithm 1 and the model error defined in Equation (3.12) on
the validation set is calculated for each run and each candidate of
hyper-parameters. After the grid search on all hyper-parameters
and sensor measurements & is finished, the model error is av-
eraged on s runs. At last, the hyper-parameters with the least
average model error are chosen to output. The unsupervised

Cross-validation flow is summarized in Fig. 3.3.

Runl1 Run2 Run3 Run4 Runs

l . \ |:| Model Training

-Error Estimation
l J

Figure 3.2 The unsupervised cross-validation.

syred s
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Algorithm 2 The unsupervised cross-validation

Require: Sensor measurements @, prior a, number of folds for
cross-validation s, hyper-parameters candidates {(A/dg)1, (A/d0)2, -+ ,
(A/00)dy s, + and {(de/d0)1, (de/d0)2 - -+ (0e/b0)ds, s, }-

1: for r < 1 to s do

for i <— 1 to dyss5, do

for j <1 to ds,. /5, do

Obtain the model coefficients @ and calibration € by Algo-
rithm 1 from sensor measurements with rth part removed.
5: Compute the model error on rth part of sensor measurements
by Equation (3.12).
end for
end for

. end for

: Average the computed modeling error for each pair of hyper-parameters
candidates (A/dg); and (d¢/do);, 1€, €<= Y °_, ex/s.
10: Select (A/dp); and (0¢/dp); with the smallest modeling error, i.e.,
(A/00)opts (0e/G0)opt < argmin .
11: return The optimal hyper-parameters (A/dg)opt and (de/do)opt-

Note that unlike conventional Cross-validation [25,26,51,52,
73, 118], not any golden values are used in metrics to choose
hyper-parameters in model fitting stage. Therefore, in our pro-
posed framework, Cross-validation is adopted in an unsupervised-
learning-like fashion.

Cross-validation is time-consuming since Algorithm 1 has to
be performed for multiple times. Thus we propose two fast
and efficient EM algorithms to determine hyper-parameters in

statistical model.
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Measurements with .. . Hyper-parameters
: H P Data into s Parts )
artition Data into s Parts Candidates
Drift-free Model i Alternation-based
Coefficients Optimization on s-1 Parts |
Model Error on One
Validation Part
Chosen Hyper- || Average Model Error on
parameter Each Validation Part
Cross-validation

Figure 3.3 The unsupervised cross-validation flow.

3.4.2 Gibbs Expectation Maximization

In this section, MLE is used to determine individual hyper-
parameters g, A and d.. MLE of hyper-parameters is formulated

as follows:

mnax P(x; 00, A, e ). (3.13)

However, in the likelihood function P(&; do, A, d¢), the integral
is intractable. EM algorithm is leveraged to efficiently find a so-
lution to Formulation (3.13) [146]. According to EM algorithm,
Formulation (3.13) can be taken the logarithm and transferred
to be its auxiliary lower bound function [34]. Then the auxil-
iary lower-bound function is optimized by E-step and M-step
iteratively after the term independent of hyper-parameters is
omitted. The detailed derivation can be found in [100]. For

convenience, all hyper-parameters are collected as a set Q £

{507 >\7 56}
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Expectation Step with Gibbs Sampling
Since P(&; o, A, 0c) = L(Q; 0, 6o, A) + KL(Q||P) and KL(Q||P)
>0, £(Q; 9, by, A) is a lower-bound function defined as follows:

P(X,a, € b, 00, \)
Q(a,e€) ’

where E indicates the expectation operator. Q(a,e€) is an arbi-

(3.14)

L(Q, (56, (50, )\) = EQ(ELE) In

trary joint distribution for @ and €. Instead of maximizing the
marginal likelihood directly, the EM maximizes the lower bound
function. Let” s assume that we can find P(a, €|2; Q2°'¢) analyti-
cally. Then, we can simply substitute Q(a, €) = P(a, €|z; Q).

The lower-bound function can be represented as follows
£(Q; 6,60, A) = Ep(aeaoon) nP(X, @, € 0, 5, \)

(3.15)
— Eﬂ’(d,dﬁ:;QOld) 111 T(d, G‘CIA'J, QOld).

The second term Ep 4 ¢j3.000) In P(a, €| 2; Q°d) is a constant with
respect to o, and &y and A, and we do not take the term into
account when maximizing the lower-bound function. Therefore,

we define a quantity as follows
Q(QUQM) = Ep4 cjz.000) In P(2, @, € ), (3.16)

where Q°4 denotes estimated hyper-parameters in the previous
iteration.

However, the posterior P(a, €|z; Q°9) is intractable since it is
hard to calculate the integral in the likelihood function P(&; do, A, d¢).
There are two main methods to approximate the posterior P(a, €|x; 2):

Variational Inference and Markov Chain Monte Carlo (MCMC)
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[100]. Compared with Variational Inference, MCMC has the ad-
vantage of being non-parametric and asymptotically exact [103].
Therefore, Monte Carlo method is utilized to approximate the

quantity defined in Equation (3.17) as follows:
QM) ~ ZlniP Q), (3.17)

where samples @V and € are sampled from the distribution
P(a, e|z; Q). L is the total number of samples. In MCMC,
there are two main algorithms to obtain samples from the de-
sired distribution P(a, €|#; 2°4): Metropolis Hastings algorithm
and Gibbs sampling. Since the rejection rate will be high in com-
plex problems, Metropolis Hastings algorithm has a very slow
convergence rate [100]. Therefore, Gibbs sampling is harnessed
to obtain samples @V and €.

Gibbs sampling has the behavior that one or batch variables
are cyclically and repeatedly updated in some particular order
at random from conditional distribution. Sampling order is ar-
ranged to be &g{)o, e ,&g%, &é{)o, e ,&f,i)n_l, egl), e ell). In Gibbs
sampling, one of key points is derivation of the conditional dis-
tribution for each variable. Note that according to Formula-
tion (3.7), the logarithm conditional distribution w.r.t. individ-
ual variable is quadratic. Therefore, the conditional distribution

of each variable is Gaussian distribution as follows:
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&p7q ~ ﬂ)(dp,qlea &/&p,qa JA:; 567 57 >‘) = N(&p’q; lu&p.,q’ Uf:;jq)’

(3.18)
e ~ Plerlese,, @, &;0.,0,)) = N(ei; pre,, 0, ),

in agreement with Equation (3.4) and Equation (3.5). u is mean
and o is precision. a; . and €/, denote a but with a,, omitted

and € but with ¢; omitted, respectively. In particular, we define

dgi-) 21, ff(()k) + eés) £ 1 and p # ¢. The mean and precision of

each variable are given as follows:

n

0, =mdy Y al) + b, (3.19)
i=1
= A
0o, = 50 (&) + el + ——, (3.20)
s k s ~(8) (s
! z az,t D60 1) a0, (32)
€ p=1 i=1

and

pa p=1 j=0
AV s A
— al(,‘fg(xék) + eé N+ - : (3.22)
O-ap,qapaq

Before Gibbs sampling, in order to converge to the desired
posterior, the warm-start has to be performed if there is no
reasonable initialization for samples. Furthermore, it is very
hard to judge whether the warm-start is enough [100]. In order
to waive the warm-start, a reasonable initialization for samples is

adopted in Gibbs sampling. Note that Gibbs sampling is used to
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obtain samples from the desired posterior P(a, €|2; Q) (6.6).
As we discussed in Section 5.1, Formulation (3.7) is equivalent to
MAP estimation of a and €. Thus, given hyper-parameters (°4
and measurement values @, Gibbs sampling can be initialized
by handling Formulation (3.7) to obtain initial samples a(®) and
€®) which satisfy the distribution P(a, €|a; Q). As a result,

the warm-start can be totally waived.

Maximization Step

After L samples are obtained by Gibbs sampling, in M-step,

we will maximize the approximated quantity as follows:
_ ] 5 A0 (). 0). 9
max Z nP(x,a", e"; ) (3.23)

With the first-order optimality condition, namely d@Q/dQ) = 0,

hyper-parameters A, dy, 0 can be updated as follows:

2
L
A= - - n e (3.24)
D i1 Qim0 jti Dl Z’Jag,j s
Lmn
0p = (3.25)
L n m n  ~{)/A(k l ~(D)19?
S Y i [ a0 @)+ 6) + afgl?
nlL
0c = . (3.26)
L n )2
D i1 et Ez(’ )
Here, &Elz £ —1 and i:(()k) + eél) £ 1. We continue to alter-

nate between E-step and M-step until convergence. The con-
vergence condition is that the relative difference of three hyper-
parameters between current and previous iterations is less than

a threshold. Then hyper-parameters A\, 9, d. can be determined.



CHAPTER 3. SENSOR CALIBRATION 45

Gibbs EM
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!

Figure 3.4 The Gibbs EM flow.

For convenience, all variables are collected as a set ¥ £
{1,y Guran}t = {10, @1+ @mp 1, €1+, n}. The
pseudo-code of the Gibbs EM is concluded in Algorithm 3. Given
a, a, and initialized hyper-parameters as inputs, the Gibbs EM
is performed iteratively. In E-step, samples are initialized by
Algorithm 1 to waive warm start. Then in Gibbs sampling,
each samples are cyclically and repeatedly obtained by the de-
sired conditional distributions defined in Equation (3.18). Once
there are enough samples acquired by Gibbs sampling, hyper-
parameters are updated by Equations (3.24) to (3.26) in M-step.
E-step and M-step are iteratively performed until the conver-
gence criteria is satisfied. At last, we have the optimized hyper-
parameters. For a better understanding, our proposed Gibbs

EM is displayed in Fig. 3.4.
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Algorithm 3 Gibbs EM

Require: Sensor measurements @, prior a;

1: Initialize hyper-parameters 2;
2: repeat

3 Initialize samples W) by Algorithm 1;
4: for [+ 1to L do

5 for i < 1 to n?+n do

6

Sample wi(l) from the desired conditional distribution

. l l - —
N(w“ Hapy s Ui/fi) (3'18) with ¢§ )7 e 77vbz(—)l7 wz(—&-ll)’ e ’wiﬂji;
7: end for
8: end for

9: Update hyper-parameters €2 by Equations (3.24) to (3.26);
10: until Convergence

11: return hyper-parameters €.

3.4.3 Variational Bayesian Expectation Maximization

In practice, MCMC sampling method is computationally de-
manding. As a result, it often limits its use to small-scale prob-
lems [100]. Besides, it can be difficult to judge whether the
sampling method is generating independent samples from the
desired distribution. In this section, we develop a deterministic
approximation scheme which scales well to large applications.

We can even enforce full independence between the model
parameters a and the calibration € given measurements @. This
assumption, known as the mean field approximation [95], allows
us to compute the update rules for a and the calibration € in
isolation.

According to the mean field approximation, in Equation (3.14),
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let Q(a, €) = Q(a)Q(e). Then, the lower-bound function £(Q; d, dg, A)

can be factorized into a and e.

L(Q, 56, 50, )\)
= — X£(9(a)||P(€)) — Eqie)InQ(e) + ¢ (3.27)
= — KL(Q(e)||P(a)) — Eqa)InQ(a) + ¢, (3.28)

where ¢ is a constant to adjust P(&) or P(€) to become a proper

probability density function as follows:

~ 1
P(a) é? exp[Eq(e) InP(x, a; A, 6o, de )], (3.29)
~ 1
P(e) éz exp[Eqq) In P(x, @; A, 6o, de)], (3.30)

where Z is a normalized constant. Since Kullback-Leibler diver-
gence KL(Q(a)||P(e)) > 0, the lower-bound function £(Q; é,, &y, A)
is maximized w.r.t. Q(a) when X£(Q(a)||P(e)) = 0, which hap-
pens when Q(a) = P(€). Similarity, because KXL(Q(e)||P(a)) >
0, the lower-bound function £(9; d, 6y, A) is maximized w.r.t. Q(e)
if KL (Q(€)||P(a)) = 0, which happens when Q(e) = P(a).

Therefore, in variational E-step, let

InQ(a)
In Q(e)

EQ(G) In T(QAZ, A,€|)\,50,56), (331)
EQ(d) 111?(2%,&,6‘)\,(50,(56), (332)

where according to Formulation (3.7), the logarithm conditional
distribution w.r.t. individual variable is quadratic. Therefore,

the variational distribution of each variable is Gaussian distri-
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bution as follows:

9(a) ~N(a;E(a), Xs), (3.33)
N(e; E(e), Xe), (3.34)

|\
o
2

where X, is the covariance matrix. a; is independent to each
other, since Formulation (3.7) w.r.t. @ can be decomposed into
n independent sub-Formulations w.r.t. a;. Therefore, 3, =
diag[Sa,. Say. -+ Ta,). E(@) £ [E(@]),E(a2)", - E(a,)]".
By combining coefficients of a; quadratic term in Equation (3.32),

we can obtain

¥, =0(X X +E(E;) X, + XE(E))

(3.35)
+E(EE;)) + M\ A,
where A; £ diag[a; o, ai1, -+ ,Qii-1, QGiit1, " 5 Ginly
LA
~(2) ~(2)  A~(2) ~(2)
R 1 =z T T, s I
I I R
0 €1 - €1 €1 oo €
E, 2| ¢+ . | (3.37)
0 € - €1 €41 -+ €

Hence, according to Equations (3.36) and (3.37), E(E/) de-
pends on the mean vector E(e) and E(E/TZE/Z) depends on the

autocorrelation matrix E(e"€) and the mean vector E(e).
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Combining coefficients of a; linear term in Equation (3.32),

we can obtain the mean vector as follows
E(a;)" = do(z, +E(e) ) X + E(E);))Za., (3.38)

where &; = [.@gl),i'z(?), . ,:%Em)]T and E(g;) = [E(¢),E(e),-- -,
E(e;)]" € R™. Once the covariance matrix 2;} and mean vector
E(a;) are obtained, we can obtain the autocorrelation matrix

)
E(aa]) = S, + E(&,)E(a;)".

Variational Bayesian EM
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Figure 3.5 The variational Bayesian EM flow.

Likewise, by combining coefficients of € quadratic term in
Equation (3.31), we can get the covariance matrix 3. and the
mean vector E(€) in Equation (3.39) and Equation (3.40), which

depend on the mean vector E(a;) and the autocorrelation ma-
T

1

obtained by E(ee") = X, + E(e)E(e) .

trix [£(4;a4, ). Then the autocorrelation matrix E(e€e') can be
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E(aiia;1) -+ -+ E(ai1ai,)
E(Gi2a;1) -+ -+ E(Gi2a,)
" | E(a; 10 s B(Gii1G4,
St=my (Gi-18i1) (Gs-16:) (3.39)
Py —E(%J) e e _E(ai’n)
E(aiit1ai1) -+ - E(Gii410:)
| E(&i,ndi,l) oot E(dz,ndz,n) ]
E(e) =(m Z [E(di,odi,l) oo E(ai0G441) - - - E(ai0ai0)
, =t (3.40)
- (WAND Yy
o )

Since model coefficients a and calibration € variational dis-
tributions are dependent on each other, by iteratively updating
them, the variational distributions Q(a) and Q(€) can be ob-
tained to maximize the lower-bound function defined in Equa-
tion (3.28).

Once the optimal variational distributions Q(a) and Q(€) can
be obtained, unlike Formulation (3.23), in variational M-step,

the objective function is shown as follows:
; r,a,e; ). 41
max Eoa)ae) InP(Z, a, € Q) (3.41)

With the first-order optimality condition, that is d@Q/d) = 0,

hyper-parameters A, dy, 0 can be updated as follows:

n2

o Zn Zn E(d?,j)"'azz,j_2ai,jE(&i,j)7
=1 j=0,5%#1 a2 .

0

A (3.42)
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5o = mn/ zn: zm: zn: zn: E(a;pa;,0) 2 20

i=1 k=1 p=0 ¢=0 (3.43)

+ ﬂ%z()k)E(EQ) + ‘%ék)E(ep) + E(Epeq)]

de = S5 gy (3.44)

Compared with Equations (3.24) to (3.26), we can find in Equa-
tions (3.42) to (3.44), the variational distributions’ mean vec-
tor and autocorrelation matrix replace samples, i.e., E(¢;) =
S el /L Blagg) = Ypy al) /L, Bleieg) = Sy e el /L and
E(dipaig) = S &Eg&gg /L. Therefore, compared with Gibbs
EM, the variational Bayesian EM are more stable since it be-
longs to deterministic methods while Gibbs EM is stochastic
method.

Like Gibbs EM, we continue to alternate between variational
E-step and variational M-step until convergence. The conver-
gence condition is that the relative differences of three hyper-
parameters between current and previous iterations are less than
thresholds. Then hyper-parameters A, §, 6 can be determined.

The pseudo-code of Variational Bayesian EM is listed in Al-
gorithm 4. Given &, a, and initialized hyper-parameters, vari-
ational Bayesian EM is performed iteratively. In variational
E-step, to initialize calibration variational distribution, the cali-
bration mean and the autocorrelation matrix are obtained by
Algorithm 1. Then calibration and model coefficients varia-
tional distributions are iteratively updated by Equations (3.35)
and (3.38) to (3.40) until the convergence criteria is satisfied. In
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variational M-step, hyper-parameters are updated according to
Equations (3.42) to (3.44). The variational E-step and the vari-
ational M-step are iteratively performed until the convergence
criteria is satisfied. Finally, the optimal hyper-parameters are
obtained. For a further illustration, our proposed variational

Bayesian EM flow is shown in Fig. 3.5.

Algorithm 4 Variational Bayesian EM

Require: Sensor measurements @, prior a;

1: Initialize hyper-parameters €2;

2: repeat

3: Initialize calibration mean E(€) = € obtained by Algorithm 1 and the
autocorrelation matrix E(ee’) = E(e)E(e)';

4: repeat

5: Update variational distribution Q(a) with mean vector E(a) and
covariance matrix 34 by Equations (3.35) and (3.38);

6: Update variational distribution Q(e) with mean vector E(e) and
covariance matrix 3. by Equations (3.39) and (3.40);

7 until Convergence

8: Update hyper-parameters €2 by Equations (3.42) to (3.44);

9: until Convergence

10: return hyper-parameters (2.

3.5 Overall flow

The overall flow of our proposed sensor drift calibration is shown
in Fig. 3.6, which consists of four parts: model optimization,
Cross-validation, Gibbs EM and variational Bayesian EM. With

drift-free measurements model coefficients and several temper-
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Measurements with Drift Drift-free Measurements
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Alternating-based Optimization
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Figure 3.6 The proposed sensor drift calibration flow.

ature measurements with drifts as inputs, an alternating-based
optimization algorithm is proposed to resolve sensor drift cali-
bration formulation in model optimization. Additionally, Cross-
validation, Gibbs EM and variational Bayesian EM are adopted
to induce hyper-parameters, respectively. Based on the afore-
mentioned techniques, the proposed flow is expected to accu-

rately calibrate sensor drifts.

3.6 Experimental Results

The in-building temperature data are selected to test our pro-
posed framework. We use several sensors for calibrate drifts. All

data is directly generated from EnergyPlus as shown in Fig. 3.7.
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Figure 3.7 The generated simulation data.

(a) (b)

Figure 3.8 Benchmark: (a) Hall; (b) Secondary School.

As illustrated in Fig. 3.8, the two building benchmarks, Hall [13]
with Washington, D.C weather and Secondary School [12] with
Chicago weather, are simulated by EnergyPlus to generate the
ground-truth in-building temperatures, which are used to evalu-
ate our proposed framework. The temperature sampling period
is set to be one hour.

Practically, both drift and measurement noises need to be
carefully considered and reasonably set to get close to real tem-
perature measurement. Because of a slow-aging effect, time
effects on sensor performance is not considered in our experi-
ments. Drift is set to be time-invariant while measurement noise

is configured as time-variant. Two low-cost temperature sensors,

MCP9509 with accuracy 4+4.5 °C and LM335A with accuracy
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+5 °C are chosen to set drift variance, respectively. According
to the triple standard deviation, we set two drift variances to
be 0% = (4.5/3)% = 2.25 and ¢® = (5/3)? = 2.78. In addition,
according to our survey, the noise variance is set to be 0.001 °C.
All temperature measurements are generated by adding noise.

The time-instant number needs to be reasonably set to mimic
practical application and accurately calibrate sensor drifts. We
assume the temperature measurements are drift-free during first
my = 240 time-instants (first 10 days). And during m = 60
time-instants (60 hours), the temperature measurements with
drifts are utilized to test our proposed framework.

TSBL [125] and the proposed framework with Cross-validation,
Gibbs EM and variational Bayesian EM (VB-EM) are exploited
to calibrate sensor drifts, respectively. All methods are imple-
mented by Python on 12-core Linux machine with 256G RAM
and 2.80GHz. 100 combinations of hyper-parameters ratios and
s = 5 folds are set in Cross-validation. In Gibbs EM, since
the warm-start is waived in Gibbs sampling, to achieve better
trade-off between accuracy and runtime, only L = 10 samples
are generated to perform Monte Carlo approximation (3.17),
and three hyper-parameters A, dy, d. are initialized with 103,
10~* and 1073, respectively. The threshold values of conver-
gence criterion are set as 107%, 1072 and 1073 in Algorithm 1,
Algorithm 3 and Algorithm 4.

To verify the optimization and convergence of our proposed

alternating-based algorithm as shown in Algorithm 1 more clearly,
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two sensors are used to calibrate sensor drifts and sense school
temperatures in the second benchmark. In Fig. 3.9, we can
obviously see that, by using our proposed alternating-based al-
gorithm, the cost of Formulation (3.7), estimated calibrations €

and ey converge quickly to the stationary points.

0.4
4 Xﬁ% —o— Cost

Iteration

Figure 3.9 Convergence of Alternating-based Method.

The drift calibration accuracy is quantified by mean absolute

percent error (MAPE) defined as follows:

m - n_ | (k)
1 € —€
MAPE = — A :
— > Z — (3.45)
k=1 i=1
where él(.k) is estimated calibration. Specifically, in our proposed

framework, €Z(.k) = ¢;. The sensor drift calibration performances

of accuracy and runtime are shown in Fig. 3.10 and Fig. 3.11.
As shown in Fig. 3.11, TSBL has acceptable computational

overhead even if its computational complexity is dominated by

multiple matrix inversion operations. However, as displayed in
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Figure 3.10 Drift variance is set to (a,c) 2.25; (b,d) 2.78; Benchmark: (a,b)
Hall; (¢,d) Secondary School.

Fig. 3.10, TSBL has the worst performance and robustness for
drifts calibration. In fact, temperature signals lie in time-variant
subspace since in-building temperatures are influenced by multi-

ple time-variant factors, e.g., weather. As a result, TSBL cannot
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Figure 3.11 Runtime vs. # sensor: (a,c) 2.25; (b,d) 2.78; Benchmark: (a,b)
Hall; (c¢,d) Secondary School.

achieve an obvious drift calibration.

Unlike TSBL, the proposed spatial correlation model can cal-
ibrate drifts even if temperature signals lie in time-variant sub-
space. Therefore, as shown in Fig. 3.10, the proposed frame-
work with Cross-validation or Gibbs EM or VB-EM outperforms
TSBL in terms of accuracy. On average, the proposed frame-
work can achieve about 3x accuracy improvement. Moreover,
the proposed drift calibration framework with Cross-validation
can achieve the best accuracy. However, as shown in Fig. 3.11,

Cross-validation has a heavy computational overhead since we
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need to run Algorithm 1 for multiple times. Compared with
Cross-validation and TSBL, Gibbs EM and VB-EM have lower
computation complexity. Furthermore, in order to make a bet-
ter trade-off between accuracy and runtime, Gibbs EM uses
fewer samples to perform Monte Carlo approximation so that its
accuracy is worse than VB-EM. However, as shown in Fig. 3.10,
the proposed framework with Gibbs EM cannot achieve the best
accuracy since Gibbs sampling is a stochastic method and VB-
EM ignores the correlations between model coefficients a and
calibration e.

In Fig. 3.10, it can be seen that because of incremental cor-
relation, the more sensors can achieve the higher accuracy of
drift calibration by using our proposed framework. In practice,
when fewer sensors need to be calibrated, in order to achieve bet-
ter accuracy, Cross-validation can be used to determine hyper-
parameters within a reasonable response time, e.g., 1 minute.
While more sensors need to be calibrated, Gibbs EM can be
exploited to determine hyper-parameters so that sensor mea-
surement accuracy can be improved to a tolerable level within
acceptable runtime. The proposed calibration framework with
Gibbs EM can achieve a robust drift calibration and a better
trade-off between accuracy and runtime.

In order to illustrate the fact that the warm-start can be
waived and the initialization is reasonable for samples in Gibbs
sampling, 100 Gibbs sampling traces, including the first 10 sam-

pling traces, are shown in Fig. 3.12. We can observe that the
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first 10 samples have the same shape with the 100 samples. It
indicates that the first 10 samples have the same statistics with
the 100 samples. Consequently, the first 10 samples can be used

to represent the 100 samples.

1.3
§ I e | 100 sampling
$ 0 :1—}@%—* —— First 10 sampling
—0.7 |
—-0.3 0 0.3

€1

Figure 3.12 Gibbs sampling traces.

In this application, L = 10 can make a better trade-off be-
tween runtime and accuracy. More samples can improve the
calibration accuracy. For illustrating the relationships among
the number of samples, accuracy and runtime, we show the ex-
perimental results in Fig. 3.13. We set the sampling number to
be 10, 100, 1000 and 10000. According to Fig. 3.10, because
of incremental correlation discussed above, the drift calibration
performance is more stable when the number of sensors is more
than 15. Therefore, we average MAPE and runtime on different
numbers of sensors when the number of sensors is more than 15.

As the experimental results demonstrated in Fig. 3.13, the more
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number of samples can improve the calibration accuracy while
it has more runtime. In addition, the more number of samples
cannot achieve significant accuracy improvement while it leads
to a significant runtime cost. Therefore, L. = 10 is enough to
make a better trade-off between runtime and accuracy. Besides,
based on the experimental results shown in Fig. 3.13, to achieve
the same drift calibration accuracy with VB-EM, Gibbs EM
needs 10000 samples, which will incur a 30X runtime overhead.
Therefore, our proposed VB-EM can achieve better a trade-off
between accuracy and runtime.

—=-MAPE VB-EM
0.54

MAPE Gibbs EM
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Figure 3.13 # samples vs. acc. vs. runtime: (a, b) hall; (¢, d) school; (a, c)

()

(d)

drift variance 2.25; (b, d) drift variance 2.78.

Furthermore, considering that the temperature sensors are
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Figure 3.14 A MAPE when noise variance is set 0.01, drift variance (a,c)

2.25; (b,d) 2.78; Benchmark: (a,b) Hall; (¢,d) Secondary School.

used in a severe environment, in order to verify the robustness

for noise, we set another noise variance to be 0.01 °C. We de-
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fine AMAPE = MAPEyq1 — MAPEyy, where MAPFE 0
is mean absolute percent error under 0.001 noise variance and
MAPEy; is mean absolute percent error under 0.01 noise vari-
ance. AMAPE > 0 means that noise brings a positive effect on
drift calibration accuracy while AM APFE < 0 means that noise
affects negatively on drift calibration accuracy. Experimental
results are shown in Fig. 3.14. Although it is uncertain that
which effect the noise will bring on drift calibration accuracy
under different sensor numbers in each individual experiment,
noise brings a negative effect on drift calibration accuracy on
average, i.e., > AMAPFE. What’s more, the larger noise vari-
ance triggers drift calibration degradation by using our proposed
methods, i.e., CV, Gibbs EM, and VB-EM. Our experimental
results as shown in Fig. 3.14 indicate that compared with CV
and Gibbs EM, our proposed framework with VB-EM is robust

for noise.

3.7 Summary

In this chapter, a sensor spatial correlation model has been pro-
posed to perform drift calibration. Thanks to spatial correla-
tion, the unknown actual temperature measured by each sensor
is linearly expressed by all other sensors. The priors for model
coefficients and drift calibration are applied to MAP estimation.
MAP estimation is then formulated as a non-convex problem

with three hyper-parameters, which is optimized by the pro-
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posed alternating-based method. Cross-validation, Gibbs EM
and VB-EM are exploited to determine hyper-parameters, re-
spectively. Experimental results demonstrate that on bench-
marks simulated from EnergyPlus, the proposed framework with
variational Bayesian EM can achieve a robust drift calibration
and a better trade-off between accuracy and runtime. Aver-
agely, compared with state-of-the-art, the proposed framework
can achieve about 3x accuracy improvement. In order to achieve
the same drift calibration accuracy with variational Bayesian
EM, Gibbs EM needs 10000 samples, which will result in a 30x

runtime overhead.

O End of chapter.



Chapter 4

Fast Aging Degradation

Estimation

4.1 Preliminaries

4.1.1 Problem Formulation

Before committing the design to silicon, the aging-induced tran-
sistor degradation needs to be accurately estimated in the post-
layout simulation to judge circuit reliability. However, the ac-
tual degree of the aging-induced transistor degradation is hard
to estimate. On one hand, the traditional static aging reliabil-
ity simulation causes inaccurate judgment on the aging-prone
transistors since the dynamic stress conditions are completely
ignored. On the other hand, the traditional dynamic simulation
is time-consuming since it needs a large number of accepted
transient steps. Besides, the accuracy of traditional dynamic
aging reliability simulation heavily relies on dynamic stress con-

ditions such as clock speeds and waveform swings. Thus the

65
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traditional aging reliability simulation is hard to make a better
trade-off between accuracy and runtime.

In this thesis, we adopt a data-driven approach in a supervised-
learning manner to fast estimate aging-induced degradation. As
mentioned above, the accuracy of traditional dynamic aging re-
liability simulation heavily relies on dynamic stress conditions.
Thus our data-driven approach decouples dynamic stress condi-
tions. In the training set, in order to achieve accurate estima-
tions, the golden-truth aging-induced degradations are obtained
by an industrial aging DFR tool with the static and dynamic
stress conditions given by very sophisticated designers. Com-
pared with static stress conditions, it is hard to determine dy-
namic stress conditions in practice, thus in the inference stage,
dynamic stress conditions are not considered in our data-driven
approach. This strategy can achieve a better compromise be-
tween computational complexity and model accuracy for the
model implementation. In the industry, dvtlin (HCI+BTI,10)
is used to assess the degree of aging-induced transistor degrada-

tion [11,14]. dvt1lin(HCI+BTI,10) is defined as follows:

Definition 1 (dvt1lin(HCI+BTI, 10)). The shifting value of thresh-
old voltage of the transistor from fresh to 10 years due to HCI
and BTL

The larger dvtlin (HCI+BTI, 10) is, the worse aging-induced
transistor degradation is, vice versa. For convenience, in this

paper, we shorten dvtlin(HCI+BTI,10) as dvtlin.
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Based on the above description, we define our problem for-

mulation as follows.

Problem 2 (Estimating dvtlin in Analog ICs). Given some
analog IC post-layout netlists, their stress conditions and a list
containing all transistors with dvtlin obtained by an industrial
DFR tool as the training set, our task is training a model on
the training set to fast and accurately estimate dvtlin of each
transistor on the testing set while minimizing the estimation

error.

4.1.2 Analog ICs Topology

When analog IC netlist files are parsed and flattened, analog ICs
are naturally represented as bipartite graphs [88]. There are two
disjoint sets in the bipartite graph. One set contains all nets and
the other one contains all devices. Each undirected edge con-
nects one net and one device. Fig. 4.1 demonstrates an analog

circuit and the corresponding bipartite graph representation.

4.1.3 Graph Convolutional Networks

Since the graph can reveal structural information, graph learn-
ing provides a powerful data-driven approach for modeling ir-
regular grid-based data in machine learning tasks [40,60]. Node
embedding generation is one of the most important technologies
in graph learning [132]. The representation of each node is ob-

tained by embedding and then fed into the traditional machine
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GND

Figure 4.1 Analog circuit is represented as a bipartite graph: (a) An analog

circuit; (b) The corresponding bipartite representation.

learning models for estimation and prediction. Recently, some
data-driven methods were proposed to learn node embeddings
automatically [40,60].

One of the data-driven embedding methods is GCNs, whose
main idea is automatically learning how to aggregate informa-
tion iteratively from neighborhoods on graphs by using neural
networks. The embedding generation is equivalent to using a
filter on each node, whose accessible domain contains the node
itself and its neighboring nodes. The neighboring nodes are a
set of all nodes which are adjacent to the node itself. Compared
with traditional CNNs, the graph topology is also treated as a
feature to perform machine learning tasks so that GCNs can
achieve higher accuracy on graph-based datasets and applica-

tions.
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4.2 Heterogeneous Graph Representation

To adopt a GCN-based framework, it is fundamental to per-
form an embedding generation algorithm on graphs to encode
the nodes and edges as feature vectors. Although the graph
representations of analog ICs have been studied in many works
of literature [88,111,162,163], the embedding generation algo-
rithm cannot be directly performed on the graph representations
of analog ICs since not all nodes have design parameters as fea-
tures. Next, we will propose a directed heterogeneous graph
representation method to guarantee that each node has features.

To perform an embedding generation algorithm, we treat
each device, direct current (DC) voltage source or ground as
a node. An analog IC post-layout netlist can be flattened as
a bipartite graph as illustrated in Fig. 4.1. To guarantee that
each node has features, a naive method is constructing a ho-
mogeneous multigraph to represent the topology of analog IC
netlist [71]. In this homogeneous multigraph, each edge repre-
sents one path from one device to another. It allows multiple
edges between any two nodes since there may be multiple paths
from one device to the other one. Note that dynamic stress
conditions do not be considered in this graph representation so
that the GCN-based framework is independent of them and can
replace the traditional static aging reliability simulation.

The typical analog IC netlists have heterogeneity since they

contain multi-typed basic devices and multi-typed connection
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pins [98]. An inevitable problem of the homogeneous representa-
tion method is that it fails to characterize the diversities among
pins, devices, connections, and relative sequential relationships.
In order to express these diversities, we propose a heterogeneous
directed multigraph representation, where the type of the edges
is treated as the type of the pins to which it connects. The

heterogeneous directed multigraph is defined as follows.

Definition 2 (Heterogeneous directed multigraph). A heteroge-
neous directed multigraph is defined as a graph HMSGi(Vimg, Ehmyg,
OVygs Repmgs Phimg), Where Vg is the set of nodes, Epmg s the
multiset of edges. Oy, and Re,  represent the sets of node
types and edge types, respectively. ©pmg 15 adopted to assign
each node in Vyng to a node type, i.e., @ymg(vi) € Oy, for
Vi € Vimg. 7 indicales the edge type, such that r € Rg,, .
Each instance in Epmg is ((vi, v;), ) and the ordered pair (v, v;)

satisfies U, Vj € Viypg.

We use an example to show this heterogeneous directed multi-
graph representation. As shown in Fig. 4.2(a), if we stand at the
gate of the transistor M3 and lookout, we will see transistors M1,
M3 and M4. Thus there are three directed edges (denoted by dark
green) with gate connections from M1, M3 and M4 to the transistor
M3 as shown in Fig. 4.2(b). This method is inspired by circuit
analysis, where the input impedance is obtained in the same
fashion [98]. In the same manner, we can obtain the directed

multigraph corresponding to the gate connections as shown in
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Figure 4.2 The heterogeneous directed multigraph representation: (a) The

differential amplifier; (b) The gate connection.

Fig. 4.2(b), where all green edges denote the gate connection.
Moreover, the circuit netlist in Fig. 4.2(a) is finally transformed
into the multigraph in Fig. 4.3. In particular, considering that
the electrical characteristics of direct current voltage sources and
grounds are not influenced by other devices, we set them to be
predecessors.

After the topology of different connections is obtained, we
use one adjacency matrix to encode the topology of each con-
nection in the heterogeneous multigraph. The adjacency matrix
of the type-r connection is defined as A,, where each element
A, (i, 7) is the number of the instance ((v;,v;),r) in the multiset
Eamg and 7 € Re, . As an example, the adjacency matrix A,
corresponding to the gate connection in Fig. 4.2(b) is shown in

Matrix (4.1).
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Figure 4.3 A heterogeneous directed multigraph with multi-typed edges.

From left to right: drain, gate, source and other connections.
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In summary, an analog IC netlist can be represented as a het-
erogeneous directed multigraph. The topology of heterogeneous
directed multigraph is encoded as multiple adjacency matrices,
where each one encodes one type of connection. In the next
section, we will propose an H-GCN model on the heterogeneous
directed multigraph to estimate dvtlin by taking multiple ad-

jacency matrices and the design parameters of all typed devices
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as inputs.

4.3 Heterogeneous GCN

In this section, an H-GCN model on the heterogeneous directed
multigraph is developed to estimate dvtlin. The features of all
types of devices are firstly mapped into a unified latent space
then our proposed H-GCN model sequentially conducts multiple

embedding generations on these features.

4.3.1 Notations

As discussed in Section 4.2, given an analog IC netlist, we parse
and flatten it to be a bipartite graph as shown in Fig. 4.1.
Then we transform to be a heterogeneous directed multigraph
HMGa(Vimg, Enmgs Ovynys Repmy» Phimg) as shown in Fig. 4.2 and
Fig. 4.3. Then according to the heterogeneous directed multi-
graph, we can obtain |Re,, | adjacency matrices, i.e., A, for
Vr € Re,,,, where |-| is the cardinality of set. Besides, the device
V; € Viung has hy, . () design parameters for pmy(vi) € Oy,
We use these design parameters as the features of each node,
i.e., T,, € R /nme@) . Note that the number of design parame-
ters relies on the type of device. Next, we will propose a unified
latent space mapping method to map the features of each node
into a unified latent space so that the embedding generation can
be performed meanwhile the features of multi-typed devices can

be well effectively exploited and encoded.
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4.3.2 Unified Latent Space Mapping

A typical analog IC netlist contains multi-typed devices, which
have different design parameters. We regard each device as a
node and use its design parameters as the node features vec-
tor. To perform an embedding generation algorithm and aggre-
gate information from the node itself and its multi-typed neigh-
boring nodes, a straightforward method is concatenating all of
these design parameters as a long feature vector with one-hot
encoding [71]. However, it will miss some structural information
among multi-typed nodes as well as unstructured content asso-
ciated with each node [20]. In this work, a latent space mapping
method is used to transform the features vectors of all types of
nodes into a unified latent space.

We propose to use |Oy,, | node-type-related mapping matri-
ces to map the original feature vectors. For a node v; € Vp,
whose node type is t = @ppg(vi) € Oy, and feature vector
is ¢, € RVM we define a node-typed-related matrix U; €
R™*T to map the feature vector with length h; into a unified
T-dimension latent space, i.e., fé?) = x,, - U € R, In or-
der to ease the model training on GPUs, we extend it to be a

matrix-matrix multiplication as follows:

FO = )" X, Uy e RVl (4.2)

tEOvhmg

where X; € RVrmsl*¥ is g feature matrix stacking the feature

vectors of all type-t nodes. In particular, a node feature vector is
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0 € R if the type of the node is not t. F(©) is the feature ma-
trix, where the feature vectors of all nodes are in a unified latent
space. We take the circuit in Fig. 4.2(a) as an example. There
are three types of nodes (devices), i.e., Oy, = {vs,trans,res}.

Thus there are three feature matrices:

[ 0 ] _le_ [ 0 ]
0 )0 0
0 T3 0
Xos=1 0 |, Xpans= |@pa| , Xres= | 0 (4.3)
0 0 TR
Lvdd
LGEND | 0 0

It is noted that the concatenated features representation [71]
is a special case of latent space representation. Compared with
the concatenated features representation, our latent space rep-
resentation is general enough and can effectively exploit and
encode features. Furthermore, the proposed latent space map-
ping method can be extended to multiple layers in the same
fashion with multilayer perceptron (MLP) to extract high-order

features.

4.3.3 Embedding Generation

After applying the proposed latent space mapping method, the
features of all nodes share the same representation forms. An H-

GCN model is proposed as the skeleton of the estimation model.
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Figure 4.4 H-GCN and deep H-GCN: (a) H-GCN; (b) deep H-GCN with

initial residual connections.

The model takes the unified latent feature representations of all
nodes F(” and |Re, | adjacency matrices A, (r € Re, ) as
inputs.

As discussed in Section 4.2, we use one adjacency matrix to
represent one type of connection in the heterogeneous directed
multigraph. In order to distinguish among different connection
pins, inspired by [86], we assign a learnable model coefficient to
each adjacency matrix. Then the overall topology of the hetero-
geneous directed multigraph can be expressed as the summation
of the adjacency matrices of all types of connections with these
model coefficients. For example, as shown in Fig. 4.3, there are
four adjacency matrices A4, As, Ay and A, in the heteroge-

neous directed multigraph. We assign four model coefficients
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Wy, Ws, wq and we, to distinguish them. To improve numerical
stability, we normalize all adjacency matrices. Therefore, the
topology of the heterogeneous directed multigraph can be en-
coded as ngg + wSAs +wdAd +thTA0tr, where the normalized
adjacency matrix A, = A, D' D, is a diagonal matrix with
D, (i,i) = ZLZ’{”"'AT(Z'J) and r € Re, . = {g,s,d,otr}. For
the sake of convenience, we denote the heterogeneous adjacency

matrix as follows:

AL > wA, (4.4)

TEIRShmg

where w, is a model coefficient. A, is the normalized adjacency
matrix. r denotes the connection type.

Typically, there are two popular GCN models. One is vanilla
GCN [60], where the information of the node itself and that
of its neighboring nodes are aggregated by adding one identity
matrix to the normalized graph adjacency matrix. The other is
GraphSAGE [40], where the feature of the node itself is concate-
nated with that of its neighboring nodes. Since there are self-
loops in our graph representation as shown in Figs. 4.2 and 4.3.
Compared with the vanilla GCN, GraphSAGE has the stronger
ability to distinguish between the self-loop edge and the node
itself. Thus we adopt GraphSAGE as our basic backbone. In
our proposed H-GCN, the developed heterogeneous embedding

generation is shown as follows:
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FO =4 (CONCAT (A . FU-Y, FU—”) . W(”) L (45)

where CONCAT(-) denotes the concatenation operation. o(-)
is a nonlinear activation function. In this work, we use ReLU
as our nonlinear activation function. W denotes the learnable
model coefficients in the [-th embedding generation layer.

The proposed H-GCN is shown in Fig. 4.4(a), where the em-
bedding generation as shown in Equation (4.5) is recursively
and sequentially performed several times, the local topology and
node features are extracted to represent the feature vector of
each node. Then the extracted feature vector of each node is fed

into a traditional machine learning model to estimate dvtlin.

4.4 Going to Deep H-GCN

Despite GCN can achieve enormous successes in graph learning
task, it is very shallow. Such a shallow model limits its ability
to extract information from multi-hop devices so that it cannot
achieve a more accurate estimation for complex and large-scale
circuit netlists. Besides, stacking more layers and adding non-
linearity tend to degrade the performance of this model, due
to the over-smoothing issue [70]. In this section, based on GC-
NII [22], we further extend the proposed H-GCN to be a deep
version via initial residual connections and identity mappings to

alleviate the over-smoothing issue.
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4.4.1 Embedding Generation with Initial Residual Con-
nections and Identity Mappings

The primary reason behind the over-smoothing issue is that
the representations of the nodes as shown in Equation (4.5)
become indistinguishable as the number of heterogeneous em-
bedding generation layers increases. In order to alleviate the
over-smoothing issue, according to GCNII [22], the final repre-
sentation of each node retains the input layer even if many layers
are stacked. According to this manner, we extend the hetero-
geneous embedding generation as shown in Equation (4.5) by

concatenating with the input of the first layer as follows:

FO =4 (CONCAT (A N ACON AC F<O>) : W(”) . (4.6)

where F(%) is the unified feature matrix defined in Equation (4.2).
The heterogeneous adjacency matrix A is defined in Equation (4.4).
As shown in Fig. 4.4(b), our extended deep H-GCN leverages
the embedding generation with the initial residual connections.
Thus the final representation of each node retains the input layer
even if many layers are stacked.

According to [22,61], performing multiple non-linearity op-
erations to the feature matrix still causes the over-smoothing
issue. In our deep H-GCN model, inspired by ResNet [43], to
further alleviate the over-smoothing issue, we leverage an iden-

tity matrix I with a hyper-parameter 3; to the model coefficient
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matrix W in Equation (4.6) as follows:
W (1-)I+ W (4.7)

Note that I is easy to extend as an augmented matrix of an
identity matrix with a zero matrix if W is not a square matrix.
By adding the matrix I, we have two advantages: Similar to the
motivation of ResNet [43], the matrix I ensures that a deep H-
GCN model achieves the same performance as its shallow version
does; Since the optimal model coefficient matrix W has small
norm, it allows to put strong regularization. Chen et. al suggest
B =log(1/l+1) [22].

Like our proposed H-GCN, our extended deep H-GCN recur-
sively and sequentially performs the embedding generation with
initial residual connections and identity mappings several times
to extract the information of local topology and node features
to represent the feature vector of each node. Then the extracted
feature vector is fed into a traditional machine learning model
to estimate dvtlin of each transistor.

Unlikes JKNet [137], our extended deep H-GCN can facili-
tate several layers stacking since the output of each layer does
not be uniformly combined to the last layer. Compared with
GCNII [22], our extended deep H-GCN has the stronger abil-
ity to distinguish between the self-loop edge and the node itself
since it concatenates the features of neighboring nodes and the
node itself. By using the extended deep H-GCN, it is expected

to achieve more accurate estimations of aging-induced transistor
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degradation.

Algorithm 5 Embedding Generation of Deep H-GCN

Require: [R¢, | normalized adjacency matrices A, and connection-type-
related model coefficients w, with Vr € R, : feature matrices of all
nodes corresponding to each type of nodes X; and node-type-related
latent space mapping matrices Uy with Vi € Oy, ; Search depth D;
Model coefficients matrices W for [ =1,2,--- , D.

1: FO Zte@vhmg XUy > map to a unified latent space
2: A+ ZrefRshmq w, A,; > encode the topology of the heterogeneous graph
3: forl=1to D do

4: By + log(1/l + 1);

5. FU « g(CONCAT(A - FU-D, FUD FON. (1 — )T + [WD); »

embedding generation
6: end for

7: return Embedding feature matrix F(P),

Our proposed deep embedding generation algorithm (i.e., for-
ward propagation) is summarized in Algorithm 5. The connection-
type-related normalized adjacency matrices A, connection-type-
related model coefficients w,, feature matrices of all nodes X;,
node-type-related latent space mapping matrices U;, the search
depth D and model coefficients matrices W are provided as
inputs. According to Equation (4.2), the latent space mapping
matrices U; are used to map features of all nodes X; into a
unified feature representation F(©). Then the heterogeneous ad-
jacency matrix A is obtained by Equation (4.4). Let I denotes
the current step in the loop (the depth of the search) and F®

denotes the feature representation of all nodes at this step. Then
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each step in the loop of Algorithm 5 proceeds as follows: Firstly,
the hyper-parameter ; can determined by log(1/l + 1). Mean-
while, all nodes aggregate the feature representations of their
neighboring nodes into a matrix A FU=Y. Then the aggregated
neighboring feature matrix A - F(~1 is concatenated with the
node’s current representation F(*) and the initial unified feature
matrix F(©). And this concatenated feature matrix is fed into a
fully connected (FC) layer with a nonlinear activation function
o(-) and model coefficients (1 — 3)I + /W ", which makes the
model more robust. The outputs are used at the next step of
the algorithm. Finally, the proposed deep embedding genera-
tion algorithm takes the embedding feature matrix F(P) as an
output.

Note that only transistors are prone to have aging degrada-
tions in analog IC netlists while features of all devices need to
be fed into our proposed deep H-GCN to perform the embed-
ding generation algorithm. Thus a mask matrix with the size
#lransistors X #devices is used to extract the embedding fea-
tures of each transistor in the last embedding generation layer.
Finally, several traditional FC layers are adopted to estimate
dvtlin of each transistor by inputting the embedding features.
The Mean Square Error (MSE) function is used as the loss
function to compute the errors between the ground-truth and
our estimated dvtlin. All model coefficients, including w,, U
and W in Algorithm 5, are updated by the backpropagation

and the gradient-based method in an end-to-end fashion in each
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training epoch.

4.4.2 Over-smoothing Analysis

Here we provide an over-smoothing analysis for the proposed H-
GCN and the extended deep H-GCN. For simplicity, we assume
connection-type-related model coefficients w, for Vr € Re,  —and
the unified feature matrix F(¥) to be non-negative, that is w, > 0
and FO > O. Note that we can convert w, and F© to be

nonnegative by a linear transformation if they are negative [22].

Over-smoothing analysis of multi-layer H-GCN

To illustrate that the over-smoothing issue in the proposed H-
GCN, we will show that the directed multigraph as shown in
Section 4.2 is strongly connected and aperiodic, and the em-
bedding generation as shown in Equation (4.5) is equivalently
expressed as the formulation of Laplacian smoothing.

To show strong connectivity and aperiodicity for the directed
multigraph, we first see the bipartite graph representation of
analog IC as shown in Fig. 4.1. The bipartite graph is connectiv-
ity since there is a path between every pair of nodes [29]. Then
it is easily proved in contrapositive form that the directed multi-
graph is connectivity if it is transferred from a connected bipar-
tite. Moreover, the directed multigraph is strongly connected
since any two devices are paired up as a connection in each

net to transfer the connected bipartite as the directed multi-
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graph. Besides, the directed multigraph is aperiodic since there
is no integer k > 1 that divides the length of every cycle of the
graph [55].

Here we will analyze whether the embedding generation as
shown in Equation (4.5) satisfies the formulation of Laplacian
smoothing. Since F(©) is non-negative, like [22], we remove the
nonlinear activation function (We use ReLU as the nonlinear
activation function.). Thus Equation (4.5) can be transferred as

follows:
FO = CONCAT (A PO, FU—U) WO, (4.8)

We set WO = X, (1 = \I]T - WU, Then Equation (4.8) can

be transferred as follows:
FO

— CONCAT (A PO, F<l—1>) (L (1= NI WO
] ) (4.9)
_ ((I _AD)-FU D 404 F(ll)) WO,

A

—(I = AD'L)F=Y . w0,

where 0 < A < 1 is a parameter which controls the weight-
ing between the features of the current node and its neighbors.
L =D—Aisthe graph Laplacian matrix, where D is a diagonal
matrix with D(i,1) = A(i, 7). According to Equation (4.9),
the embedding generation F) as shown in Equation (4.5) is
equivalently expressed as the formulation of Laplacian smooth-
ing, i.e., (I = AD'L)F!-D . W [70].

According to the fundamental Theorem of Markov Chains
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[97], since the proposed directed multigraph is strongly con-
nected and aperiodic, and the embedding generation can be
equivalently expressed as the formulation of Laplacian smooth-
ing, the random walk converges to a unique stationary distri-
bution 7, i.e., limp_ . f;D) = 7, where the i-th row in F)
is represented as fi(D), which is also the embedding feature of
the i-th node. Thus as the number of layers increases, the rep-
resentations of the nodes in H-GCN are inclined to converge
to a certain value and become indistinguishable, which is the

over-smoothing issue.

Over-smoothing analysis of multi-layer deep H-GCN

Here we give an over-smoothing analysis for the extended deep
H-GCN to illustrate it can preventing the over-smoothing even
if the number of layers goes to infinity.

We consider the embedding generation with initial residual
connections and identity mappings as shown in Equations (4.6)
and (4.7) in the extended deep H-GCN. Since F(¥) is non-negative,
we remove the nonlinear operation. Moreover, we fix (1 — ;)1 +
LW to be WO, where v, is a parameter. Thus Equa-

tions (4.6) and (4.7) can be transferred as follows:
F = CONCAT (A U gD, F<O>) WO (4.10)

In the same manner, we set W = [I, I, I]T - W". Then
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Equation (4.10) can be transferred as follows:

FO
— CONCAT (A L FU-Y -1, F<0>> (L LT WO
(A + DFCY 4 FO) a0
(4.11)
Furthermore, we set F(©) = (A 4 I)- 2. Thus Equation (4.11)

can be further transferred as follows:

FO = ((A + I)(FUD ¢ ;f;)) WO
X (4.12)

— (1= D)(FY +2)) - W,

For simplicity, like [22], we further set W1 as an identity
matrix. Consequently, according to Equation (4.12) and [22],

we can express the final embedding feature representation as

D D
FD) = (Z < %> (I — L)l> L&, (4.13)
k l

=0 =D—

follows:

This expression suggests that deep H-GCN converges to a dis-
tribution that carries information from both the input feature
& (F)) and the graph structure L (A). This property ensures
that deep H-GCN will not suffer from an over-smoothing issue

even if the number of layers goes to infinity.
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4.5 Large Scale Graph Training via Neigh-
borhood Sampling

With the fast development of semiconductors, more and more
devices and connections are integrated into an analog IC, which
brings great challenges to the model training because of the
iterative embedding generations among neighboring nodes. For
example, to compute the gradients of node v; in the [-th layer,
the embedded features of the neighboring nodes N(v;) of v; are
required, i.e., some features in the (I—1)-th layer. Moreover, the
features of N(N(v;)) are also needed, i.e., some features in the
(I—2)-th layer. As the search depth D (the number of embedding
generation layers) increases, the kind of neighborhood explosion
will bring the much more node number in each training epoch
so that it causes lots of training time and memory resources
even through out-of-memory on GPU. Fig. 4.5(a) is taken as an
example to show the neighborhood explosion.

To achieve enough scalability, a straightforward method is
using the traditional graph partitioning algorithms [17] to par-
tition a large-scale graph to be several isolated small size sub-
graphs to be trained. However, the features of the neighbor-
ing node (device) cannot be aggregated to the node itself in all
training epochs if the neighboring node and the node itself are
partitioned into two isolated subgraphs. As a result, these graph
partitioning algorithms cause performance degradation.

To alleviate the performance degradation, like the dropout
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technique in CNNs [109], a probability-based sampling method
is leveraged to obtain different subgraphs among different train-
ing epochs. Considering that the runtime is dominated by graph
transformation in our proposed flow, we perform a probability-
based sampling method on the bipartite graph. In our proposed
probability-based sampling method, the sampling probability re-
lies on the number of edges (degree) in each node, as shown in

Equation (4.14).
Db(ia Z)
Flos) = [Dy|

where Dy, is a diagonal matrix. Its each diagonal element Dy (i, 1)

(4.14)

= >_; Ap(i,j), where A, is the adjacency matrix of the bipartite
graph, which is constructed by directly parsing and flattening
the circuit netlist as shown in Fig. 4.1. |Dy| is summation of all
of the elements in the matrix Dy. According to Equation (4.14),
the node with more edges is sampled with a higher probability.
Note that although the analog IC bipartite graph contains de-
vice nodes and net nodes, our proposed probability-based neigh-
borhood sampling algorithm is performed to only sample device
nodes while the net nodes will be automatically removed by our
proposed heterogeneous multigraph representation as shown in
Section 4.2.

The basic idea behind our proposed probability-based sam-
pling method is that the device with more connections has a
more important influence on the aging degradation of its neigh-

boring transistors. Unlike traditional graph partitioning algo-
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rithms [17], our proposed probability-based algorithm can ob-
tain different subgraphs among different training epochs. In
other words, even though the neighboring node and the node
itself are partitioned into two isolated subgraphs in the current
training epoch, they may be partitioned into the same subgraph
in other training epochs. Thus our proposed probability-based
neighborhood sampling algorithm can achieve more robust per-
formance and good scalability.

Our proposed probability-based neighborhood sampling al-
gorithm is summarized in Algorithm 6. We provide the search
depth D, the transistor node set V,, the number of device nodes
to be trained T and analog IC netlist bipartite graph BG as
inputs. Firstly, we need to find a device node set V?) and a
net node set UP), whose each element is equal or less 2D hops
away from one of the transistor nodes in Vg (from line 2 to line
13). As mentioned above, the deep H-GCN model brings much
more elements in the node set VP). In order to sample T — | V|
elements from the node set VP), the sampling probability of
each node is calculated by Equation (4.14) (from line 15 to line
17). Then all sampled nodes are combined with the transistor
node set V. At last, the algorithm outputs the bipartite sub-
graph with the device node set V, with T device nodes and the
net node set UP). By performing Algorithm 6 in each training
epoch, different bipartite subgraphs can be trained so that our
deep H-GCN model can achieve more robust performance. Be-

sides, like the dropout technique in CNNs [109], our proposed
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Figure 4.5 The neighborhood sampling.

probability-based neighborhood sampling algorithm can allevi-
ate overfitting since it randomly drops embedding features from
neighboring nodes during the training stage.

We take Fig. 4.5 as an example to illustrate the proposed
probability-based neighborhood sampling algorithm. In this
example, we set the search depth as D = 3 and the num-
ber of device nodes as T = 3. The initial input node set is
Vs, = {M3,M4}. As shown in Fig. 4.5(a), the 6-hop device node
set is V) = {M1,M2, M3, M4, Vdd, R} and the 6-hop net node set
is U = {n1,n2,n3,n4,n5,n6}. Except for M3 and M4 in V,,
we only need to sample one more node from V®N\V,. Accord-
ing to Equation (4.14), M1 and M2 have the largest probability
to be sampled since they have the most edge number. If M1 is

sampled, Algorithm 6 takes the subgraph with the device node
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Algorithm 6 The Neighborhood Sampling Algorithm

Require: Search depth D, the input transistor node set V,, the number of

13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

device nodes to be trained T, analog IC netlist bipartite graph BG;
Initialize device node set V@ « V.
for k=1to D do

U®) 0
for all v € V-1 do
UR — UF UN(v); > expand the net node set.
end for
V&)
for all 1 € UM do
VE — VE U N(p); > expand the device node set.
end for
: end for
cUP) — uP u®; > combine the net node sets with 1,3,--- ,2D — 1

hops distance away from one node of V,.
VD)« uP_ V&) > combine the device node sets with 0,2, --- ,2D hops
distance away from one node of V,.
if [V(P)| > T then
for all v; € VP\V, do
Calculate P(v;) according to Equation (4.14);
end for
Sample T — |'V,| nodes according to the probability P to the set V;
Vy +— Ve UV,
else
v, + V).
end if
return The bipartite subgraph with V, UU®P) of BG.




CHAPTER 4. FAST AGING DEGRADATION ESTIMATION 92

V, = {M1,M3,M4} and net node U shown in Fig. 4.5(b) as
an output. If M2 is sampled, Algorithm 6 takes the subgraph
with the device node V, = {M2,M3,M4} and net node U shown
in Fig. 4.5(c) as an output. The two subgraphs are trained in

different training epochs.

4.6 Overall low

The overall flow of our proposed fast analog IC aging-induced
degradation estimation framework is illustrated in Fig. 4.6, which
consists of four parts: parsing and flattening netlist, probability-
based neighborhood sampling, heterogeneous graph representa-
tion and deep H-GCN inference. Our flow takes the netlist with
static stress conditions as an input. Then netlist is parsed and
flattened to be a bipartite graph. In order to achieve enough
scalability, the probability-based neighborhood sampling as shown
in section 4.5 is adopted to obtain a subgraph. Moreover, the
subgraph is transferred to be the heterogeneous graph to effi-
ciently represent the topology of analog ICs as shown in Sec-
tion 4.2. The heterogeneous graph is input into the deep H-
GCN to perform dvtlin estimation. At last, the overall flow
takes the estimated dvtlin values of the target transistors as
outputs. Based on the aforementioned techniques, the proposed

flow is expected to achieve fast and accurate dvtlin estimation.
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Figure 4.6 Overall flow.
4.7 Experimental Results

4.7.1 Benchmarks and Experimental Setting

Considering that the aging-related wear-out is very severe at the
bSnm technology node in the industry, our experiments are illus-
trated on eight different industrial phase-locked loop designs im-
plemented at the very advanced 5nm technology node. It should
be noted that our proposed method is very general that it does
not rely on any technology information or parameters, so it can

be adopted in other technologies. These designs are represented
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with post-layout netlists. The post-layout netlist files consist of

Spectre and SPICE formats [65], as inputs in our models. We

run an industrial aging DFR tool to obtain the dvtlin value of

each transistor. Note that in each design, the stress conditions

are given by very sophisticated designers to obtain dvtlin as

a golden-truth value. To evaluate the estimation performance,

each time, we use seven designs for training and the remaining

design for testing.

Table 4.1 Statistics of Designs

Design | #trans. | #device | #net
1 4,348 99,009 | 18,155
2 4,382 99,696 | 18,299
3 3,999 | 179,758 | 31,303
4 3,998 | 185,480 | 33,819
5 4,980 | 692,480 | 111,308
6 523 31,279 6,002
7 6,398 | 452,109 | 76,807
8 1,998 96,749 | 16,006

Table 4.2 Device Type

Type ‘ #Param.
MOS 51
MOS spice 75
DIO/ESD 8
Cap 12
R 6
VSource

The statistics of the eight industrial phase-locked loop designs



CHAPTER 4. FAST AGING DEGRADATION ESTIMATION 95
Table 4.3 Graph learning models
Feature Graph representation
Method
Concat. Latent | Homo. Heter.
GCN v v
GCNII v v
H-GCN-concat v v
H-GCN v v
Deep H-GCN-concat v v
Deep H-GCN v v
Table 4.4 MAE (mV) and r? Score Comparisons.
Desi DFR tool (static) GCN [40] GOCNII [22] H-GCN Deep H-GCN
esign
v MAE 72 Score | MAE 1% Score | MAE 7% Score | MAE 7% Score | MAE 72 Score
1 4.009 0.181 1.316 0.703 1.332 0.691 0.914 0.821 0.824 0.843
2 4.072 0.194 1.389 0.596 1.339 0.619 0.893 0.814 0.856 0.839
3 4.543 0.327 4.070  0.588 4.166  0.599 2.302  0.817 | 2.012 0.840
4 4.515 0.332 4.111 0.588 4.177 0.551 2.575 0.746 2.350 0.815
5 4.160 0.277 3.750 0.521 4.021 0.354 2.525 0.787 2.454 0.816
6 3.962 0.395 2.077 0.802 2.092 0.802 1.661 0.834 1.541 0.865
7 4.319 0.266 3.166  0.685 3.168  0.689 2.889  0.826 2.704 0.874
8 4.594 0.224 3.491 0.637 | 3.748  0.610 2.670  0.786 2.503 0.840

are shown in TABLE 4.1, where the netlist (Design 5) has up to

692K devices. The netlist of each design is parsed and flattened.

Then all alternating current (AC) voltage sources (dynamic con-

ditions), such as behavioral signal (Verilog-A description), sine

wave, pulse and piecewise linear (pwl), are ignored while all DC

voltage sources are considered so that our model can be indepen-

dent of the dynamic stress conditions. Except for AC voltage

sources, there are 32 types of basic devices in all designs. Ac-

cording to their parameters, all of these devices are divided into

6 categories as listed in TABLE 4.2. Their feature vectors have
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different lengths, i.e., the #Param. Correspondingly, 6 matrices
are adopted to map feature vectors into a unified latent space.

According to the domain knowledge, the four pins of tran-
sistors and two pins of diodes play an important role in circuit
analysis [98]. Consequently, in the heterogeneous graph repre-
sentation, all of the edges connecting to these six types of pins
are emphasized by categorizing them into six types of edges. All
of the edges connecting to other pins are uniformly treated as an
individual type of edges. In total, seven adjacency matrices are
used to specify various connection pins, i.e., gate, drain, source,
substrate, anode, cathode and others.

Two traditional graph learning models, our proposed H-GCN
and the extended deep H-GCN are implemented in the exper-
iments, as listed in TABLE 4.3. GCN [40] and GCNII [22]
models use the concatenated features representation and treat
the analog IC netlist as homogeneous undirected multigraphs
mentioned in Section 4.2. While our H-GCN and deep H-GCN
use the proposed heterogeneous directed multigraph represen-
tation and the unified latent space mapping algorithm. In our
H-GCN and deep H-GCN models, ReLLU function is used as
the activation function. We use MSE between the ground-truth
and our estimated dvtlin as loss function with weight decay
hyperparameter 10~7 and stochastic gradient descent for opti-
mization. We set the embedding generation with search depth
D =2,4,6,8 and 3 FC layers in the four graph learning models.
And we set the device sampling size T" = 1000 in Algorithm 6.
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In order to illustrate the performance of graph learning models,
all inferences are repeatedly performed ten times to report av-
erages. Each output feature size of embedding generation layers
and the latent space mapping layer is 512. The output feature
sizes of three FC layers are set as 4096, 1024 and 1, respectively.
The batch size is 32 and the number of the training epoch is 600.
The same settings and configurations are used in GCN [40] and
GCNII [22]. To improve numerical stability, we normalize all
feature vectors and adjacency matrices. In order to illustrate
the performance of these data-driven graph learning models, we
also run dynamic and static aging reliability simulations by us-
ing the industrial aging DFR tool.

The proposed graph representation is implemented with Python
and Networkx library. All graph learning models are imple-
mented with TensorFlow, and are trained and tested on a Linux
machine with 18 cores and NVIDIA Tesla V100 GPU with 32GB
memory.

Mean absolute error (MAE) defined in Equation (4.15) is used
as a metric to evaluate the absolute accuracy on the testing set.

1 « )

MAE = =3 o~ il (4.15)
where ¢ indicates the ¢-th transistor. g; is the i-th transistor’s
dvtlin, as the golden-truth value, obtained by the industrial
aging DFR tool with the appropriate stress given by very so-
phisticated designers. ¢; is the estimated dvtlin of the ¢-th

transistor by graph learning methods or the static reliability



CHAPTER 4. FAST AGING DEGRADATION ESTIMATION 98

simulation. n is the number of transistors on the testing set. In

2

addition, we use r* score defined in Equation (4.16) as a metric

to evaluate the relative accuracy on the testing set.

r’score = 1 —

Z%l(yz - ?Q_z')27 (4.16)
>im1 (Ui — 9)?

where ¢ denotes the mean of the golden-truth values y; on the
testing set. 72 score indicates how the regression prediction per-
fectly fits the data. The higher 7> and lower MAE mean the

better accuracy.

4.7.2 Accuracy and Runtime

We train the four graph learning models as shown in TABLE 4.3
with the embedding generation with search depth D = 2,4,6,8
and list their best accuracies in TABLE 4.4. Besides, we also
list the accuracies of the static aging reliability simulation by
using the industrial aging DFR tool. Compared with graph
learning models, the static aging reliability simulation causes
the worst accuracy since it completely ignores dynamic stress
conditions. Thus our proposed data-driven approach with a su-
pervised learning manner is effective to estimate aging-induced
degradation.

According to TABLE 4.4, the typical GCN [40] and GC-
NII [22] have the worse accuracy, since they do not consider
the heterogeneity of the analog circuit. Compared with our pro-

posed H-GCN, our extended deep H-GCN can achieve a more
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accurate estimation since it can extract information from multi-
hop devices without an over-smoothing issue. The same reason
can be used to explain why GCNII [22] can beat the typical
GCN [40].

We compare the runtime of our extended deep H-GCN with
static and dynamic aging simulations by using the industrial
DFR tool as shown in Fig. 4.7, where DFR-D and DFR-S de-
note the dynamic and static aging reliability simulations, re-
spectively. The static and dynamic aging reliability simulations
need to perform fresh simulation, stress simulation, aging sim-
ulation as shown in Fig. 2.2. Thus they consume the longest
time. Moreover, compared with static aging reliability sim-
ulations, the dynamic aging reliability simulation consumes a
longer runtime since it needs a large number of accepted tran-
sient steps. Compared with the traditional dynamic and static
aging reliability simulations, our proposed methods do not need
computationally expensive fresh simulation, stress simulation or
aging simulation. Thus our extended deep H-GCN can achieve
significant speedup. According to Fig. 4.7, our extended deep
H-GCN can achieve 241 x and 39x speedup on average, respec-
tively, comparing with the dynamic and static aging reliability

simulations.
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Figure 4.7 Runtime comparisons.

4.7.3 Ablation study

In this section, we give two ablation studies to illustrate the
effectiveness of the deep structures and our proposed the unified

latent space mapping algorithm.

The effectiveness of the deep structures and over-smoothing

The accuracies w.r.t. the search depth of embedding genera-
tion D = 2,4,6,8 among different graph learning models are
shown in Fig. 4.8. As the search depth of embedding gen-
eration increases, both GCN [40] and our H-GCN bring per-
formance degradation because of the over-smoothing issue. In
other words, they achieve the best accuracy with a shallow struc-
ture. While as the search depth of embedding generation in-
creases, GCNII [22] and our deep H-GCN can achieve a more
accurate estimation. Thus GCNII [22] and our extended deep
H-GCN can alleviate the over-smoothing issue. However, com-
pared with GCNII [22], our extended deep H-GCN can char-
acterize the heterogeneity of the analog circuit so that it can

achieve a more accurate estimation.
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Figure 4.8 The embedding generation depth wvs accuracy: (a-h): MAE on

Design 1 to Design 8; (i-p): 72 Score on Design 1 to Design 8 (DH-GCN
denotes our extended deep H-GCN).

The effectiveness of the unified latent space mapping algorithm

We compare the accuracies of H-GCN and deep H-GCN with
H-GCN-concat and deep H-GCN-concat, respectively. Here H-
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Figure 4.9 MAE and r? Score between HGCN and HGCN-concat and between
deep H-GCN and deep H-GCN-concat: (a) MAE between H-GCN and H-
GCN-concat; (b) MAE between Deep H-GCN and Deep H-GCN-concat; (c)
r? Score between H-GCN and H-GCN-concat; (d) r? Score between Deep
H-GCN and Deep H-GCN-concat.

GCN-concat and deep H-GCN-concat adopt the concatenated
feature representation as listed in TABLE 4.3. For compar-
isons, according to Fig. 4.8, we choose the best configurations
(the search depth of embedding generation D) for each model on
cach design. MAE and r? score among HGCN, HGCN-concat,
deep H-GCN and deep H-GCN-concat are shown in Fig. 4.9.
Our proposed unified latent space mapping algorithm can im-
prove accuracy on both HGCN and deep H-GCN since it can

effectively exploit and encode features.
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4.8 Summary

In this chapter, we propose an H-GCN to fast estimate aging-
induced transistor degradation in analog ICs. To characterize
the multi-typed devices and connection pins, a heterogeneous
directed multigraph is adopted to efficiently represent the topol-
ogy of analog ICs. A latent space mapping method is used to
transform the feature vector of all typed devices into a uni-
fied latent space. We further extend the proposed H-GCN to
be a deep version via initial residual connections and identity
mappings. The extended deep H-GCN can extract informa-
tion from multi-hop devices without an over-smoothing issue.
A probability-based neighborhood sampling method on the bi-
partite graph is adopted to ease the model training on large-scale
graphs and achieve good scalability. We conduct experiments
on very advanced 5nm industrial benchmarks. Compared with
traditional graph learning methods and the static aging reliabil-
ity simulations by using an industrial DFR tool, our proposed
deep H-GCN can achieve more accurate estimations of aging-
induced transistor degradation. Compared with the dynamic
and static aging reliability simulations, our extended deep H-
GCN can achieve on average 241x and 39x speedup, respec-
tively. Thus our proposed deep H-GCN can significantly im-

prove the efficiency of aging verification.

O End of chapter.



Chapter 5

Thermal-driven PCB Routing

5.1 Preliminaries

5.1.1 Problem Formulation

Like the typical PCB routing frameworks, our TRouter takes
post-placement layout and design rules as inputs. All com-
ponents have been placed in the post-placement layout and
these components have solder-mask-defined (SMD) pads and/or
through-hole pads. SMD pad is a top- or bottom-layer pad
that has a predefined assignment within the netlist. While
the through-hole pad is a pad that punched through all rout-
ing layers that has a predefined assignment within the netlist.
The netlist defines the connections among these SMD and/or
through-hole pads. Note that different from the traditional es-
cape routing and the area routing, our objective is to route more
practical PCB, where there are typical BGAs and non-BGAs,
such as SMD pads and through-hole pads scattered around the

104
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PCB post-placement layout,
netlist and design rule

Raster obstacles and pads as
routing obstacles to routing grid

layout patterns to routing grid
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Raster instances and pads as i
|

Prepare an unrouted net to be
routed

Raster segments and vias as
layout patterns to routing grid

Route net honoring that
guidance

Generate thermal-driven routing
guidance via layout patterns

105

Rip-up, reorder nets and will
route from scratch

[ PCB post-routing layout J

Figure 5.1 Our TRouter overview. The purple boxes denote our contribu-

tions.

routing plane.

Specifically, one of our objectives is to minimize the thermal
values on the post-routing layout. Another objective is to min-
imize wirelength, like the typical routing objective. We provide
the formal definition of our thermal-driven PCB routing prob-

lem.

Problem 3 (Thermal-driven PCB routing). Given a set of SMD
pads, a set of through-hole pads, a netlist, and design rules,
connect all the nets so that there is no design rule violation,

the total wirelength is minimized while minimizing the thermal
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values on the post-routing layout.

In order to handle Problem 3, we further decompose it into
two sub-problems: thermal-driven routing guide generation and

guided detailed routing defined as follows.

Problem 4 (Thermal-driven routing guide generation). Given
the placement of all components with pads, some vias and routing
segments (traces), predict a cost in each grid cell while minimiz-

ing the thermal values on the post-routing layout.

Problem 5 (Guided detailed routing). Guided detailed routing
takes placement of all components with pads, nets, design rules
and a set of generated routing guidance as input, and routes all
the nets while honoring routing guidance and satisfying design

rules.

5.1.2 Overview

In order to handle Problem 3, we propose TRouter, a thermal-
driven PCB routing framework via CNNs. We devise our TRouter
based on the grid-based model since it has a simple data struc-
ture, typically constructs routing models quickly, and allows
fast neighbor identification and one-step move [108]. Initially,
the routing obstacles are captured by rasterizing the arbitrary
shapes of obstacles and pads to the routing grid. Meanwhile
the layout patterns containing instances and pads are captured

by rasterizing the arbitrary shapes of instances and pads to the
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routing grid. Then PCB routing is iteratively performed. In
each iteration, routing segments and vias are captured by raster-
izing them to the routing grid. Then the thermal-driven routing
guidance (Problem 4 task) is generated at each grid cell before
one net is routed by honoring that guidance (Problem 5 task).
Besides, typical tricks such as ripping-up, reordering nets and
routing from scratch are leveraged to improve routability. Af-
ter all nets are well routed, our TRouter takes the post-routing

layout as an output. Our TRouter overview is shown in Fig. 5.1.

5.2 Thermal-driven routing guidance genera-

tion

In this section, we present a thermal-driven routing guidance
generation. Considering that it is difficult to directly formulate
the relationship between routing layout and thermal distribution
via analytic models, we adopt CNNs to predict thermal distri-
bution by inputting the routing layout since they have a more
powerful ability to fit a complex relationship via learning from
historical data. In order to bridge the gap between CNNs and
the routing engine, and avoid time-consuming and tricky inter-
action with the CAD tool, the PCB layout needs to be mapped
into a routing grid. This routing grid can handle irregular BGA
packages [74] and take layout patterns (i.e., instances, pads, vias
and segments) as features to input into CNNs. Unlike the previ-

ous work [161] where the inference is only performed once when
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the post-placement layout is input into the router, our TRouter
needs interaction between the routing engine and CNNs for each
one or several nets to be routed. Besides, after CNNs are well-
trained, unlike the traditional work [71] where the inference has
to be performed in each search step, our TRouter adopts gradi-
ent values in each grid cell obtained from the backpropagation
of CNNs to guide routing.

According to the discussion above, our thermal-driven rout-
ing guidance generation consists of three tasks: (1) feature ex-
traction from routing layout; (2) CNNs structure and training;

(3) gradient value generation in each routing grid cell.

5.2.1 Feature extraction from routing layout

In order to extract feature patterns from the layout and perform
grid-based routing, we rasterize the whole layout as shown in
Fig. 5.2(a). The rasterizing can facilitate routing on the layout
since these arbitrary shapes along with the pads are rasterized to
a 3-D routing grid as obstacles to facilitate later stages to derive
a design-rule-violation-free routing solution. In addition, raster-
izing can help extract feature patterns from the layout without
the help of other CAD tools. We rasterize all instances, pads,
vias and segments as features since their position and shape play
an important role in thermal distribution. Note that in this ex-
ample as shown in Fig. 5.2(a), the PCB has two layers: top and
bottom. Thus based on the 3-D routing grid, we can directly
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extract these patterns as shown in Figs. 5.2(b) to 5.2(g). Each
pattern can be naturally encoded as a binary 3-D tensor, where
the value is 1 if the region is occupied. Otherwise, the value is
0. Unlike the previous work [161] where a CAD tool is used to
obtain a post-placement layout image as features, our TRouter
can avoid time-consuming and tricky interaction with any CAD

tool to improve routing speed.

5.2.2 CNNs structure and training

After the pattern features are extracted, CNNs need to be built
to predict the thermal distribution by inputting these pattern
features. Since there are PCB layouts of arbitrary size in dif-
ferent designs and the thermal distribution map has the same
size as the PCB layer in each design as shown in Fig. 5.3, we
need to adopt fully convolutional networks (FCNs). Compared
with classification-architectures-based CNNs, FCNs discard the
final classifier layer, convert all fully-connected layers to convo-
lutions and devise a deconvolution layer to bilinearly upsample
the coarse outputs to pixel-dense outputs [81]. By these cus-
tomized structures, FCNs can take input of the arbitrary size
and produce correspondingly-sized output with efficient infer-
ence and training.

Typical FCNs have the limited ability to perform feature fu-
sion with low-level features and learn from very little available

training data. Thus the typical FCNs are developed to be U-
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Figure 5.2 A two-layer layout and feature patterns. (a) routing grid; (b)
instance pattern on the top layer; (c) instance pattern on the bottom layer;
(d) pad/via pattern on the top layer; (e) pad/via pattern on the bottom layer;
(f) segment pattern on the top layer; (g) segment pattern on the bottom layer.
Grey cell means that the cell value is 1 and white cell means that cell value
is 0.

net by adopting skip-connections to perform feature fusion with

low-level features in up-sampling parts [102]. Thus it can effi-
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ciently learn from very little available training data. Thus we
adopt U-net as our basic backbone as shown in Fig. 5.3. The
channel number of the model output relies on the thermal sim-
ulator. Here we uniformity set it as 1. Besides, according to
the feature patterns as shown in Fig. 5.2, the [-layer layout is
encoded as a tensor with 2 + 2/ input channels. Thus we adopt
different configurations to predict thermal distribution for the
layout with different number of layers as shown in Fig. 5.3.
Formally, the U-net-based thermal distribution prediction model

¢w takes instance pattern tensor X;,, pad/via pattern tensor
X, and segment pattern tensor X, as inputs then outputs the

predicted thermal distribution Y as follows.
Y - ¢W(fxma :xpv; xsg)a (51)

where W denotes the trainable model coefficients in the U-net-
based thermal distribution prediction model. They are deter-
mined by minimizing MSE, as an empirical loss function, be-
tween the predicted thermal distribution and ground-truth as

follows.

L(W) - HY - ¢W(xz'n; xpvaxsg)H;a (5-2)

where Y represents the ground-truth thermal distribution ma-
trix. Minimizing Equation (5.2) can be handled by SGD in the

training stage.
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Figure 5.3 U-net-based thermal distribution prediction model. W and H

denote the width and height of input feature tensor, respectively.

5.2.3 Gradient value generation in routing grid cell

Until now, we have proposed a U-net-based model to predict
thermal distribution. However, the grand challenge is how to use
the well-trained U-net-based model to guide routing and achieve
high quality and thermal well layout. The typical method is
that each routing step is evaluated by performing the inference
of the U-net-based model [71]. However, this strategy is very
time-consuming. We need to adopt a more efficient strategy to
guide routing via the well-trained U-net-based model.

In this work, we propose to use gradient values obtained from
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the backpropagation of the well-trained U-net-based model as a
cost at each routing grid cell. The main idea behind the strategy
is that the gradient of input features can provide guidance for
reducing thermal. One of our routing objectives is to minimize
the thermal values on the post-routing layout, that is

i w00, %0, X} 5.3

We denote ¥(xin, Tpo, Tsg) = ||ow (Xin, Xpoy, Xsg) |3, where the
tensor X. is vectorized as x.. Then the first-order Taylor expan-

sion of Y (&, Tpy, Tsg) can be expressed as follows.

pv pvr Trsg sg pv Ysg
O(@in, e 89) 7 iy (@, )
Ny ) A (7) Ny ¥PUs TA (@)
(PP B ) 4 (SR PR T )
(5.4)

where ¢ denotes that the i-th routing step. Aa:](fg and Aa:gg)
mean additional vias and segments for routing in the next step,
respectively. According to our feature pattern definition, rout-
ing is the process where all unoccupied regions (values are 0 in
pattern tensor) are chosen to deploy segments or vias (values
are 1 in pattern tensor). Thus Aa:?g), Aa:](fg € {0,1}", where n is
total number of cells in the routing grid. Thus the smaller gra-
dient values 0Y(x;, a:]()?, a;é?)/@a;pv and 0 (x;,, :cz(,ig,wgig))/ﬁa:sg
have negative effects on temperature increasing in the routing
step. As a result, in each or several routing steps, the layout

patterns as shown in Fig. 5.3 are input into the U-net-based
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thermal distribution prediction model then the back propaga-
tion is performed to obtain gradient value r(¢) as a cost in each
routing grid cell, where ¢ is the coordinate in layout or pattern

tensor.

5.3 Guided detailed routing

5.3.1 Detailed routing

After the thermal-driven routing guidance is obtained by U-net-
based model, our TRouter adopts the grid-based A* searching
algorithm for detailed routing. Different from traditional rout-
ing algorithm, where the searching costs only contain from the
source to the current location and the current location to the
target, our routing scheme will honor thermal-driven routing
guidance. Thus our A* searching cost function is defined as

follows.
f(c) =g(s,c)+ h(c,t) + Ar(c), (5.5)

where g(s, ¢) is the cost from the source s to the current location
c and h(e, t) is the estimated cost from the current location ¢ to
the target t. r(c) is the cost in the current location ¢ generated
by thermal-driven routing guidance as shown in Section 5.2. A
is a hyper-parameter controlling the trade-off between thermal
distribution and routing wirelength. Like [74], h(c,t) is defined
as max D — min D + v/2min D to support the routing angle of

135° and 90° degree, where min D is the minimum difference of a
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location c and a target along with x-axis or y-axis and max D is
the maximum one. D = {|c.x —t.z|,|c.y — t.y|}. By performing
A* searching algorithm on the whole PCB layout region to route

net one by one, all nets can be routed on the PCB layout.

5.3.2 Speedup via an adaptive bounding-box

In the traditional detailed routing, the A* searching algorithm
is used to search the next routing location on the whole PCB
layout region. The large space brings time-consuming searching
steps. In order to reduce searching space, we propose a routing
scheme by using an adaptive-size bounding-box. The A* search-
ing is limited in a bounding-box, which is initialized to cover
source and target. The size of the bounding-box will be gradu-
ally enlarged if there is no legal path (no crossing to segments of
other nets) from source to target. In this routing scheme, tradi-
tional soft obstacles may cause segment crossing among different
nets. Thus, in our routing scheme, hard obstacles are used to
avoid segment crossing. In other words, A* searching algorithm
does not search the regions occupied by segments, vias and pads
of other nets. As shown in Fig. 5.4(a), after net A is routed, some
regions are occupied. To reduce search space, a bounding-box is
initialized to cover the source and target before net B is routed.
However, there is no legal path to route net B within the initial
bounding-box. Then the bounding-box is enlarged until there
is a legal path to route net B. In addition, the traditional fixed
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(a) (b)

Figure 5.4 (a) The adaptive-size bounding-box. Left: a bounding-box is
initialized to cover the source and target before net B is routed; Right: the
bounding-box is gradually enlarged since there is no legal path to route net
B within the initial bounding-box. (b) The reordering routing from scratch.
Left: There is no legal path to route net A after net B is routed; Right: All

segments are removed and net A is routed firstly.

nets order may result in a routing failure. In order to enhance
routability, a scratch routing mechanism is adopted. Once one
net cannot be routed successfully, it is firstly routed after all
segments of routed nets are removed (ripping-up mechanism).
As shown in Fig. 5.4(b), after the net B is routed, there is no
legal path to route net A. By using our ripping-up mechanism,
all segments are removed and net A is routed firstly.

After the detailed routing is finished, the routed layout is
exported into kicad and OrCAD DSN formats. By using the
routing scheme via an adaptive-size bounding-box with hard
obstacles and ripping-up mechanism, it is expected to achieve

significant routing speedup.
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5.4 Experimental Results

We implemented our algorithm in the C++ programming lan-
guage. Boost C++ library [1] is used to calculate the geometric
computation within our proposed algorithm. Pytorch library is
used to train our CNNs and C++ libtorch library is used to
perform inference and BP [8]. Routing is performed on Linux
machine with 10 cores and NVIDIA TITAN XP GPU with 12GB
memory. In our TRouter, inference and BP are performed on
GPU while other operations are performed on CPU. The state-
of-the-art PCBRouter [74], as baseline, is performed on CPU.
Our benchmarks are come from open-source designs [6,7]. Their
statistics is shown in TABLE 5.1, where W x H denotes the di-
mension of width and height for the designs. |L|, |C|, |P| and
|IN| denote the numbers of PCB routing layers, components,
pads, and nets, respectively. Siemens HyperLynx software [4] is
used to perform the thermal simulation.

Since there are two kinds of layers in our benchmarks, we
need to build two models to predict the thermal distribution in
our benchmarks. In other words, one model is built for PCB13,
PCB14 and PCB15 and the other is built for rest designs. In
each design, the layout of each routing step and its thermal dis-
tribution are collected as data set. Each layout and its thermal
distribution are routed 90°, 180° and 270° for data augmenta-
tion. In order to evaluate the prediction performance for each

model, we use one of designs as test case, and others as training
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Table 5.1 Benchmark PCB Design statistics.

Designs | WxH (mm) | |L| | |C| | |P| | |N]
PCB1 21x14 2 8 40 15
PCB2 51x23 2 | 18 7 34
PCB3 55 %28 2 | 34 | 138 | 38
PCB4 23 %60 2 | 28 | 140 | 52
PCB5 41x42 2 | 48 | 163 | 54
PCB6 65%55 2 | 48 | 190 | 62
PCB7 51x23 2 | 46 | 207 | 69
PCB8 5T x87 2 136 | 188 | 70
PCB9 44 %36 2 | B8 | 229 | 80
PCB10 102x54 2 | 57 | 319 | 99
PCB11 89xH8 2 | 64 | 401 | 134
PCB12 44x45 2 13 | 118 | 50
PCB13 58x 60 4 | 58 | 233 | 35
PCB14 86x72 4 | 61 | 314 | 63
PCB15 94 <63 4 | 276 | 1510 | 272

Table 5.2 Routing results.

118

Design PCBRouter [74] Our TRouter
WL (mm) ‘ #Via ‘ RT (s) ‘ max(Y) (°C) ‘ [|Y'||/#gcell | WL (mm) ‘ #Via ‘ RT (s) ‘ max(Y) (°C) ‘ Y|/ #gcell
PCB1 83.300 9 3 26.6 0.149 84.653 8 7 26.2 (10.4) | 0.144 (J0.005)
PCB2 273.917 15 1 62.0 0.343 271.780 16 5 60.9 (41.1) | 0.337 (10.006)
PCB3 505.534 38 35 29.1 0.138 497.655 39 18 26.5 (12.6) | 0.137 (10.001)
PCB4 754.216 56 7 58.9 0.327 775.199 71 16 56.3 (12.6) | 0.318 (10.009)
PCB5 980.395 84 50 36.3 0.165 915.117 79 89 33.9 ({2.4) | 0.150 (10.015)
PCB6 956.218 49 146 28.2 0.144 961.246 56 151 26.3 (11.9) | 0.139 (J0.005)
PCBT7 | 1093.068 166 35 53.4 0.300 1108.766 158 63 52.2 (41.2) | 0.292 (10.008)
PCB8 | 1233.115 17 17 85.2 0.386 1142.796 20 36 84.5 (10.7) | 0.382 (10.004)
PCB9 | 1178.936 117 127 31.9 0.161 1071.152 100 43 30.3 (11.6) | 0.159 (J0.002)
PCB10 | 5095.385 595 246 39.9 0.187 4528.277 | 464 337 37.3 (12.6) | 0.183 (10.004)
PCB11 | 4140.010 381 401 31.3 0.154 3769.905 361 315 28.4 (12.9) | 0.149 (J0.005)
PCB12 | 1039.218 5 46 494 0.227 1039.422 5 15 49.4 (10.0) | 0.226 (10.001)
PCB13 | 1536.219 88 62 39.3 0.177 1559.212 88 62 36.6 (2.7) | 0.165 (10.012)
PCB14 | 3129.609 191 743 49.2 0.219 3139.936 194 282 46.2 (13.0) | 0.207 (J0.012)
PCB15 | 7954.524 | 1278 3627 51.1 0.287 7646.568 | 1222 1645 48.9 (12.2) | 0.274 (10.013)
Ave. 1996.911 206 | 370 (1.80) 44.8 0.224 1900.779 192 | 206 (1.00) | 42.9 (}1.9) | 0.217 (40.007)

data. The root mean squared error (RMSE) is used to evalu-

ate the error between prediction and ground truth as shown in
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Fig. 5.5. We can see that our thermal distribution prediction

models can achieve an accurate predictions.

RMSE
O = o W

1234567 8 9101112131415
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Figure 5.5 Model prediction performance.

We use the thermal distribution prediction models to guide
PCB routing in our TRouter. BP is performed for routing
each five nets. We compare our TRouter with state-of-the-
art PCBRouter [74] as shown in TABLE 5.2. max(Y) and
|Y'||/#gcell are used to measure thermal performance, where
|| - || denotes ¢35 norm. We can see that our TRouter can beat
PCBRouter [74]. In particular, our TRouter can achieve 3°C
maximum temperature reduction at most and 1.8x speedup on
average. Besides, thanks to our proposed adaptive bounding-
box and scratch routing mechanism, our TRouter can reduce
the wirelength (WL) and the number of vias even if they both
achieve 0 design rule violation and 100% routability for each
design.

In order to illustrate the runtime performance, we profile our
TRouter’s runtime on one of small designs (PCB1) and one of
large designs (PCB15) as shown in Fig. 5.6. When the small
design is routed, the runtime is dominated by loading model as

shown in Fig. 5.6(a). While the large design routed, the runtime



CHAPTER 5. THERMAL-DRIVEN PCB ROUTING 120

of loading model can be totally ignored (< 1%) as shown in
Fig. 5.6(b). Besides, thanks to performing BP on GPU, it does

not dominate the routing runtime.

16.09 %j.
4.34%

—4

5.94 % 7.34%
9.97 % B Others.
/&0.22 % BP.
I [.oad Model.
A* Search.

73.63% 82.47 %J
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Figure 5.6 Runtime profiling: (a) PCBI1; (b) PCB15.

5.5 Summary

In this chapter, we propose TRouter, a thermal-driven PCB
routing framework via convolutional neural networks (CNNs).
A U-net-based model are leveraged to predict thermal distri-
bution by taking the routing layout as an input. A gradient
in each routing grid cell obtained from the backpropagation of
the U-net-based model is integrated into a full-board routing
algorithm to guide thermal-driven routing. To achieve a sig-
nificant speedup, an adaptive-size bounding-box is adopted to
reduce routing search space. We conduct experiments on open-
source benchmarks to illustrate our TRouter can achieve signif-
icant speedup and thermal well layouts, comparing with state-
of-the-art PCB routing algorithm. Moreover, the methodology

of our TRouter can be easily extended to other performance- or
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reliability-driven routing frameworks.

O End of chapter.



Chapter 6

Bayesian Sharing Grouped

Convolution

6.1 Sharing Grouped Convolution

In this chapter, a sharing grouped convolution structure is pro-
posed to reduce parameter redundancy, improve parameter ef-
ficiency. Then the number of parameters in it is analyzed to
illustrate the compression performance.

To demonstrate the vanilla grouped convolution, the varia-
tion from ResNet to ResNeXt [134,155] is taken as an example.
Fig. 6.1 shows their basic block, which is repeatedly stacked
with different configurations to the whole model. The basic
block contains a shortcut and three convolutional layers, whose
all kernels are represented by a box in each layer. In ResNet,
the basic block is shown in Fig. 6.1(a), where there are three
traditional convolutional layers. In order to transfer ResNet to

ResNeXt, in each block, the second convolutional layer is trans-
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ferred as the vanilla grouped convolution by dividing the 64
channels into 16 groups, and each group has 4 channels for this
example as shown in Fig. 6.1(b). Compared with the traditional
convolution, the vanilla grouped convolution adopts the sparse
convolution connections between input and output channels, by
dividing the input channels, output channels, and their connec-
tions into several groups. According to Fig. 6.1, the parame-
ter number for the second convolutional layer is reduced from
64 X 3 x 3 x 64 = 36864 of ResNet to 16 x 4 x 3 x 3 x 4 = 2304

of ResNeXt in the convolutional layer.

64,1x1,4 || 64,1x1,4 64, 1x1, 4
v v 16 groups v
S PN 4,3x3, 4 4,3x3,4 | ... | 43x34
¥ v 7 7
o 3’;3’ o 4,1x1,128 || 4, 1x1, 128 4, 1x1, 128
64, 1x1, 128

v

(a) (b)

Figure 6.1 The basic block contains a shortcut and three convolutional lay-
ers (the boxes indicate the convolutional kernels [#input channel, kernel
size, #output channel] for each layer): (a) the three convolutional layers in
ResNet; (b) the two convolutional layers and one vanilla grouped convolu-

tional layer with 16 groups in ResNeXt.

In order to further reduce the parameter number and improve

parameter efficiency in the vanilla grouped convolution, we pro-
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pose a sharing grouped convolution structure. Specifically, all
groups share the same parameters so that the same parameters
can be used to extract features and pass information among
different groups. It has the same manner with [149] to im-
prove parameter efficiency. Then in each basic block, the vanilla
grouped convolution (the second layer) as shown in Fig. 6.1(b)
will be transferred as the sharing grouped convolution as shown
in Fig. 6.2. The parameter number for the second convolutional
layer is reduced from 16 x4 x3x3x4 = 2304 to 4x3x3x4 = 144.
Note that compared with the vanilla grouped convolution, our
proposed sharing grouped convolution does not reduce compu-
tational complexity. However, as shown in Fig. 6.2, the parame-
ters are shared among different groups. Therefore, the efficiency
of parameters is improved and the parameter redundancy can be
reduced. Besides, the sharing grouped convolution can facilitate
the weights reusing strategy in the hardware level implementa-
tions so that the actual number of memory accesses decreases
significantly and the inference runtime reduces.

As comparison, we show the numbers of parameters of basic
blocks in ResNet, ResNext and the sharing ResNeXt in TA-
BLE 6.1. Compared with ResNet, ResNeXt has fewer parame-
ters, and the proposed sharing ResNeXt can further reduce the
number of parameters.

Although the proposed sharing grouped convolution struc-
ture can reduce parameters and improve the efficiency of pa-

rameters, directly training models with the group convolution
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m

64, 1x1,4 || 64,1x1, 4 64, 1x1, 4
—)—— =
4, 3x3, 4
-— v
4,1x1,128 || 4,1x1,128 4,1x1, 128

Figure 6.2 The basic block contains a shortcut, two convolutional layers
and one sharing grouped convolutional layer with 16 groups in the shar-
ing ResNeXt (the boxes indicate the convolutional kernels [#input channel,

kernel size, #output channel] for each layer).

Table 6.1 The numbers of parameters of basic blocks in ResNet, ResNext
and the sharing ResNeXt with g = 16.

Type ResNet ResNeXt Sharing ResNeXt
conv 64 x1x1x64 64 x1x1x64 64 x1x1x64
(g)conv 64 x3x3x64 16x4x3x3x4 4x3x3x4
conv 64 x1x1x128 64x1x1x128 64x1x1x128
shortcut 64 x 1 x1x128 64 x1x1x128 64 x1x1x128
total 57344 22784 20624

structure may cause performance degradation since the correla-

tion among parameters and groups does not be considered.

6.2 Bayesian Sharing Framework

To transfer the vanilla grouped convolution into the sharing

structure, a naive method is directly constructing a network
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with the proposed sharing grouped convolution structure then
training it. However, this method may cause performance degra-
dation. To avoid performance degradation, we adopt a separate-
merge methodology [44], that is updating independently param-
eters among all groups in the back-propagation stage and com-
puting loss function value by the shared parameters in the for-
ward propagation stage. Based on the separate-merge method-
ology, a typical method is indiscriminately averaging the param-
eters among different groups in the forward propagation stage.
Given a pre-trained model, we can directly average these pa-
rameters among different groups. This is quite straightforward
but it ignores the diversities of different groups.

In this section, to efficiently eliminate parameter redundancy
and improve model performance, we introduce the intra-group
correlation and inter-group importance of parameters. Then
we propose a Bayesian sharing framework. Some notations used

in this paper are listed in TABLE 6.2.

6.2.1 Intra-group Correlation and Inter-group Impor-

tance

To introduce intra-group correlation and inter-group im-
portance, a prior distribution on model parameters P(w) is
firstly introduced in our framework. Following previous arts
[58,82,122], P(w) is defined to be a multivariate Gaussian distri-

bution. For the convenience of expressions, network parameters
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Table 6.2 List of Notations.

Name Definition

w parameters in one grouped convolutional layer
g # of groups in one grouped convolutional layer
B; intra-group correlation of the group ¢

Yi inter-group importance of the group i

w; parameters of the group i

w;,  the sharing parameters of g groups

k kernel size

Ci" 4 of input channels in each group

Co  # of output channels in each group

H height of input feature

W width of input feature

are reshaped to be vectors. As shown in Fig. 6.3, in each group,
the kernels in each channel are flattened to be a vector. Some
notations are explained in TABLE 6.2. Then they are concate-
nated sequentially to be a vector. Considering that the features
are extracted independently from different groups in the vanilla
grouped convolution as shown in Fig. 2.4(a), we assume any two
network parameters from different groups are independent, i.e.,
P(w) = [T¢ P(w;). Therefore, the prior distribution of network

parameters in the group i is defined as follows:
P(wi; vi, Bi) ~ N, Zw,)y S, = 7B, (6.1)

where w; € RVC and B; € RNC*NCY with N £ k2Ci'. B, is

a positive definite matrix which captures the correlations of the
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Figure 6.3 Reshape the parameter tensor of one group as a vector, with C7’
input channels and C'o’ output channels. The kernel size is 2 x 2. The arrows

show the flattening order.

parameters in group ¢, termed as intra-group correlation. v;
is a coefficient reflecting the relative importance of group ¢ in
comparison with other groups, termed as inter-group impor-
tance. ~; also indicates the importance of the group ¢ while
passing messages or knowledges in the model during inference.
Uy, is the mean vector of the network parameters w; in the
group . And X, is the covariance matrix of the network pa-
rameters w; in the group ¢. For the convolutional layer with ¢

groups, the prior distribution of network parameters is

P(w; B, ) ~ N(pw, L), (6.2)
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where ftuy = [fy,s By, =+ 5 ]| 18 the mean vector of the net-
work parameters w. X, = diag[Xy,, Xy,, -+, Xy, ] is the co-
variance matrix of w, which is a block diagonal matrix with prin-
cipal diagonal blocks being 3y, 34y, , - -+, B, B 2B, B,, -,
B,} and v = [y1,7%2, -+ ,7,)". The intra-group correlation B;
and the inter-group importance ; are determined by maximiz-
ing Type II likelihood [100] as shown in Formulation (6.3).

max ln/ﬂ)(‘d|x,w)ﬂ)(w; B, ~)dw, (6.3)
where Y and X are the output and input features, respectively.
P(w; B, «) satisfies multivariate Gaussian distribution with hyper-
parameters B and - defined in Equation (6.2).

According to Formulation (6.3), to obtain the intra-group
correlation B; and the inter-group importance 7;, we need give
a concrete form of P(Y|X, w). Moreover, the concrete form of
P(Y|X, w) relies on the relationships among input features X,
output features Y and model parameters w in one grouped con-
volutional layer.

Nevertheless, in practice, because of non-linear operations in
CNN models, it is hard to obtain the closed form of the likeli-
hood function P(Y|X, w) and the integral of the marginal likeli-
hood in Formulation (6.3) is intractable in neural networks [59].
Like in [58], we consider the linear relationship between the in-

put and the output features of each layer before a nonlinearity

is applied.
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6.2.2 Maximum Type II Likelihood Estimation

In this subsection, the Type II likelihood in Equation (6.3) is
transformed for the ease of the computations of the intra-group
correlation B; and inter-group importance ;.

As mentioned above, we consider the linear relationship be-
tween the input and the output features of each layer before a
nonlinearity is applied. To represent the vanilla grouped convo-
lution in the form of matrix-vector multiplication, we reshape

the input features as shown in Fig. 6.4:

o In Step 1, we reshape the input features of one group to be
a block-diagonal matrix. As the parameter kernel window
slides on the input feature, the corresponding features are
flattened to be a vector with length k2. Therefore, we flat-
ten the feature in one channel to be an HW x k? matrix.
Then the feature matrices of all C'i’ channels are reshaped

to be a block-diagonal matrix.

o In Step 2, we duplicate the input feature block matrix by

Co' times to generate a larger block-diagonal matrix.

e In Step 3, we place the block-diagonal matrices of the g
groups at the diagonal of the final feature matrix. The
parameters are also reshaped in the same manner, as men-

tioned above in Fig. 6.3.

For each group, the matrix-vector multiplication with model

/
error v; can be represented as y; = X,w; +v;, where y; € RM¢°
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Figure 6.4 Reshape input features. The vanilla grouped convolution opera-

tion is transformed as matrix-vector multiplication.

and X; € RMCOXNCY ranresent the reshaped outputs and inputs
respectively, with M £ HW. For a layer with ¢ groups, the

vanilla grouped convolution is:
y=Xw+w, (6.4)

where y = [y/,--- ,y,]", X = diag[X, Xo,---, X,], and v =
[,U;—,,” 7U;—]T'

pendent identical Gaussian distribution, i.e., P(v) ~ N(0,\I),

The model error v is assumed to follow inde-

where A is a hyper-parameter controling the precision of model
error. I is an identity matrix. The concrete form of the likeli-

hood function in Formulation (6.3) can be obtained as follows:
PY|IX, w) = P(y| X, w; \) ~ N(Xw, \I). (6.5)

According to Fig. 6.4, the size of matrix X is MCo'gx NCd'g.
However, on one hand, note that the vanilla grouped convolu-

tion adopts the sparse convolution connections between input
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and output channels, by dividing the input channels, output
channels, and their connections into several groups. Thus the
matrix-vector multiplication can be performed group by group,
ie., y; = X;w; + v;, where X;’s size is MCo x NCo. More-
over, X; is also a block diagonal matrix, whose each block size
is M x N, which can facilitate the matrix-vector multiplication
output channel by output channel. Besides, in popular vanilla
grouped convolutional neural networks, for example, ResNeXt,
small kernels (e.g., k = 3 or k = 1) are widely adopted. On
the other hand, our proposed sharing framework is performed
layer by layer in grouped convolutional layers, instead of all
convolutional layers, in popular CNN models. Thus in practice,
this reshaping input features does not bring a horrible memory
footprint. In addition, this reshaping is only performed in the
training stage while the memory footprint does not increase in
the inference stage.

According to the network parameters prior P(w;;~;, B;) de-
fined in Equation (6.1) and the likelihood function P(y|X, w)
defined in Equation (6.5), the posterior of network parameters
also follows multivariate Gaussian distribution P(w|y, X;~, B, \)
~ N(p, %), where the mean p and the covariance matrix ¥ are
represented as follows [100]:

=3, X" M+ X3, X" Hy - Xpy),
= (2l + %XTX)l, 60
where o £ [pf -+ p)]7, and T = diag[Ey, -+, 35y, p,; and
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3); are the posterior mean and the covariance matrix of network
parameters in the group i, respectively.

Now to determine the intra-group correlation B; and the
inter-group importance ~;, we can transform Formulation (6.3)

as follows:

max InP(y|X;B,v, ), (6.7)
By, A

where the marginal likelihood function P(y|X; B,~,A) is de-

fined as follows:
PyIX: By ) = [ PyX,wiPw Boy)dw,  (63)

Then Formulation (6.7) can be transformed to the equivalent

formulation as follows:
iy L(B,~,\), (6.9)

where
L(B,v,)) £ —2InP(y|X; B, v, \)
=In|AM + XX, X | (6.10)
+(y — Xﬂw)T(AI + XEwXT)_l(y — X o).
Since it has the ability to adaptively learn and exploit intra-
group correlation for better performance and only takes few
iterations, in next section, we illustrate how to use a group
LASSO type method to handle Formulation (6.9) so that the

intra-group correlation B;, the inter-group importance ~; and

the hyper-parameter A can be well determined.
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6.2.3 Optimization via Group LASSO Type Algorithm

In this subsection, we follow the work [157] and use a group
LASSO type algorithm to determine hyper-parameters so that
it can achieve fast convergence. The main idea is shown as
follows: Firstly, we find the upper-bound of the cost function
L(B,~,\) defined in Equation (6.10). Then the upper-bound
can be transformed to be a group LASSO problem. As a re-
sult, we can solve it with a typical group LASSO solver more
efficiently.

In order to find an appropriate upper-bound of £(B,~, \), we
introduce a temporary function h(a) £ [3]|y — X pw — X |3+
oY 'al. a is defined as a temporary variable, which is dif-
ferent from the model parameters w. Note that the function
h(a) is convex. Therefore, there is a global minimum ay, i.e.,

h(ag) < h(ax), with the first derivative h(ay) = 0, where
)= (S + X" X))y — Xpe)' X. (6.11)

Substituting Equation (6.11) into the function h(a) and using
Woodbury matrix identity [96] lead to

hag) = (Y — X)) "M+ XZW, X )y — Xpw). (6.12)
Thus for the right term in Equation (6.10), we have
(Y — Xptw) M+ X3, X ) Ny — X o)

| (6.13)
= m&n[XHy — Xt — Xa|5+ a3 al.
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With this, Equation (6.10) is upper-bounded by:
UL(a,v,B,\) =In M+ XX, X"
+§Hy—qu — Xalf+a'3 (6.14)

Here, we temporarily fix B and A. Then instead of directly
optimizing Formulation (6.9), we minimize the upper-bound in

Equation (6.14) w.r.t. o and = as follows:

r(rxlgl UL(a, 7). (6.15)

Furthermore, considering the term (1/\)||y — X o, — X |3
is independent of v in Equation (6.14), Formulation (6.15) can
be handled in two steps alternatively and iteratively. In the first
step, we optimize Formulation (6.15) w.r.t. 7y as follows:

fla) & min(In |AT + XZ, X' +a'S, ', (6.16)
v>
In the second step, we optimize Formulation (6.15) w.r.t. a as

follows:
min |y - Xpo - Xal3+A/(@).  (6.17)

In the first step, since g(vy) £ In|\ + XX,X "] is non-
decreasing and concave, g(7) can be expressed with its concave

conjugate g*(z) as follows [19]:
g EI M+ XZ,X"| = m>131 2’y —g'(2), (6.18)
where the concave conjugate is given as follows:

g (z)=minz'y —In |\ + XX, X | (6.19)

720
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Therefore, Equation (6.16) can be transformed as Equation (6.20).

fla)=min o' a+z'y—g"2)

v,2>0
= min zg: —aiTBi_lai +zivi | — g% (2) (620
7220 < i )9,
1=0
where z = [21, 29, -+ , 2,] . Minimizing Equation (6.20) w.r.t. 4,
we have
_1
vi =2 /o] Bi'ey;, i=1,2,--- g (6.21)

However, 7; relies on z;. According to Equation (6.18) and the

duality property [19], we can obtain

zi = Tr[B; X' (M + X; 3, X,)) 1 X3 (6.22)

According to Equation (6.21) and Equation (6.22), v relies
on z and z relies on v (X,). Therefore, in the first step, we
optimize Formulation (6.16) by updating v and z, alternatively.

In the second step, after v and z are determined, Formulation

(6.17) is transformed as follows:

g 1
min |ly — Xpw — X3+ 1> 2221/o] B oy, (6.23)

i=1
Formulation (6.23) is an implicit group LASSO formulation. To
make it more clear, we transform it to be Formulation (6.24) as

follows:

g
i — 5 : 24
min ||t HdeJr)\;Hdsz, (6.24)
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where d; = 221-1/2Bi_1/2ai, d=1[d,dy, - ,d;]T, t=vy— Xy,
H = X-diag[B,?/(22%), B,/ (2,%), .-+, By /(22,")]. For-
mulation (6.24) is a standard group LASSO formulation, which
can handled by calling classical group LASSO solver (e.g., [3])
to determine o.

Note that during the above process, we fix the intra-group
correlation B and the hyper-parameter . In fact, the hyper-
parameter \ can be automatically determined by a group LASSO
solver [3]. Besides, according to [157], since e has the approxi-
mate covariance with w, B can be approximately estimated by
a from the previous iteration, that is

B = 1S, ~  E[(e; — E(a))(a; —E(e))].  (6.25)
i i

In particular, according to [50], the first-order auto-regressive

process corresponding to the Toeplitz matrix is more sufficient

to capture intra-group correlation. Therefore, the intra-group

correlation matrix B; is replaced by B; as follows:
B, = Toeplitz([1, 1, - - - ,rNCO/_l]), (6.26)

where r = my /My, my and m; are the averages of elements along
the main diagonal and the main sub-diagonal of B;, respectively.

In summary, the developed group LASSO type algorithm flow
is shown in Algorithm 7. We do not directly optimize Formu-
lation (6.9). Instead, we find the upper-bound of the function
L(B,~,\) as shown in Equation (6.14). Then the upper-bound
function UL(ax, 7y, B, A) is minimized by two steps. In the first
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step, we alternatively optimize Formulation (6.16) to obtain the
hyper-parameter 4 in Equation (6.21) and z in Equation (6.22).
In the second step, we transform Formulation (6.17) as an equiv-
alent group LASSO formulation as shown in Formulation (6.24).
After calling the group LASSO solver, we can determine d (o)
and A, simultaneously. In addition, we use Equations (6.25)
and (6.26) to update the hyper-parameters B and B;. The
above process is iteratively performed until convergence. Then
the intra-group correlation B, the inter-group importance v and
the hyper-parameter A are determined. In practice, it only takes
few iterations in Algorithm 7 (2 to 5 iterations). In each itera-
tion, any efficient group LASSO algorithm can be used, which
bring much faster and suitable to the sharing parameters in the

grouped convolution.

Algorithm 7 Group LASSO to handle Formulation (6.9).

Require: X, y from one grouped convolutional layer, network parameters

w.

—_

. Initialize B, ~, z and .
repeat
Update v by Equation (6.21);
Update z by Equation (6.22);
Solve Formulation (6.24) (Formulation (6.23)) to obtain d (a) and
A;
6: Update B; = B; by Equations (6.25) and (6.26);

7: until Convergence

8: return hyper-parameters B, v and \.
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6.2.4 Overall flow

In this subsection, we will give an overall flow about how to share
parameters among different groups so that the vanilla grouped
convolution can be transferred as the sharing structure.

After B, v and A\ are determined by Algorithm 7, in each
group, model parameters w; can be determined by the posterior
mean as shown in Equation (6.6), that is w; = p;. To share the
parameters among different groups in one grouped convolutional
layer, the mean of the sharing parameters i, is defined as a

prior mean as follows:
L, = i iwi
DY &7
The mean is the weighted average of all network parameters

(6.27)

obtained in the last iteration, with the inter-group importance
7. Then in Equations (6.10) and (6.14), the prior mean is
P = 1g @ o, = [Hyy,s Bag, 5 Bag,) > and 1, € RY is a vector
whose all elements are 1. ® represents the Kronecker prod-
uct. The sharing process is shown in Algorithm 8. As shown
in Fig. 6.5, initially, all groups have different parameters. After
few iterations, parameters will gradually become the same by
our proposed Bayesian sharing framework. In particular, the
mean sharing method is a special case of our proposed Bayesian
sharing method, i.e., v = 1,.

For the whole CNN model, we adopt a separate-merge method-
ology [44] to share weights in all grouped convolutional layers,

that is separately updating parameters by loss function in the



CHAPTER 6. BAYESIAN SHARING GROUPED CONVOLUTION 140

Algorithm 8 Bayesian sharing framework

Require: X, y from one grouped convolutional layer, network parameters
w.
1: Initialize fy, = > 7 Wi/g, P = 1§ & My,
repeat
Update B, v and A by Algorithm 7;

Update model parameters w; by the posterior mean in Equation (6.6);

Update the sharing model parameters p,, by Equation (6.27) and
Hw = 1g @ Py ;
6: until Convergence

7: return The sharing weights wy, = [y,

ml
ﬁ!ﬁl

Weights
Sharing

Weights
Iteration 1

Weights
Iteration 2
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Figure 6.5 The sharing process of grouped convolution parameters. Green,
blue and red boxes represent parameters (kernels) in three groups. After few

iterations, all groups have the same kernels (grey boxes), which are shared.

back-propagation stage and computing loss function value in the
forward propagation stage. Given a pre-trained CNN model, we

fix model parameters in non-grouped convolutional layers and
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update model parameters in all grouped convolutional layers by
our proposed Bayesian sharing method as shown in Algorithm 8
from front layers to back layers sequentially in the forward prop-
agation stage.

The loss value is calculated by all updated shared grouped
convolution parameters and other fixed model parameters. Then
the loss value is used to updated all model parameters. By
performing this sharing process for few epochs, the final sharing
model can be obtained.

Note that instead of all layers in CNN model, our proposed
Bayesian sharing framework is performed in grouped convolu-
tional layers to transfer to be the sharing structure.

It is worth mentioning that our proposed Bayesian sharing
framework is not only compressing models but also regularizing
parameters. The regularization technique can encourage learn-
ing a more simple model to avoid the risk of overfitting so that
the accuracy can be improved [100]. The most common regu-
larization techniques are Ride Regression and Lasso regression,
which can force the model parameters to decay towards zeros
so that model complexity is reduced and the model general-
izes better [100]. Note that directly learning a sharing grouped
convolution structure has the same manner with directly forc-
ing the model parameters to zeros, which brings performance
degradation. In the proposed Bayesian sharing framework, the
model parameters are imposed to be the same among different

groups by adaptively learning the intra-group correlation B and
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Table 6.3 ResNeXt on CIFAR Dataset.

RexNeXt-35 RexNeXt-50

Model g #P Acc. (%) FLOPs Time #P Acc. (%) FLOPs Time | GCR

(M) C-10 C-100 (M) (ms) (M) C-10 C-100 (M) (ms) | (%)
ResNeXt (baseline) 4 ‘ 1.29 92.87 72.91 202 33.4 ‘ 2.01 93.67 73.08 279 42.8 ‘ 100.00
ResNeXt-D 4| 119() 92.02()) 7217 (1) 202 26.2 | 1.58 (}) 92.89 (1) 72.86 () 279 33.3 | 25.00
ResNeXt-M 4 1119 () 9331 (1) 7344 (1) 202 26.2 | 1.58 (1) 93.90 (1) 73.55 (1) 279 33.3 | 25.00
ResNeXt-B 41.19() 94.15 (1) 74.56 (1) 202  26.2 | 1.58 (|) 94.93 (1) 75.46 (1) 279  33.3 | 25.00
ResNeXt (baseline) 8 ‘ 1.31 93.00 73.07 214 43.3 ‘ 2.04 93.22 73.16 291 47.3 | 100.00
ResNeXt-D 8 | 118 (1) 92.32()) T7251(1) 214 385 | 170 (J) 9314 (1) 7271 () 291 42.3 | 25.00
ResNeXt-M 8 | 118 () 93.42(1) 73.62 (1) 214 38.5 | 1.70 (}) 93.78 (1) 73.93 (1) 291 42.3 | 12.50
ResNeXt-B 8 |1.18(]) 94.08 (1) 74.97 (1) 214 385 | 1.70 (|) 95.04 (1) 76.11 (1) 291  42.3 | 12.50
ResNeXt (baseline) 16 ‘ 1.35 92.93 (1) 73.23 (1) 222 48.7 ‘ 2.12 93.23 (1)  73.31 (1) 309 55.0 | 100.00
ResNeXt-D 16| 126 (1) 9248 (1) 72.57 (1) 222 43.8 | 1.88 (1) 9322()) 7293 ()) 309 52.6 | 6.25
ResNeXt-M 16 | 1.26 (1) 93.38 (1) 73.64 (1) 222 438 | 1.88 (1) 93.78 (1) 73.79 (1) 309 52.6 | 6.25
ResNeXt-B 16 | 1.26 (1) 94.77 (1) 75.88 (1) 222  43.8 | 1.88(]) 95.17 (1) 75.87 (1) 309 52.6 | 6.25

the inter-group importance «. Thus the intuition behind this
technique has the same manner as the common regularizations,
which adaptively force the model parameters to decay towards
zeros. As a result, we expect the proposed Bayesian sharing

framework can improve the accuracy of original models.

6.3 Experimental Results

In this section, we apply our Bayesian sharing framework on
some popular grouped convolutional neural networks, including
ResNeXt [134], ShuffleNet [152] and G-DenseNet [48, 49].

test them on CIFAR-10, CIFAR-100 [9], and ImageNet [5]. As
an ablation study, to clarify the impact of the proposed Bayesian
sharing framework, the directly trained sharing grouped con-
volutional neural networks and the mean sharing method are

also implemented for comparison. The direct training method
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Table 6.4 ShuffleNet and G-DenseNet on CIFAR Dataset.

#P Acc. (%) FLOPs Time GCR
Model g

(M) C-10 Cc-100 (M) (ms) (%)
ShuffleNet-1x (baseline) 4 ‘ 0.62 91.65 71.48 106 23.0 100.00
ShuffleNet-1x-D 4]028() 90.78()) 7056() 106 17.6  25.00
ShuffleNet-1x-M 40028 () 9247 (1) 7220(1) 106 17.6  25.00
ShuffleNet-1x-B 41028 () 93.56 (1) 73.83(1) 106 17.6 25.00
ShuffleNet-2x (baseline) 4 ‘ 1.34 91.48 71.65 123 29.8  100.00
ShuffleNet-2x-D 4]048 () 9032()) 7049 () 123 229  25.00
ShuffleNet-2x-M 41048 (1) 9268 (1) T7207(1) 123 229  25.00
ShuffleNet-2x-B 41048 () 93.79 (1) 73.89 (1) 123 22.9 25.00
ShuffleNet-1x (baseline) 8 ‘ 1.35 92.29 72.12 204 33.4  100.00
ShuffleNet-1x-D 81060() 91.19(1) 7L5T(l) 204 281 1250
ShuffieNet-1x-M 81060(1) 9316(1) 7226(1) 204 281 1250
ShuffleNet-1x-B 810.60 () 94.00 (1) 72.98 (1) 204 28.1 12.50
G-DenseNet-86 (baseline) 4 ‘ 0.62 93.21 73.89 102 69  100.00
G-DenseNet-86-D 4]033() 928 (1) 7314()) 102 53 25.00
G-DenseNet-86-M 40033() 9378(1) 7376() 102 53 25.00
G-DenseNet-86-B 410033 () 9491(1) 75.12(1) 102 53  25.00

constructs a network with the proposed sharing structure and
then trains it. The mean sharing method trains the model from
scratch and each group has its own weights. At some certain
training epochs, e.g., 80 and 100 epochs, we average the weights
and then continue the training process. In the experimental
results, “—D” represents the results of directly trained shar-

“—M?” represents

ing grouped convolutional neural networks,
the results of mean sharing, and “—B” represents the Bayesian

sharing.
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6.3.1 Implementation details and experimental settings

Training settings

On CIFAR-10 and CIFAR-100, we test all of these three meth-
ods. The initial learning rate is set as 0.1. For ResNeXt and
ShuffleNet, the batch size is 128 and the learning rate is grad-
ually divided by 10 at 81 and 122 epochs, with 164 training
epochs in total. For G-DenseNet, the batch size is 64, and the
learning rate is divided by 10 at 150 and 225 epochs, with a total
of 300 training epochs. CIFAR-10 and CIFAR-100 are shorted
as C-10 and C-100 in the result tables.

We test the sharing ResNeXt On ImageNet. The learning
rate is initially set to 0.1, divided by 10 at 50 and 70 epochs.
There are 90 training epochs, and the batch size is 256.

Our optimizer uses momentum optimizer, with momentum

0.9 and weight decay 2 x 1074

Evaluation Metrics

Parameter volume, model accuracy, and grouped convolution
compression ratio (GCR) are considered as the evaluation met-
rics. Parameter volume, abbreviated as “#P”, counts all the
parameters in the model, including grouped convolutional lay-
ers and other linear or nonlinear layers. GCR is only for grouped
convolutional layers, i.e., volume of the sharing layer divided by
the original volume before sharing. The compression ratio of

the baseline model is also 100%. For a grouped convolutional
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Table 6.5 Our proposed sharing ResNeXt-50 and ShuffleNet, in comparison
with the state-of-the-art models on CIFAR.

Method #P  Acc. FLOPs | Dataset
Model
M) (%) (M)
CP [47] 6.44 94.15 1620
CaP [90] 1.60  92.67 -
ResNet-50
Genetic [56] 771 93.60 954
Gaussian [56] 5.94  94.00 735 C-10
-B (g=4) 1.58 94.93 279
ResNeXt-50 | -B (g=8) 1.70  95.04 291
-B (g=16) 1.88 95.17 309
FP [69] 7.83  73.60 616
ResNet-50 CP [47] 9.24 7410 1740
PCAS [138] 4.02 73.84 475
C-100
-B (g=4) 1.58 75.46 279
ResNeXt-50 -B (g=8) 1.70 76.11 291
-B (g=16) 1.88  75.87 309
a-1 [66] 2.30  90.20 89
a-0.75 [66] 1.73  87.80 60
) FLGC(g=2) [123] 1.18 94.11 158
MobileNet-v2
FLGC(g=3) [123] 0.85 94.20 122
FLGC(g=4) [123] 0.68 94.16 103 C-10
FLGC(g=8) [123] 0.43 93.09 76
1x-B (g=4) 0.28 93.56 106
ShuffleNet 2x-B (g=4) 0.48 93.79 123
1x-B (g=8) 0.60  94.00 204

layer with g groups, after sharing, the compression ratio is 1/g.
Therefore, our compression ratio relies on the number of groups.
For ImageNet, we report Top-1 and Top-5 accuracies. The num-
ber of floating point operations (FLOPs) and runtime are also

attached.
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6.3.2 Experiments on CIFAR Dataset

Our sharing method is applied to some baseline models, i.e.,
ResNeXt, ShuffleNet and G-DenseNet to test CIFAR-10 and
CIFAR-100, with some necessary model modifications in Ta-
bles 6.3 and 6.4. For ResNeXt-35 and RexNeXt-50, to test the
cardinality, some tests are conducted on grouped convolutional
layers with 4, 8, 16 groups, while the kernel size is 3 x 3. The
point-wise convolutional layers are not considered here since
they are not in the grouped convolutional layers of these two
models. For ShuffleNet, grouped convolutional layers with 4
and 8 groups are tested. Different from ResNeXt, the point-
wise (1 x 1) convolutions in ShuffleNet are grouped convolu-
tional layers. Some experiments are conducted on ShuffieNet
with 1 X 1 convolutions to further demonstrate the effectiveness
of our sharing method. DenseNet contains both 3 x 3 and 1 x 1
convolutional layers, which are both tested to further validate
the compatibility of our method.

As ablation studies, to clarify the impacts of our proposed
Bayesian sharing framework, we compare the directly trained
model with sharing grouped convolution, the mean sharing, and
the proposed Bayesian sharing. The results are shown in Ta-
bles 6.3 and 6.4. For all of these tests, compared with the
corresponding baseline models, the performance degradations
occur in all directly trained models. The mean sharing method

can achieve slight accuracy improvements in the most cases but
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G-DenseNet-86 since it is able to combine parameters among
different groups without discrimination, i.e., v = 1, in Equa-
tion (6.27). Compared with the mean sharing method, our
Bayesian sharing framework can bring significant accuracy im-
provements, mostly more than 2%, since it considers the intra-
group correlation and the inter-group importance to combine
parameters among different groups with discriminations. In
other words, it is able to discriminately combine parameters
to achieve message passing to different features according to
the importances learned from maximum likelihood estimation
in Equation (6.9). Some tests achieve higher improvements,
e.g., in TABLE 6.3, ResNeXt-50-B with 8 groups on CIFAR-
100 improves the accuracy by 76.11% — 73.16% = 2.95% with
the less parameter volume. As a result, the proposed Bayesian
sharing framework can improve the parameter efficiency, reduce
the parameter redundancy and alleviate the overfitting issue.
Our Bayesian sharing method can result in impressive com-
pression and runtime performance. Since for grouped convolu-
tional layers with g groups, the GCR is 1/g, more groups mean
better compression ratio. According to Tables 6.3 and 6.4, as the
group number increases, our method achieves higher compres-
sion ratios. Convolutional layers with 4 groups have the minimal
GCR, i.e., compressed to 0.25 times. Dividing to 16 groups can
bring the maximal compression ratio, i.e., 0.0625 times. Except
for grouped convolutional layers, a typical neural network con-

tains many other linear or non-linear layers. The models with
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more grouped convolutional layers have better compression per-
formance for parameter volume by using our Bayesian sharing
method. In TABLE 6.3, for ResNeXt models with the limited
number of 3 x 3 convolutional layers, we can achieve up to 21%
((2.01—1.58)/2.01) overall volume reduction. In TABLE 6.4, For
the sharing G-DenseNet-86, the parameter volume is reduced by
46.77% ((0.62 — 0.33)/0.62). The sharing ShuffleNet-1x reduces
the parameter volume by 54.8% ((0.62 — 0.28)/0.62), and the
parameter volume in ShuffleNet-2x reduces more than 64.17%
((1.34 — 0.48)/1.34). The proposed sharing method can achieve
the more significant parameter reductions for CNN with the
more grouped convolutional layers. Generally, the deeper and
larger models suffer from higher risks of overfitting. With our
Bayesian sharing framework, we can alleviate this problem by
reducing parameter volume.

In particular, compared with these baseline methods, our pro-
posed sharing grouped convolution does not reduce FLOPs in
the inference stage. However, as shown in Fig. 6.2, the parame-
ters are shared among different groups. The sharing parameter
strategy can reduce the actual number of memory accesses so
that the inference time can be reduced, as shown in Tables 6.3
and 6.4. The runtime results are tested on one Kaggle Nvida
Tesla P100 (16 GB memory, 720 GB/s bandwidth). It is be-
lieved that we can achieve better run performances on FPGA
with dataflow optimizations [127].

We also compare our method with the state-of-the-art meth-
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ods on ResNet, MobileNet and DenseNet on CIFAR dataset,
as shown in Tables 6.5 and 6.6. These methods include effi-
cient model architecture methods [56, 6668, 93] and compres-
sion methods at various levels, such as filter pruning [69] and
channel pruning [47,80,90,123,138,158]. It is worth mentioning
that the group pruning [123,158] is a special channel pruning
since the input channels, output channels, and their connections
are divided into several groups.

According to Tables 6.5 and 6.6, our method outperforms all
of the current efficient model architecture methods [56,66-68,93]
since they do not consider correlations among parameters in the
training stage so that the model performance is significantly
degraded. In particular, it is hard to make a better trade-off
between accuracy and parameter volume, even through some
advanced neural architecture search methods are adopted to
determine model configurations [56]. Unlike these traditional
compression methods [47,69, 80,90, 123, 138, 158], our proposed
Bayesian sharing framework does not completely prune channels
or filters (kernels). Instead, compared with the grouped convo-
lution, we reserve all filters (kernels) and channels, and discrim-
inately combine parameters to achieve message passing to fea-
tures with different importances. The reused weights, structures
of model parameters and the adaptive importance learning strat-
egy can reduce the parameter redundancy, improve efficiency
and alleviate the overfitting issue. In particular, compared with

the state-of-the-art group pruning methods which prune several
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unimportant groups [123, 158], our method reserves all groups
thus striking a better balance between accuracy and parameter

volume.

6.3.3 Experiments on ImageNet

To further evaluate the impact of our Bayesian sharing frame-
work for model performance on large data sets, we test the shar-
ing ResNeXt-50 on ImageNet dataset. We follow the configura-
tions in [134]. The number of groups is 32.

We compare our method with the state-of-the-art efficient
model architecture methods [54,83,106,133,148,155] to examine
model accuracy, parameter volume and FLOPs in TABLE 6.7.
It is shown that our proposed Bayesian sharing framework beats
these state-of-the-art efficient model architecture methods in
terms of the model accuracy and the parameter volume. In par-
ticular, some advanced normalization layers are developed to
enhance the generalization ability of the model but they make
model cumbersome while bringing more FLOPs [54,83,106, 133,
148]. Besides, compared with the dynamic grouping convolu-
tion [155], the sharing grouped convolution can reduce parame-
ter volume since model parameters are shared among different
groups. For the sharing ResNeXt-50-B on ImageNet, we can re-
duce the parameters in group convolutional layers by 96.875%,
i.e., 100% — 3.125% = 96.875%. The reuse model parameters

structure with the adaptive importance learning strategy can
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Table 6.6 Our sharing G-DenseNet, in comparison with DenseNet on CIFAR.

Model #P Acc. (%) FLOPs
(M)  C-10 C-100 (M)
DenseNet-40-pruned [80] 0.66 94.81  74.72 190
DenseDsc(k=36) [68] 0.47 94.05 74.24 123
DVN-77 [93] 0.40 93.09 72.60 -
DenseNet-100-D [67] 0.70 93.12 7239 269
DenseNet-86 (g=4) [158] 0.59 94.06 74.04 132.7
G-DenseNet-86-B (g=4) 0.33 94.91 75.12 102

Table 6.7 Our proposed sharing ResNeXt-50 in comparison with the state-

of-the-art models on ImageNet Dataset.

#P Acc. (%) FLOPs
Model

(M)  Top-1 Top-5 (M)
ResNet-50-BN [54] 25.56  77.60 93.70 4151
ResNet-50-GN [133] 25.56  76.00 92.80 4155
ResNet-50-SN [83] 25.56 76.90 93.20 4225
ResNet-50-SSN [106] 25.56  77.20 93.10 4186
ResNet-50-EN [148] 25.91 78.10 93.60 4325
G-ResNeXt-50 [155] 25.00 78.40 94.00 4090
ResNeXt-50-B (g=32) 23.63 78.86 94.54 4200

improve model accuracy to 78.86% and 94.54% for top-1 and

top-5.

6.3.4 Model Compatibility

The experimental results also verify that our method has strong

compatibility while tackling various grouped convolutional mod-
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Figure 6.7 Optimization Iteration vs. A4y and Aw. Four models are listed

here, i.e. ResNeXt-35 (g = 8, g = 16) and ResNeXt-50 (g = 8, g = 16).

els, from 3 X 3 convolutions to 1 X 1 point-wise convolutions in
ResNeXt, ShufleNet and G-DenseNet, for different numbers of

groups (different cardinalities), on different datasets as shown in

Tables 6.3 and 6.4. Overall, our experiments listed above have

covered all of these diverse grouped convolution structures.
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6.3.5 Inter-Group Importance

Inter-group importance is proposed in our framework. ~; reflects
the inter-group importance of group 7. In our model, the stable
values of all the +; are mutually distinct. Fig. 6.6 is taken as
an example to illustrate this. For a layer in ResNeXt-50 with
8 groups, each +; is initialized as 1 before training. In other
words, in the beginning, these groups are equally important.
After about 5 optimization iterations, these v reach different
stable status. The group with higher +; is more important. If
we use mean sharing, the v; can always be regarded as 1, i.e.,
~ = 1, in Equation (6.27). In comparison, our Bayesian sharing
framework can better characterize the differences of inter-group

importance, reasonably and effectively.

6.3.6 Convergence

To verify the optimization and convergence of our method more
clearly, in ResNeXt-35 (g = 8, g = 16) and ResNeXt-50 (g = 8,
g = 16), one layer is sampled from each model and its A~y
and Aw are shown in Fig. 6.7(a) and Fig. 6.7(b), respectively.
Each layer has several groups, and A~ is computed according
to Equation (6.28).

g

A'yzz

1=1

’Yi(t+1) . l(t)
(t+1) '

2

(6.28)

Aw is for w and is the summation of all the element-wise

changes between two continuous training steps. Obviously, by
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using Algorithm 8, parameter w converges quickly, and ~ for
each group also reaches a stable status quickly. Another trend
is that the models with more parameters (e.g., ResNeXt-50 with

g = 16) can have a faster convergence rate.

6.4 Summary

In this chapter, we propose a sharing grouped convolution struc-
ture with the Bayesian sharing framework to efficiently eliminate
parameter redundancy and boost model performance. Intra-
group correlation and inter-group importance are introduced
into the prior of the parameters. We handle the Maximum
Type II likelihood estimation problem of the intra-group corre-
lation and inter-group importance by a group LASSO type algo-
rithm. Experiments demonstrate the proposed sharing grouped
convolution structure with the Bayesian sharing framework can
reduce parameters and improve prediction accuracy. The pro-
posed sharing framework can reduce parameters up to 64.17%.
For ResNeXt-50 with the sharing grouped convolution on Ima-
geNet dataset, network parameters can be reduced by 96.875%
in grouped convolutional layers, and accuracies are improved to

78.86% and 94.54% for top-1 and top-5.

O End of chapter.



Chapter 7

Conclusion

In this thesis, we have proposed, customized and developed a
few methodologies to achieve hardware reliability and efficiency
in design, verification and application stages in the advanced
sensor system. In this chapter, we conclude each methodology
and then give a comprehensive achievement for the development
of the advanced sensor system.

On one hand, sensor calibration can be used to extend sensor
lifetime even if the sensor was designed without considering the
reliability. Instead of replacing aged sensors, we have developed
a spatial correlation model to calibrate sensor measurements.
Thus, maintenance costs can be reduced in the deployed intelli-
gent electronics systems.

Aging reliability simulation is a key step in the design ver-
ification. The traditional aging reliability simulation is very
time-consuming so that it causes low verification efficiency and

increase time and development cost. We have proposed a data-

155
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driven method, deep H-GCN, to achieve a significant speedup in
the aging reliability verification. In the industry, this methodol-
ogy can promote the development of IC design and verification.

Routing is a key step in the physical design stage and plays an
important role in the design flow. The traditional verification-
then-fix approaches are hard to achieve design closure. We have
proposed a thermal-driven PCB routing methodology to inte-
grate thermal reliability verification into the routing stage. Our
proposed methodology can be easily transferred to be the other
performance-driven routing methodology. In the industry, this
methodology can achieve significant speedup in the design clo-
sure so that it can reduce time and development cost.

CNN compression is a key step for facilitating practical de-
ployment in the sensor system. We have proposed a Bayesian
sharing grouped convolution. It is easy to customize in many
advanced CNN architecture. Instead of using expensive and ad-
vanced processing unit, CNN compression can facilitate deploy-
ment on the cheap processing unit and reduce cost. Besides,
CNN compression is also a key step to improve inference effi-
clency.

On the other hand, our proposed methodologies contain Bayesian
modeling, learning-based methodology and gradient-based opti-
mization. Asshown in Fig. 7.1, Bayesian modeling is customized
for sensor calibration and Bayesian sharing grouped convolution.
Learning-based methodology is developed for aging degradation

estimation and thermal-driven PCB routing. All formulations
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are handled by gradient-based optimization. Thanks to these
powerful methodologies, they can be leveraged to achieve hard-
ware reliability and efficiency. We hope this thesis can promote
the development of advanced sensor system and achieve good

hardware reliability and efficiency.

) . Learning-based
Bayesian modeling methodology

Aging degradation
estimation

Sensor calibration

Thermal-driven PCB
routing

Bayesian sharing
grouped convolution

Gradient-based optimization

Figure 7.1 The relationship between methodologies and works of this thesis.

O End of chapter.
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