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DevelSet: Deep Neural Level Set for
Instant Mask Optimization
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Abstract—As one of the key techniques for resolution enhance-
ment technologies (RETs), optical proximity correction (OPC)
suffers from prohibitive computational costs as feature sizes con-
tinue to shrink. Inverse lithography techniques (ILTs) treat the
mask optimization process as an inverse imaging problem, yield-
ing high-quality curvilinear masks. However, ILT methods often
fall short of printability and manufacturability due to their time-
consuming procedures and excessive computational overhead. In
this article, we propose DevelSet, a potent metal layer OPC
engine that replaces discrete pixel-based masks with implicit
level set-based representations. With a GPU-accelerated lithog-
raphy simulator, DevelSet achieves end-to-end mask optimization
using a neural network to provide quasi-optimized level set
initialization and further evolution with a CUDA-based mask
optimizer for fast convergence. The backbone of DevelSet-Net is
a transformer-based multibranch neural network that offers a
parameter selector to eliminate the need for manual parameter
initialization. Experimental results demonstrate that the DevelSet
framework outperforms state-of-the-art approaches in terms of
printability while achieving fast runtime performance (around
1 s). We expect this enhanced level set technique, coupled with
a CUDA/DNN accelerated joint optimization paradigm, to have
a substantial impact on industrial mask optimization solutions.

Index Terms—Design for manufacture, level set, machine
learning algorithms.

I. INTRODUCTION

OPTICAL proximity has gained prominence in the field
of semiconductor lithography due to the observation of

back-scattered electrons and proximity effects. The impact
of the proximity effect becomes more pronounced as fea-
ture sizes decrease in advanced nodes, resulting in a decline
in yield. To address this issue, a resolution enhancement
technique known as optical proximity correction (OPC) has
been developed. The technique helps to ensure pattern qual-
ity and improve printability on the wafer. The use of OPC
has become increasingly important in modern semiconductor
manufacturing, as it enables the production of smaller and
more complex features with improved accuracy and yield. For
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years, photomask makers have used typical OPC approaches,
including rule-based methods [1] and model-based meth-
ods [2], [3]. At advanced nodes, though, the OPC features are
becoming smaller and more complex. More advanced resolu-
tion enhancement technologies (RETs) have been introduced,
such as inverse lithography techniques (ILTs) [4], [5] and
DNN-based methods [6], [7], [8]. Model-based OPC itera-
tively moves the fragmented mask segments assisted by the
lithographic model to settle on the proper positions for the best
convergence finally. Simple yet efficient, model-based meth-
ods dominate in early design automation software like Calibre
[9]. ILTs can generate more robust, curvilinear support fea-
tures on the mask. ILT also addresses mask optimization as an
inverse imaging problem. It employs pixel-wise optimization
to increase the process window’s latitude and hence broaden
the solution space. Gao et al. [4] derived a closed-form gradi-
ents descent technique using direct edge placement error (EPE)
and optimization of the process window. Although Model-
based and ILT-based methods have been widely adopted in
industry, they inevitably suffer from heavy computational over-
head because multiple rounds of lithography simulation are
essential during the optimization process. This issue gets more
acute with decreasing technology node and more complicated
layout shapes.

Recently, emerging deep learning methods and models are
widely applied on the EDA area. DNN-based methods are
gradually becoming the mainstream in OPC research for
their significant speedup and comparable mask printability.
Choi et al. [10] constructed a classifier-based mask bias
model to improve previous regression models. Yang et al. [6]
proposed a generative model to produce an initial solution,
which greatly lowers the number of iterations required in tra-
ditional ILT methods. LithoGAN [11] proposed an end-to-end
lithography modeling approach using generative adversarial
networks (GANs), which can accurately predict the output
of the lithography process while considering nonlinearity and
randomness factors. Chen et al. [7] first enabled full chip
OPC by incorporating a DNN-based lithography simulator and
mask generator simultaneously, which outperforms the indus-
try toolkit on ISPD 2019 benchmark. A2-ILT [12] introduces
a novel GPU-accelerated ILT algorithm that incorporates a
spatial attention mechanism with reinforcement learning to
improve accuracy and efficiency. Jiang et al. [13] presented an
end-to-end mask optimization framework using self-training,
which improves the accuracy of lithography simulation by
iteratively refining the mask design. Recently, Yang et al.
have proposed novel approaches to computational lithography
that combine physics-based models with neural networks.
Specifically, DOINN [14] presents a dual-band optics-inspired
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Fig. 1. (a) 3-D illustration of level set function φ. The mask is shaped as
the cross-section of the level set continuum with the zero plane. The contours
on the x–y plane are the projected level set. (b) Level set evolution process.

neural network that predicts lithography patterns for complex
mask layouts with high accuracy and scalability, while [15]
introduces a physics-inspired model that enables scalable
computational lithography with high accuracy.

In the past decades, level set-based ILT methods have been
actively explored as a feasible alternative to pixel-based ILT
methods in OPC. As illustrated in Fig. 1, the level set con-
tinuum φ is a mathematical function used to represent a
geometric object such as a surface or a curve in higher dimen-
sions. Specifically in Fig. 1(a), the level set function associates
the signed distance value with each pixel in the mask image,
such that pixels with the same value lie on the same level
set. The basic idea of level set-based ILT is to represent the
solution of the mask optimization problem as the zero plane
of a level set function, and then evolve this level set function
over time to find the optimal solution [Fig. 1(b)]. The implicit
representation of the level set method is naturally more effec-
tive in dealing with complex topology changes and lithography
development [16]. Shen et al. [17] solved the inverse lithogra-
phy problem using a level set time-dependent model with finite
difference schemes. They further considered defocus and aber-
ration to enhance robustness against process variations [18].
Lv et al. [19] improved the pattern fidelity with fast conver-
gence by employing the conjugate gradient (CG) method and
optimized time step. Geng et al. [20] adopted the process vari-
ation band (PVBand) cost function and reduced the runtime
by leveraging the hybrid CG method. Yu et al. [21] proposed
a momentum-based CG method and accelerated the level set
evolution with a GPU-enabled fast Fourier transform (FFT)
algorithm.

Briefly, we can abstract ILT approaches into two main
categories: 1) parametric and 2) implicit. The parametric meth-
ods [4], [5], [6], [7], [8] use pixel-wise matrices to generate
masks [Fig. 2(a)]. While the implicit approaches represent
the mask as a zero level set cross-section [17], [18], [19],
[20], [21] [Fig. 2(b)]. Due to the simplicity and adaptability
of pixel-wise gradient descent methods, the parametric meth-
ods have been extensively studied from the viewpoints of the
objective function, optimization method, and DNN acceler-
ation, attaining state-of-the-art (SOTA) runtime performance
and mask print fidelity. Nevertheless, as depicted in Fig. 2(c),
parametric methods generate unnecessary isolated stains or

Fig. 2. Comparison of pixel-based ILT and level set-based ILT. (a) Intensity
matrix of pixel-based ILT. (b) Level set-based ILT. (c) Mask generated by
pixel-wise intensity threshold. (d) Mask generated by zero level set.

edge glitches with zigzagging and tortuous complex mask
boundaries, whereas the level set implicit representation is
achieved with mask boundary continuity and curvature con-
trol [Fig. 2(d)]. However, the utilization of level set-based ILT
approaches has been drastically underestimated owing to the
added computational load brought about by level set evolu-
tion terms. Given the significant rise in processing power and
CUDA-accelerated applications, it is time to investigate the
vast potential of level set-based ILT techniques.

Motivated by these issues, we offer a dual accelera-
tion architecture with GPU and neural networks based on
level set mask optimization algorithms: deep neural level set
(DevelSet), as shown in Fig. 6. There are two primary compo-
nents of DevelSet: 1) DevelSet-Net (DSN) and 2) DevelSet-
Optimizer (DSO). Inspiring by recent advancements in vision
transformers (ViT) [22], [23], [24], [25], we use a transformer
as the foundation for feature extraction. The input picture
in ViT [22] is represented as a series of patches known as
visual tokens. The visual tokens with positional embeddings
are supplied into the transformer encoder network. Briefly,
the proposed DSN leverages the transformer’s local feature
extraction capability to give quasi-optimal solutions using
neural networks’ quick inference capacity. In addition, DSN
utilizes an extra unique modulation branch to permit DSO
for curvature cost, as described in Section III-B1. To reduce
mask complexity, DSO first inserts a curvature term into level
set-based ILT. Furthermore, DSO employs a variety of GPU-
friendly techniques to alleviate the computational strain during
optimization iterations. Moreover, it is noticed that the print-
ability performance is influenced by the various factors of the
lithography process and the level set evolution process. In this
article, we adopt Transformer as the parameter selector to
enhance the whole DevelSet framework. Instead of depend-
ing on knowledgeable specialists to manually design the
parameters, we propose a transformer-based parameter selector
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TABLE I
SYMBOLS AND NOTATIONS USED THROUGHOUT THIS ARTICLE

that can automatically prepare parameters for DSO devel-
opment to achieve optimal mask printability. The DevelSet
architecture is enhanced by the end-to-end joint optimization
of DSN and DSO, enabling SOTA fast convergence and mask
printability.

Our main contributions are as follows.
1) We propose DevelSet, an improved level set-based ILT

framework with CUDA and DNN acceleration.
2) We first introduce curvature term into level set-based

ILT methods to reduce mask complexity and leverage
GPU to perform all the calculations.

3) To the best of our knowledge, it is the first time to inte-
grate level set into deep neural network for an end-to-end
joint mask optimization flow.

4) We design a novel transformer-based multibranch neural
network architecture with level set embeddings to further
boost the performance and improve mask printability.

5) We leverage the transformer model for the parame-
ter selection task to enhance the performance of the
DevelSet framework.

6) Experimental results show that DevelSet achieves SOTA
mask printability with predominant runtime advantage
for instant mask optimization.

The remainder of this article is organized as follows.
Section II lists some preliminaries about level set algo-
rithms and mask optimization methods. Section III details
the DevelSet algorithm. Section IV presents our experimental
results, followed by a conclusion in Section V.

II. PRELIMINARIES

In this section, we will introduce concepts and background
related to this work. Following the traditions, major math
symbols and their descriptions are listed in Table I.

A. Level Set-Based ILT Algorithms

In recent years, level set methods [26] have been actively
researched as a feasible alternative for pixel-based ILT
methods. When applying the level set methods for mask
optimization in 2-D space �, let C : �→ R

2 denote a para-
metric curve in 2-D space �, we can denote the boundary of
the input mask using an implicit function φ(x, y) : �→ R

C = {(x, y) | φ(x, y) = 0} (1)

where φ(x, y) is called the level set function. The level
set evolution process for mask optimization is illustrated in
Fig. 1(b), which depicts the bird’s-eye view of the crossing

layer between the zero plane and the level set function φ(x, y).
Mathematically, the level set-based mask optimization can be
derived as the evolution along the descent of the LSF φ. The
commonly used LSF φ is the signed distance function (SDF)

φSDF(x, y) =
⎧
⎨

⎩

−d(x, y), if (x, y) ∈ inside(C)

0, if (x, y) ∈ C
d(x, y), if (x, y) ∈ outside(C)

(2)

where d(x, y) is the minimum Euclidean distance from point
(x, y) to the parametric curve C. As illustrated in Fig. 2(d),
the contours are labeled with its SDF values, and the C is
the contour labeled by 0. Now, the mask image M can be
represented by φ as

M(x, y) =
{

1, if φ(x, y) ≤ 0
0, if φ(x, y) > 0.

(3)

Let C(t) denote a curve that depends on a time parame-
ter t ∈ R. Specifically, in mask optimization, C is mask
boundary. C(t) represents different mask boundaries for
t ∈ {0, 1, 2, . . . , T − 1} iterations. Here, T represents the total
number of evolution steps. The curve evolution then can be
formally defined as

∂C(t)

∂t
= vn (4)

where n = (∇φ/|∇φ|) is the unit vector in the outward normal
direction of the curve C and v indicates the velocity along
the normal direction. We use the zero level set to implicitly
represent the mask boundary, thus: φ(C(t), t) = 0. The chain
rule gives us

∂φ(C(t), t)

∂t
= 0→ ∂φ

∂C(t)

∂C(t)

∂t
+ ∂φ

∂t
= 0. (5)

Consider all the points on the evolving front C(t), (∂φ/∂C) =
∇φ, combining (4) and (5), the motion equation of LSF
(∂φ/∂t) can be formally expressed by

∂φ

∂t
= −v|∇φ|. (6)

Equation (6) is a partial differential equation (PDE). Once
the level set φ and velocity v are defined, the first-order deriva-
tive in space and time of (6) can be approximated using
finite difference techniques. Evolution of LSF φ(x, y, t) can
be performed iteratively. We use φi(x, y) to denote φ(x, y, ti)
for simplicity. For i ∈ {0, 1, 2, . . . , T − 1}, the ith-step
update is

φi+1(x, y) = φi(x, y)+�t
∂φi

∂t
(7)

where �t is the time step, φ0(x, y) is the initial LSF, and the
φT(x, y) is the corresponding output LSF after T evolution
steps. As shown in Fig. 1(b), we can obtain the optimized
mask after T steps by applying (3).

B. Lithography Simulation Model

Lithography simulation techniques are crucial to modern
IC manufacturing, which consists of the optical simulation
and resist simulation. In the conventional optical simulation
process, an aerial image can be calculated through a mask
pattern M using an optical projection printing system. The
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optical model is characterized by the illumination type and
projection lenses of an exposure tool, which can be expressed
mathematically using Hopskins’ diffraction model [27]. The
sum of coherent systems (SOCSs) can roughly estimate
Hopskins’ diffraction model by performing singular value
decomposition. The optical projection process is then replaced
by a set of coherent kernels. The intensity of aerial image I
can be represented by convolving the mask M and a set of
optical kernels H

I(x, y) =
N2
∑

i=1

σi|M(x, y)⊗ hi(x, y)|2. (8)

Here, ⊗ denotes the convolution operation. hi is the ith kernel
of the optical kernel set H σi is the corresponding weight
of the coherent system, and (x, y) is index notation of matrix.
M(x, y) is the pixel value at the point (x, y) of mask image M.
The Nkth-order approximation to the partially coherent system
can be obtained by

I(x, y) ≈
Nk∑

i=1

σi|M(x, y)⊗ hi(x, y)|2 (9)

where Nk = 24 in our implementation. After optical simu-
lation, the aerial image undergoes a resist model to estimate
the final printed shape on the wafer. In the resist stage, the
distribution of 2-D light intensity I incident on top of the
photoresist material on the wafer plane. For methodology veri-
fication and also for simplicity, we adopt the constant threshold
resist model which is consistent with the ICCAD 2013 contest
settings [28]. As depicted in Fig. 2(c), given the print threshold
Ith, the printed wafer image can be expressed as

Z =
{

1, if I ≥ Ith
0, if I < Ith.

(10)

C. Mask Printability and Mask Manufacturability

In this article, we use squared L2 error and PVBand as two
typical metrics to evaluate mask printability. Mask printability
represents the quality of the printed patterns generated from
the optimized mask. Moreover, the mask fracturing shot count
proposed in Neural-ILT [8] is also applied in this work to
evaluate mask complexity and manufacturability.

1) Squared L2 Error: Given the wafer image Z and target
image Zt, the squared L2 error is calculated by

L2(Z, Zt) = ‖Z− Zt‖22. (11)

2) PVBand: PVBand is the bitwise-XOR region among all
the printed patterns under different process conditions. In our
work, for simplicity, we calculate the PVBand under two
extreme conditions, one at nominal condition with +2% dose
and the other one at defocus and −2% dose. A mask is more
robust if its PVBand area is smaller.

3) EPE: EPE refers to the deviation between the intended
and actual positions of features on a chip, resulting from vari-
ations in the lithography, etching, and deposition processes.
In accordance with [28], the calculation of EPE involves sam-
pling a series of measurement points along the contour of
the target design. Illustrated in Fig. 3 and expressed in (12),
if the distance D(x, y) between the target design and the

Fig. 3. Visualization of EPE errors.

Fig. 4. Mask fracturing shot count. Split the mask M into a collection of
small rectangles that can completely cover the original mask.

printed image exceeds a predefined EPE threshold, denoted
as thres_epe, the measurement point (x, y) is classified as an
EPE violation. Following [28], the value of thres_epe is set to
15 nm (equivalent to 15 pixels)

EPE(x, y) =
{

1, D(x, y) ≥ thres_epe
0, D(x, y) < thres_epe

. (12)

4) Mask Fracturing Shot Count: Numerous classic pixel-
based ILT techniques have a tendency to optimize the mask
solely for printability. However, the majority of these opti-
mized masks contain an abundance of minute irregular sub-
features, which makes mask fabrication more difficult. In this
work, the shot count is used to assess the mask’s manufac-
turability. An evaluated mask M can be fragmented into a
collection of little rectangles that replicate the original mask
exactly, as depicted in Fig. 4. The number of mask fracturing
shots represents the number of broken rectangles.

D. Transformer and Attention Mechanism

As a competitive substitute for convolutional neural
networks (CNNs), which are currently SOTA in computer
vision and are consequently widely employed in various image
identification applications, the ViT [22] models outperform the
current SOTA CNN by almost ×3 in terms of performance
and efficiency. ViT is based on transformer architecture which
has become a de-facto standard in neural language process-
ing (NLP). CNNs process images as arrays of pixels, but ViT
employs fixed-size image patches to allow sequence modeling
and assist parallel processing. The positional encoded image
patches, also known as visual tokens, will serve as the input
for the transformer encoder. The exceptional performance of
the transformer encoder depends on the self-attention mecha-
nism, which enables the encoding of global information while
maintaining a focus on the most relevant local features.

1) Attention Mechanism: Self-attention is one of the funda-
mental building components of machine learning transformers.
It is a mathematical primitive designed to automatically mea-
sure paired entity interactions, which aids a network in
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(a) (b)

Fig. 5. Two basic modules for transformer architecture. (a) Scaled dot-
product attention. (b) Multihead attention.

discovering hierarchies and alignments among input data. As
illustrated in Fig. 5, the attention layer takes its input in the
form of three parameters, known as the Query, Key, and Value.
For the multihead attention [Fig. 5(b)], the module splits its
Query, Key and Value (Q, K, V ∈ R

n×dm) inputs N-ways and
pass each split into a core module, which is called Scaled Dot-
Product Attention in Fig. 5(a). We formulate the multihead
attention as

MHA(Q, K, V) = Concat(H1, . . . , Hh)W (13)

where n is the length of sequence and dm is the dimension
for each element of the sequence. Hi, i ∈ {1, 2, . . . , h} is the
output of the single scaled dot-product attention head, which
is formulated as follows:

Hi = Attention
(

QWQ
i , KWK

i , VWV
i

)

= softmax

[
QWQ

i

(
KWK

i

)�
√

dk

]

VWV
i (14)

where WQ
i , WK

i ∈ R
dm×dk , WV

i ∈ R
dm×dv . And the weight

matrix in (13) W ∈ R
hdv×dm .

III. DEEP NEURAL LEVEL SET ALGORITHMS

The whole architecture is depicted in Fig. 6, which could
be separated into three sections and includes the CUDA accel-
erated truncated SDF (TSDF), DSO, and DSN components.
Using the CUDA accelerated TSDF function, the input mask
will initially be converted to a level set function. Then, depend-
ing on the input TSDF, DSN will forecast the initial solution,
modulation branch, and optimal parameter configuration. All
DSN outputs will be input into DSO for iterative evolutions
in order to produce the final masks. This section will be struc-
tured as follows: Section III-A will begin with a detailed
introduction for DSO, including the enhanced level set-based
ILT algorithm, the curvature term to improve the mask man-
ufacturability, and the complete implementation in the CUDA
platform. We develop a set of efficient, GPU-friendly algo-
rithms by combining the GPU parallelism mechanism with
the numerical level set setup. Next, Section III-B proposes
a novel transformer-based multibranch network, i.e., DSN.
Each branch is meticulously crafted based on the characteris-
tics of the level set-based ILT algorithm. The level set branch

intends to provide a more efficient initial level set function for
DSO convergence. The modulation branch predicts a weighted
attention matrix to selectively regularize the mask border,
compensating for the mask printability loss resulting from
the curvature term. Another crucial domain-specific param-
eter selector is introduced in Section III-C to generate the
best parameter set for DSO to get the most optimized output
mask. Finally, we perform the end-to-end joint optimization
for DevelSet in Section III-D to accomplish instant mask
optimization with higher mask printability and lower mask
complexity.

A. DevelSet-Optimizer

Conventional pixel-based ILT methods can be formulated
as Mopt = L−1(Zt;Pnom), where Mopt is optimized mask,
L(·;Pnom) denotes the forward lithography process under
the nominal condition, Zt is the design target. After deter-
mining the objective errors, the pixel-based ILT approaches
will update the intensity matrix pixel-by-pixel using gradient
back-propagation from the lithography model. Pixel-based ILT
algorithms are computationally costly and difficult to regulate
intricacies of masks because to these qualities. Previous SOTA
pixel-based approach Neural-ILT [8] built a CUDA accelerated
lithography simulator and incorporated the GPU-accelerated
litho-simulation module into neural networks to accomplish an
on-neural-network ILT training solution. To lower the com-
plexity of the mask, an ILT correction layer and a mask com-
plexity refinement layer are applied. Nevertheless, compared
to earlier learning-based work PGAN-OPC [6], Neural-ILT
compromises printability for the sum of L2 and PVBand is
somewhat inferior.

In contrast to pixel-based ILT approaches, the evolution
of the level set continuum [Fig. 2(b)] can be viewed as the
mask optimization procedure. The mask is formed by the
intersection of the zero plane with the level set continuum
[Fig. 2(d)]. Mathematically, the level set continuum is denoted
by LSF φ, and the evolution technique is denoted by (7). Prior
level set-based SOTA approach GLS-ILT [21] incorporated
momentum term to regularize the level set optimization pro-
cedure. In addition, GPU was used to accelerate a portion of
the lithography model. However, the acceleration impact was
not noticeable due to the fact that only the FFT module was
accelerated. Since data transfer between CPU and GPU con-
sumes the majority of total runtime, there is still ample space
for improvement.

DSO is a fully GPU-accelerated iterative mask optimizer
that addresses the shortcomings of the prior technique. The
improved level set ILT technique with TSDF regulates the
mask’s complexity and the mask’s bounds with a curvature
term. All computations are shifted to the GPU for acceler-
ated performance. As a result, DSO simultaneously delivers
better mask printability and runtime performance. According
to (7), the level set function φ and the velocity term v are
the two essential components of level set evolution. As for
the LSF φ in DSO, we employ the TSDF rather than the fre-
quently applied SDF. In addition, we integrate the ILT-based
gradient into the velocity term v and introduce the curvature
term to enhance the printability of the mask and minimize its
complexity.
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Fig. 6. Overview of DevelSet framework with the end-to-end joint optimization flow of DSN and DSO.

Algorithm 1 DSO
Require: Target image Z∗, optical kernels h;
Ensure: Optimized mask M∗;

1: M0 ← Z∗;
2: φ0 ←M0;
3: G0 ← ∂G0(M)

∂M0
;

4: v0 ←−G0|∇φ|;
5: repeat
6: for all sites in 2-D pattern, parallel computing: do
7: forward:
8: Curvature: κi ← ∇ ∇φi

|∇φi| ;
9: Change: �φi ← (vi + κi)δt;

10: Level set function: φi+1 ← φi +�φi;
11: Mask pattern: Mi+1 ← φi+1;
12: Resist pattern: Zi+1 ←Mi+1;
13: backward:
14: Gradient of cost function: Gi+1 ← ∂Gi+1(M)

∂M ;
15: Update: vi+1 = −Gi+1(M)|∇φi+1| + λ · vi;
16: end for
17: until |v|max < ε

Algorithm 1 demonstrates the forward and backward
process of DSO. The TSDF φ in line 2, motion term v in
line 4, and curvature term κ are introduced in Section III-A1.
Implementation details are addressed in Section III-A2 and
Algorithm 2.

1) Improved Level Set-Based ILT (Truncated Signed
Distance Function): Theoretically, as demonstrated in
Section II-A, the level set framework is independent of the
particular LSF φ chosen. SDF in (2) is a popular form
of LSF since it is Lipschitz-continuous and practically
everywhere differentiable. Nonetheless, when the level set
evolves, the absolute value of the extremum of SDF may
become excessively big, which is ineffective because we only
need the level set with zero height to build the mask. Even
worse, excessive extreme values can destabilize the training
procedure, preventing convergence. Therefore, we adopt the
TSDF as our LSF with upper and lower bounds Du and Dl,
respectively

φTSDF =
⎧
⎨

⎩

Du, if φSDF > Du
φSDF, if Dl ≤ φSDF ≤ Du
Dl, if φSDF < Dl.

(15)

Algorithm 2 CUDA Level Set Algorithms
Require: Target image Zt

1: function CUDA_TSDF(Zt)
2: Ztu, Ztd ← Shift Zt upwards, downwards by 1 pixel;
3: Ztl, Ztr ← Shift Zt leftwards, rightwards by 1 pixel;
4: bh ← (Zt XOR Ztu)+ (Zt XOR Ztd);
5: bv ← (Zt XOR Ztl )+ (Zt XOR Ztr);
6: for all pixels on target image Zt do
7: dij ← Distance from pixel pi to boundary bj;
8: di ← Minimum distance of point pi in all dij;
9: φSDF ← SDF matrix from all di;

10: φTSDF ← TSDF matrix using Equation (15);
11: end for
12: return φTSDF;
13: end function
Ensure: Truncated Signed Distance Function φTSDF;

Require: TSDF matrix φTSDF;
14: function CUDA_geometry_gradient(φ)
15: φu, φd ← Shift φ upwards, downwards by 1 pixel;
16: φl, φr ← Shift φ leftwards, rightwards by 1 pixel;
17: ∇φx ← (φr − φl)/2; ∇φy ← (φu − φd)/2;
18: return ∇φx,∇φy;
19: end function
Ensure: Geometry gradient ∇φx, ∇φy;

Require: TSDF φTSDF, geometry gradient ∇φx,∇φy;
20: function CUDA_curvature(φ,∇φx,∇φy)
21: ∇φxx ← CUDA_geometry_gradient(∇φx);
22: ∇φyy ← CUDA_geometry_gradient(∇φy);
23: φul, φur, φdl, φdr ← Shift φ to 4 diagonal directions;
24: ∇φxy ← ((φur − φul)− (φdr − φdl))/4;
25: κ ← Curvature term using Equation (27);
26: return κ;
27: end function
Ensure: Curvature term κ;

In our work, Du is set to 900 and Dl is −100, according
to the design rules of the benchmark. The TSDF increases
the optimization procedure’s stability by lowering the dataset’s
variance. In addition, the TSDF allows rapid convergence of
the DSN to enable end-to-end joint optimization of the entire
mask optimization framework.
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Motion Term: Another core component in level set methods
is the motion term (∂φ/∂t), which is mainly related to the
velocity term v, according to (6). We move the level set contin-
uum using the backpropagated gradient from the lithography
simulator of the partial coherent imaging system. And the
objective function of DSO incorporates ILT correction loss
and PVBand loss

LDSO = αLilt + βLpvb. (16)

The ILT correction loss is intended to minimize the pixel-
based difference between the output nominal image and the
input target, which can be calculated as follows:

Lilt =
N∑

x=1

N∑

y=1

(Z(x, y)− Zt(x, y))2 (17)

where Zt is the target image; Z is the wafer image after the
lithography under the nominal condition; N is the width of the
target image. To enable the evolution process differentiable,
the step function in (10) is approximated as

Z = 1

1+ exp(−σz × (I− Ith))
(18)

where σz is the steepness of the sigmoid function. Then, the
gradient of ILT loss can be expressed as

∂Lilt

∂M
= 2× (Z− Zt)� ∂Z

∂M
= 2σz ×

{
H′ ⊗ [

(Z− Zt)� Z� (1− Z)� (
M⊗H∗

)]

+ (
H′

)∗ ⊗ [(Z− Zt)� Z� (1− Z)� (M⊗H)]
}

(19)

where H′ is the flipped optical kernel set H, and H∗ is the
conjugate of H.

To minimize the area of PVBand, we expect the inner-
most/outermost wafer under min/max process conditions as
close to the target image as possible. The PVBand loss is
given by

Lpvb = (Zin − Zt)
2 + (Zout − Zt)

2. (20)

The gradient of PVBand loss can be represented as

∂Lpvb

∂M
= 2× (Zin − Zt)� ∂Zin

∂M

+ 2× (Zout − Zt)� ∂Zout

∂M
. (21)

The detailed derivation of (21) is similar to (19). Now, the
velocity v is

v = α
∂Lilt

∂M
+ β

∂Lpvb

∂M
. (22)

And the motion equation is finally derived as

∂φi

∂t
= −

(

α
∂Lilt

∂M
+ β

∂Lpvb

∂M

)

|∇φi|. (23)

Curvature Term: As described in (7), the evolution method
of a level set is specified by a number of updating terms
that can be loosely classified into two groups: 1) external
terms and 2) internal terms. The inverse lithography gradient
or optimization methods are external terms that relocate the
boundaries to the optimal place based on the loss function or
data evidence. The internal terms emphasize the regularization

of the curve shape, e.g., the curvature term or the curva-
ture length. All prior level set-based algorithms address the
improvement of well-researched external terms. The research
on internal terms, which necessitates calculations of second-
order derivatives, faces the challenge of a massive computing
volume. In this article, DSO makes full advantage of the
effective feature in the implicit representation to derive the
curvature of the borders, which is useful for controlling the
smoothness of the front and removing noisy points from the
mask pattern. The curvature term is formally defined as

κ = λmθ |∇φi| div

( ∇φi

|∇φi|
)

(24)

where λ is the weight of curvature. However, applying the
curvature term straight to all situations will hurt the mask
optimization efficiency, as masks should contain some sharp
edges. In the majority of cases, high curvature should be penal-
ized to decrease mask complexity. To regulate the curvature
term, we add a weighted matrix mθ , where subscript θ signifies
that mθ is predicted by the modulation branch parameters of
DSN. The modulation branch of Section III-B1 will be intro-
duced in detail. The mθ has the same dimensions as the mask
image M that the modulation branch of DSN would forecast.
The level set evolution of DSO can then be expressed as the
sum of the motion term and the curvature term

∂φi

∂t
= −

(

α
∂Lilt

∂M
+ β

∂Lpvb

∂M

)

|∇φi|

+ λmθ |∇φi| div

( ∇φi

|∇φi|
)

. (25)

2) Implementation of DSO Based on CUDA: Conventional
ILT-based mask optimization techniques incur a substantial
computational expense, which is exacerbated by level set-
based techniques. When new terms are utilized to improve
mask printability, the already burdensome computing system
incurs additional computational costs. Consequently, the pri-
mary obstacle for DSO is to deal with expensive computations.
The rapid growth of general-purpose graphic processing unit
(GPGPU) computing technology has resulted in the continual
enhancement of GPU parallel processing capability. By putting
the entire DSO architecture on the CUDA platform, we are
able to achieve a balance between performance and efficiency.
In this section, we will describe the CUDA implementation of
each term in the level set method, as well as the engineering
features that make our DSO framework considerably quicker.

Numerical Settings: The level set-based mask optimization
methods focus on 2-D situation with an image as the input.
The space is discretized by a Cartesian grid with steps �x,�y,
where the coordinates (x, y) represent the xth, yth pixel in the
image. The first-order derivatives in space and time of (25)
can be approximated using finite difference techniques. We
apply weighted essential nonoscillatory (WENO) [29] numer-
ical polynomial interpolation method that uses the smoothest
possible polynomial interpolation to find φ. And the first-order
and second-order spatial derivatives of φ can be represented
with central differences as

∇φx = 1

2
(φ(x+ 1, y)− φ(x− 1, y))

∇φy = 1

2
(φ(x, y+ 1)− φ(x, y− 1))
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∇φxx = φ(x+ 1, y)+ φ(x− 1, y)− 2× φ(x, y)

∇φyy = φ(x, y+ 1)+ φ(x, y− 1)− 2× φ(x, y)

∇φxy = 1

4

[
(φ(x+ 1, y+ 1)− φ(x− 1, y+ 1))

− (φ(x+ 1, y− 1)− φ(x− 1, y− 1))
]

(26)

and the curvature term is then computed numerically with

κ = λmθ |∇φi| div

( ∇φi

|∇φi|
)

= λmθ

∇φxx∇φy
2 − 2∇φy∇φx∇φxy +∇φyy∇φx

2

∇φx
2 +∇φy

2
. (27)

CUDA-Based TSDF: The first formidable obstacle is effi-
ciently calculating the TSDF on a 2048-by-2048-pixel target
image. Introduced by [30], the Fast Marching Method is
the most renowned method for calculating SDFs. Instead of
employing the Fast Marching Method, we have developed a
TSDF algorithm based on the parallelism properties of CUDA.
The target pattern is used as the initial mask in DSO. Using
the CUDA_TSDF function in Algorithm 2, the initial stage
focuses on extracting the boundary segments and computing
the distance to the border. We perform pixel-by-pixel Shift
and XOR operations to obtain the mask boundary lines bh and
bv (lines 2–5). Then, for each pixel p on mask plates, the
distance to all boundary lines is computed and the minimal
distance between parallel points is determined. Finally, (15) is
utilized to construct the TSDF (lines 6–10). Experiment results
indicate that CUDA_TSDF can reduce TSDF calculation time
by more than 98% when applied to a complex mask created
by a neural network.

CUDA-Based Geometry Gradient and Curvature Term: The
numerical settings are compatible with CUDA parallelism, as
illustrated by (26). The spatial derivatives of φ are computed
by Algorithm 2 function CUDA_geometry_gradient.
And the curvature term can be calculated using the GPU-
accelerated function CUDA_curvature. All the operations
in Algorithm 2, such as shift and XOR, are pixel-wise inde-
pendent and may be executed per pixel per thread in parallel,
which not only reduces the total duration of the DSO but also
enables the level set evolution to be integrated into a neural
network. As inputs to the CUDA_curvature function, we
employ the TSDF φ and geometric gradient ∇φx, ∇φy. We
calculate the second-order derivatives in lines 21 and 22 using
the CUDA_geometry_gradient function. In line 23, we
shift the φ by 1 pixel in four diagonal directions. In line 24, the
second-order gradient term ∇φxy is calculated using the central
difference method. The curvature term κ is finally specified in
line 25.

CUDA-Based Lithography Simulation: In the ILT-based
mask optimization procedure, the lithography simulation will
be performed iteratively to guide the contour evolution of
the mask. According to the previous experimental research,
lithography simulation is the most time-consuming aspect of
the mask optimization process because it requires numer-
ous convolution operations between various kernels and mask
images. Previous work Neural-ILT [8] transplants the lithog-
raphy tool-set of the ICCAD 2013 contest onto GPU and
develops a high-performance CUDA-based lithography simu-
lation tool [28] to maximize hardware resource utilization and

improve computational efficiency. Inspired by Neural-ILT [8],
we develop our CUDA-based lithography simulator and incor-
porate the forward and backward functionalities into the
well-known machine learning framework PyTorch, along
with engineering enhancements. Initially, the optical ker-
nels and accompanying weights are loaded and pinned in
GPU memory for the duration of the optimization proce-
dure, ensuring that all computations are conducted on GPU
to reduce the data transfer time between CPU and GPU.
The CUDA_FFT and CUDA_IFFT operators are the run-
time bottleneck for the CUDA-based lithography simulation.
Our enhanced CUDA_FFT operator performs quicker than the
widely used cuFFT and torch.fft libraries.

B. DevelSet-Net

The GPU-accelerated DSO has achieved a great speedup
over the level set OPC technique, but there is still consid-
erable opportunity for improvement in terms of runtime and
mask printability. We present a novel multibranch transformer-
based neural network to improve efficiency and mask print-
ability, inspired by current advances in deep learning-based
approaches.

1) Network Architecture and Training: The original
DSN [31] is a multibranch neural network adopting the
simple UNet [32] as the backbone. In this article, we adopt
the transformer as the backbone for DSN. As illustrated in
Fig. 6, our key contributions include 1) the integration of
level set embeddings with the conventional OPC networks;
2) modulation branch for compensating the curvature term
defects; and 3) the parameter selector for DSO. DSN
achieves an end-to-end trainable deep level set neural network
framework for mask optimization.

CNNs and ViT: Previous works have argued that CNN
is incapable of gathering the required quantity of global
information [14]. When compared to CNNs, the level of sim-
ilarity between the representations is higher in ViT [22],
which obtains global representations from shallow layers.
Nonetheless, it is necessary to additionally consider the local
representations obtained from shallow layers. ViT also adopts
skip connections sharing a substantially greater influence than
they do in CNN (ResNet), which has a major impact on both
the performance and the similarity of the representation. ViT is
capable of learning high-quality intermediate representations
despite having access to massive volumes of data.

Vision Transformer Architecture: As depicted in Fig. 6, the
ViT is utilized as the backbone network. The input image will
be split into multiple patches of the same height and width P

x ∈ R
H×W×C ⇒ x ∈ R

N×P2×C (28)

where N = (HW/P2) is the total number of patches, P is
the height and width of the patch with a patch dimension
(P, P, C), C is the number of channels. The patches are flat-
tened and projected linearly with positional encoding, then fed
into the standard transformer. The patch positional encoding
is formulated as

z0 =
[
xclass ; x1

pE; x2
pE; . . . ; xN

p E
]
+ Epos (29)

where E ∈ R
(P2·C) ×D, Epos ∈ R

(N+1)×D. xclass is a learnable
embedding to the sequence of patches, at the beginning of the
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positional sequence. Epos is shared 1-D learnable positional
parameters that will be added with all patch embeddings to
get the resulting input tokens z0.

The transformer layer in Fig. 6 contains the MHA intro-
duced in Section II-D and multilayer perceptrons (MLPs). The
residual connections are added after every block

ai−1 = MHA(LN(zi−1))+ zi−1

zi = MLP(LN(ai−1))+ ai−1 (30)

where i ∈ {1, . . . , L}, L is the transformer encoder layer num-
ber. LN is layer normalization applied after every block. The
decoder in Fig. 6 learns to map the patched embeddings to
level set map and modulation map. A point-wise linear layer is
applied to produce patch-level mappings and further reshaped
into a 2-D feature map.

Multibranch Pretraining: To utilize the advance of the
multibranch neural networks, two types of losses are optimized
simultaneously

LDSN(θ) = L0(θ)+ Lm(θ). (31)

Level Set Branch Supervision: As illustrated in Fig. 6, dif-
ferent from the typical OPC networks, the level set branch
predicts the initial LSF φ0,θ for DSO, instead of the pixel-
wise mask. This kind of design will preserve the details of the
level set function to get a more extensive solution space. And
more importantly, the output of DSN can be seamlessly fed
into the DSO for further prediction. The mean square error is
employed as the objective function

L0(θ) =
∑

(x,y)

(
φ0,θ (x, y)− φgt(x, y)

)2 (32)

where φ0,θ is the predicted LSF with network parameters
θ . φgt is the ground-truth LSF generated by DSO. Prior
to DSN training, the ground truth level set function φgt is
obtained by iteratively optimizing the level set function φ0
using DSO, which serves as the initial LSF, to shape the
final mask. This approach has two major advantages: 1) DSN
predicts a better initial solution φ0,θ , which enables DSO to
avoid local optima during the optimization process and thus
obtain superior optimization results and 2) DSN reduces the
number of iterations required by DSO by 90%, thereby sig-
nificantly reducing the optimization time and achieving higher
optimization efficiency.

Modulation Branch Supervision: During the training pro-
cess, the modulation branch aims to find the best mθ in (25)
for curvature term evolution in DSO, which is a boundary-
aware model for detecting the curvature-sensitive areas. The
idea is carried out by shifting the ground-truth TSDF φgt with
a set of distance �h

φ̃m(x, y) = φgt(x, y)+�h

m̃ = H
(
φ̃m(x, y)

)
(33)

where �h is uniformly sampled from [−20, 20], and m̃ is a
set of mθ . H(φ) is the Heaviside function

H(z) =
{

1, z ≥ 0
0, z < 0.

(34)

For every target image Zt, the ground truth of modulation
branch is

mgt = argmin
m̃

LDSO. (35)

During the training, the modulation branch learns to simulate
an optimized mθ . As suggested in [33], the simple Heaviside
function in (34) acts on zero level set, which may get stuck
in the local minima. To tackle this, we replace it with the
approximated Heaviside function (AHF) with a parameter ε

Hε(φ) = 1

2

(

1+ 2

π
arctan

(
φ

ε

))

. (36)

Thus, the objective function is

Lm(θ) =
∑

(x,y)

(
Hε

(
φm,θ (x, y)

)− mgt(x, y)
)2 (37)

where Hε(φm,θ ) is the output of modulation branch.

C. Parameter Selector With Transformer

1) Multitask Learning With Transformer: Multitask learn-
ing has been a promising study topic in numerous domains,
including computer vision, natural language processing,
multimodal learning, and design space exploration, in order
to manage complex optimization tasks. Dedicated models are
proposed to address these tasks, either by modeling each activ-
ity separately or by employing a holistic probability model to
conduct all the tasks simultaneously. It is hypothesized that
multitask learning can provide benefits such as enhanced data
efficiency, reduced overfitting through shared representations,
and rapid learning by exploiting auxiliary information [34].

The majority of prior work on multitask learning focuses
on certain domains or modalities with domain-specific model
designs. Nonetheless, significant past work exists on multi-
task learning across domains using a single generic model.
It is demonstrated that an encoder–decoder architecture based
on the multihead attention mechanism of the transformer can
be used to many input and output domains, including picture
classification, machine translation, and image captioning. In
prior technology, decoders are constructed specifically for each
output task, however, our objective is to accomplish simple
parameter selection by applying the same decoder architecture
to all parameters.

2) Parameter Selector Algorithm Details: Due to the huge
amount of parameter combinations, however, the advancement
of DSO remains difficult. The proposed model for parameter
selection is illustrated in Fig. 7. The input images are sent to
the image encoder for feature embedding learning. The embed-
dings and parameter index are then utilized as the decoder’s
inputs to discover the parameter corresponding to the parame-
ter index. The domain-specific parameter selector in Fig. 6 is
Fig. 7. Using the parameter selection, the DSO may automati-
cally alter the lithography and optimization-related parameters
according to the supplied designs for optimal results.

Training of the Parameter Selector: Before the DevelSet
optimization procedure, the suggested parameter selector is
trained offline. We set a series of parameter shown in Table II
combinations for each image. Then, we use the DevelSet
framework without the parameter selector to obtain the optimal
parameter group for the input image, which is marked as the
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Fig. 7. Domain-specific parameter selector.

TABLE II
PARAMETER SELECTOR COMBINATIONS

ground truth. As depicted in Fig. 6, the fine-grained parameter
selection will direct the DevelSet Optimizer to achieve optimal
results following the training phase.

D. End-to-End Joint Optimization With
DevelSet (DSN+DSO)

As depicted in Fig. 6, the CUDA_TSDF function is uti-
lized to enable the quick transformation from pixel-wise target
image to LSF φ0. After pretraining the two branches of DSN,
we fix all the parameters of DSN and feed the output of the
level set branch φ0,θ , modulation branch mθ , and domain-
specific parameter selector directly into the evolution process
of DSO to build the final mask. We use the CG method [19]
for optimization in DSO, and we use the CFL condition [19]
to determine the time step �t = η/max(|v|), where v is the
evolution velocity in (22), and η is CFL condition number.

E. Adaption to Large-Scale Layout

Large-scale mask optimization poses new challenges due
to the fact that industrial cases are often much larger than
those commonly encountered in academic research. To address
this issue, we draw on the large tile global perception algo-
rithm proposed by [14], and further optimize the stitching
problems and redesign the scheduling to optimize the use of
GPU memory. Due to the restriction of the optical diameter,

Fig. 8. Algorithm for applying the DevelSet framework to large-size layouts
involves dividing the large layout into multiple small blocks and obtaining
optimized results for each block. Each block is composed of a core part and
boundary surroundings.

as discussed in [14], the large tile must first be cut into smaller
clips. These clips are then optimized using the DevelSet frame-
work in a sliding-window manner. As depicted in Fig. 8, each
window is divided into a core part and a boundary surrounding.
The latter item is specifically devised to minimize bound-
ary distortion effects resulting from lithographic physics to
the greatest extent possible. This is achieved by progressively
encompassing the entire layout with the core parts through
sliding-window movement, while the boundary parts are disre-
garded, thus enhancing fidelity. The optimized masks covered
by the core parts are then concatenated back to the large-scale
tile as the final result.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Implementation Details: We implement the proposed
DevelSet-TFPS flow under the PyTorch framework. The ViT
backbone is from [22]. The dataset for pretraining DSN is
obtained from PGAN-OPC [6], which contains 4875 images of
2048×2048-pixel images generated following the same design
rule of ICCAD 2013 contest [28]. Ten test cases are also
from [28] with industrial M1 designs and 32 nm design node.
The lithography engine is from [28], with 193-nm wavelength,
a defocus range of ±25 nm, and a dose range of ±2%. Before
the end-to-end joint optimization, we use GPU-accelerated
DSO to generate quasi-optimized level set ground truth for
DSN pretraining. The shot count metric is evaluated using
scripts from [8] to ensure a fair comparison.

The DevelSet framework is further evaluated on large-
scale datasets in this study. Specifically, the large layouts
are generated from the FreePDK45 [35] design kit using
OpenROAD [36] without loss of generality. Ten dense
144 μm2 layouts were randomly tiled and copied from layer
9 of FreePDK45 [35] with manual density adjustments.

The resulting layouts are then converted to 12 000×12 000-
pixel images. Seven of these large layouts are used as the
training set, while the remaining three are used as the test set.
In the evaluation, the size of the sliding-window depicted in
Fig. 8 is set to be 2048 × 2048, with the core part having
1024× 1024 pixels.

2) Training and Testing Environment: We use 8 Nvidia
RTX 3090 GPU for DSN pretraining and a single Nvidia RTX
3090 for joint optimization. The complete training process of
DSN, which includes the level set branch, modulation branch,
and parameter selector, takes 31.5 h. Throughout this article,
we pick σz = 50, Nh = 24, α = 1, β = 7.5, λ = 0.9,
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TABLE III
MASK PRINTABILITY, COMPLEXITY COMPARISON WITH SOTA

η = 0.85, and ε = 0.03, as default parameters for DevelSet
optimization.

B. Comparison With State-of-the-Art

We first compare the performance of DevelSet with
SOTA works, including PGAN-OPC [6], GLS-ILT [21], and
Neural-ILT [8] in Table III. The “L2,” “PVB,” and “#shots”
are introduced in Section (II-C), representing Squared L2
error, PVBand, and Mask fracturing shot count, respectively.
DevelSet-TFPS refers to DevelSet [31] with transformer-based
parameter selector.

1) Mask Printability and Complexity: As illustrated in
Table III, compared with previous SOTA works, DevelSet-
TFPS can achieve better performance on L2 and PVB
metrics, demonstrating superior mask printability. Compared
with learning-based methods PGAN-OPC and Neural-ILT,
DevelSet-TFPS can achieve 6.1%, 2.3% better L2 and 7%,
14.2% better PVB. In addition, DevelSet-TFPS also outper-
forms the previous level set-based method GLS-ILT with
improvements of 2.6% on L2 and 7.1% on PVB, respectively.

The #shots metric is capable of measuring the mask com-
plexity to a limited degree. Among the PGAN-OPC, GLS-ILT,
DevelSet-TFPS can reduce 5.7%, 44.8% #shots. Neural-ILT,
which adds an additional branch for complexity reduction,
can achieve a smaller #shots number than DevelSet-TFPS. We
visualize the samples of results in Fig. 9. As depicted in Fig. 9,
our framework has fewer isolated stitches and its boundaries
are smoother. Considering the implementation of #shots visu-
alized in Fig. 10, it will cut the whole mask into fragmented
small rectangles, which means, if the edges are flatter, then
there will be fewer shots. In fact, this is inconsistent with the
industrial case. Therefore, shots are only a point of reference
for the level of complexity and are not a deciding element.

Table IV presents the EPE results for the DevelSet-TFPS
method and other methods on the Benchmark dataset. The
DevelSet-TFPS method achieves an average EPE value of
7.3, which is the lowest among all the learning-based meth-
ods. The performance loss in case3 is mainly caused by
the model first ensuring the optimization of PVB and L2.
However, in most cases, such as case1-2 and case4-10,
our approach achieves better EPE values. In comparison, the

Fig. 9. Mask visualizations of: (a) PGAN-OPC [6], (b) GLS-ILT [21],
(c) Neural-ILT [8], (d) DSO, (e) DevelSet framework (DSN + DSO), and
(f) DevelSet-TFPS: DevelSet framework with transformer-based parameter
selector.

previous GLS-ILT method [21] adds an additional penalty for
EPE performance, resulting in better EPE values than our
method. Overall, our results demonstrate the significance of
continued research and development of level set-based meth-
ods in the field of mask optimization and the improvement
that our approach brings to the existing literature.

2) Runtime Comparison: We list the runtime comparison in
Table V, where the metric “TAT” refers to turn around time,
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TABLE IV
EPE COMPARISON WITH SOTA

TABLE V
RUNTIME COMPARISON WITH SOTA

calculating the total interval for the end-to-end inference in
seconds (s). PGAN-OPC uses the traditional mask optimizer
from MOSAIC [4] for result fine-tuning, thus our framework
can achieve ∼300× acceleration than it. GLS-ILT applies GPU
to speed up the FFT calculation in the mask optimization pro-
cess, but increases the memory exchange time between CPU
and GPU, which makes it ∼100× slower than our frame-
work. Compared with SOTA machine learning-based method
Neural-ILT, that regards the optimization procedure as network
training, our framework can boost runtime performance ∼10×
By replacing the backbone to transformer, DevelSet-TFPS
improve the mask printability at a little expense on runtime
performance, with an average of 1.63 s (DevelSet 1.11 s).

C. Ablation Study

We also conduct a series of ablation studies to verify the
effectiveness of each component of DevelSet. In Table VI,
we evaluate the influence of curvature term and modulation
branch on DSO and DSN. The column “w/o. curv.” refers to
the experiments without curvature term and “w/o. mod.” refers
to the experiments without modulation branch. In Table VII,
we measure the effect of backbone and the proposed parameter
selector.

TABLE VI
ABLATION STUDY ON DSN AND DSO

TABLE VII
EXPERIMENT ON BACKBONE AND PARAMETER SELECTOR

Fig. 10. Visualizations for ablation study of the curvature term.

1) Effectiveness of Curvature Term: As shown in Table VI,
both DSO and DevelSet are influenced by the curvature term.
The cost is calculated as

cost = L2 + PVB+ 10× #shots. (38)

The results are better if the cost is smaller. The total cost has
been reduced 434 on DSO by curvature term with fewer #shots
The L2 and PVB increase a bit due to the tradeoff between
the mask printability and complexity, which motivates us to
use modulation branch to mitigate the negative impact.

2) Necessity of DSN and Modulation Branch: Considering
the effect of modulation branch and DSN in Table VI, modu-
lation branch reduces the total cost by 698 showing superior
improvements on mask printability. DSN can generate better
initial solution for DSO to boost the overall performance of
the whole framework, which reduces the cost by 1038.2. The
improvement can be attributed to that DSN can help the frame-
work overcome the local minima and obtain a better mask.
DSN also contributes to fewer #shots because the upsample
operation in neural network allows for straighter borders. At
the same time, DSN accelerates the mask optimization process
using the fast inference ability of neural networks. The mod-
ulation branch is similar to the attention mechanism, which
sets the area for the curvature term to influence the overall
optimization process.

3) Ablation Study on Backbone and Parameter Selector:
As shown in Table III, the last column presents the L2, PVB
and #shots comparisons of the proposed parameter selector. By
replacing the CNN backbone to transformer, DevelSet with
transformer-based parameter selector surpasses the original
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Fig. 11. Results of applying the DevelSet framework to large-scale layouts.

Fig. 12. L2 and PVB comparison of large tile layout between GLS-ILT [21]
and DevelSet-TFPS.

DevelSet by 2% and 4.1% in L2 and PVB, respectively. We
also conduct a series of ablation studies on the parameter
selector in Table VII. The transformer backbone leveraging
attention mechanism improves the performance and the over-
all cost reduces by 896.8. And the parameter selector boosts
the performance to a large margin with 3043.5 cost deduction.

4) Evaluation on Large-Scale Layout: Fig. 11 illustrates an
example of a large-scale layout optimized using DevelSet,
consisting of a 144 μm2 area. The layout is divided into
small windows of size 2048× 2048 pixels, containing a core
region of 1024×1024 pixels and boundary surroundings, using
the algorithm described in Section III-E. The optimized core
regions are then concatenated to form the final large-scale
optimized layout. The results demonstrate the effectiveness
of DevelSet in avoiding stitching errors in large-scale lay-
outs. Through conducting experiments on three large-scale
test layouts, we have compared the average performances of
level set-based methods, GLS-ILT [21] and DevelSet-TFPS,
in terms of L2 and PVB metrics. The results presented in
Fig. 12 demonstrate that DevelSet-TFPS achieves a reduction
of 10% and 12.9% in L2 and PVB, respectively, compared
to GLS-ILT [21]. These results highlight the potential of
DevelSet for large-scale layout optimization in the field of
mask optimization.

V. CONCLUSION

In this article, we propose an implicit level set-based evolu-
tion framework for mask optimization, abandoning the discrete
pixel representation. The implicit representation makes it
easier to control boundaries precisely, and we propose a

curvature term to regulate boundary shapes, improving man-
ufacturability. We perform all calculations, including level set
initialization, curvature term, level set evolution, and mask
optimization, on the GPU to speed up the process. We design
a multibranch transformer-based network to predict a better
initialization of the level set function φ and an attention-like
matrix from the modulation branch to compensate for the
performance loss caused by the curvature term. Additionally,
the parameter selection simplifies the manual parameter set-
ting process required for optimal condition optimization.
Our experimental results show that the proposed DevelSet
framework achieves a 2% and 4% reduction in L2 and
PVBand, respectively, with superior runtime performance. We
expect this enhanced level set technique with CUDA/DNN-
accelerated joint optimization paradigm to have a significant
impact on industrial mask optimization solutions.
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