
International Journal of Computer Vision (2023) 131:2699–2722
https://doi.org/10.1007/s11263-023-01832-8

MANUSCRIPT

Conditional Temporal Variational AutoEncoder for Action Video
Prediction

Xiaogang Xu1 · Yi Wang2 · Liwei Wang3 · Bei Yu3 · Jiaya Jia3

Received: 21 March 2022 / Accepted: 24 May 2023 / Published online: 18 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
To synthesize a realistic action sequence based on a single human image, it is crucial to model both motion patterns and
diversity in the action video. This paper proposes an Action Conditional Temporal Variational AutoEncoder (ACT-VAE) to
improve motion prediction accuracy and capture movement diversity. ACT-VAE predicts pose sequences for an action clip
from a single input image. It is implemented as a deep generative model that maintains temporal coherence according to the
action category with a novel temporal modeling on latent space. Further, ACT-VAE is a general action sequence prediction
framework. When connected with a plug-and-play Pose-to-Image network, ACT-VAE can synthesize image sequences.
Extensive experiments bear out our approach can predict accurate pose and synthesize realistic image sequences, surpassing
state-of-the-art approaches. Compared to existing methods, ACT-VAE improves model accuracy and preserves diversity.

Keywords Variational AutoEncoder · Action modeling · Temporal coherence · Adversarial learning

1 Introduction

Human action video prediction aims to generate future
human action from single or multiple input human images
(Kim et al., 2019; Villegas et al., 2017; Wichers et al., 2018;
Zhao et al., 2018). This topic is actively studied recently,
for its importance to understand and improve human motion
modeling and benefit in a variety of video applications, e.g,
motion re-target (Aberman et al., 2019; Villegas et al., 2018).
In this work, we focus on synthesizing image sequences from
a single image and controlling their action types via the input
of action labels (Kim et al., 2019), as shown in Fig. 1.
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Due to the diversity in human motion, action video pre-
diction is highly ill-posed with multiple possible solutions.
Conventional deterministic models utilizing regression are
useful, but over-smooth image sequences may be produced
(Finn et al., 2016; Jia et al., 2016; Kalchbrenner et al., 2017;
Villegas et al., 2017), givingmean estimation of future action.
Recent deep generative approaches alleviate this problem by
using Generative Adversarial Networks (GAN) (Cai et al.,
2018; Wichers et al., 2018), Variational AutoEncoder (VAE)
(Kim et al., 2019; Li et al., 2018), and Variational Recurrent
Neural Network (VRNN) (Castrejon et al., 2019; Denton &
Fergus, 2018) to model motion diversity explicitly. Methods
of Cai et al. (2018); Wichers et al. (2018); Kim et al. (2019);
Li et al. (2018) use latent variableswith identical independent
distributions to capturemotion patterns and diversity in every
frame. Without temporal coherence among latent variables,
action video prediction accuracy is bounded (The prediction
accuracy refers to the difference between the synthesized
pose sequences’ distribution and the real pose sequences’
distribution within each category), which has been proved
by existing works that consider the issue of coherence (Cas-
trejon et al., 2019; Mao et al., 2019, 2020). Meanwhile,
works of Castrejon et al. (2019); Denton and Fergus (2018)
introduced unitive temporal coherence for all actions while
ignored the distinction among different action categories.We
consider temporal coherence from two aspects. For the first
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Fig. 1 Given an input image, our method can synthesize future
sequences and control their action types with the input action label

aspect, frames at different time steps should be consistent
to ensure the causality of the action sequences, which has
been considered by existing methods. For the second aspect,
the synthesized image sequence should be in accord with
the given input action label, which has not been achieved by
previous works.

In this paper, we treat the human pose as the high-level
structure for action video prediction, and the predicted pose
sequences are utilized as guidance for the synthesis of image
sequences. This setting can avoid the interference of action-
irrelevant appearance (Villegas et al., 2017; Zhao et al., 2018)
and thus usually outperform strategies of directly hallucinat-
ing images.

To achieve modeling for the human pose, we pro-
pose Action Conditional Temporal Variational AutoEncoder
(ACT-VAE) to describe the motion patterns and diversity,
individually maintaining temporal coherence for each action
category (so-called “individual temporal coherence”). It is
built upon a distinctive Recurrent Neural Network (RNN)
(Mikolov et al., 2010; Greff et al., 2016) to maintain such
coherence. Similar toKimet al. (2019);Yang et al. (2018),we
employ human key points as the representation of pose, and
ACT-VAE predicts key points of the future pose sequence,
based on the pose of the input image aswell as an action label,
as shown in Fig. 2. We introduce action labels to the input
and intermediate states of RNN for explicitly controlling
what action to generate. Besides of the individual tempo-
ral coherence, compared with existing approaches (Kim et
al., 2019; Castrejon et al., 2019; Wichers et al., 2018; Yuan
& Kitani, 2020), we incorporate novel temporal modeling
on latent variables into ACT-VAE that improves motion pre-

diction accuracy. It updates the latent variable at each time
step via the previous action features and the latent variables.
Moreover, extensive experiments validate its notable preci-
sion improvement for forecasting and comparable diversity
in prediction with state-of-the-art methods (Kim et al., 2019;
Castrejon et al., 2019; Yuan & Kitani, 2020). In summary,
our novelty in ACT-VAE contains two aspects. First, our
proposed new network structure (new network conditions
and intermediate states) leads to novel temporal modeling,
which is different from current approaches, including VAE
(Li et al., 2018; Kim et al., 2019; Lee et al., 2018; Yan et al.,
2018; Babaeizadeh et al., 2017; Kumar et al., 2019; Razavi
et al., 2019; Aliakbarian et al., 2020), RNN (Villegas et al.,
2017; Wichers et al., 2018; Zhao et al., 2018), and their com-
binations (Castrejon et al., 2019; Denton & Fergus, 2018;
Minderer et al., 2019). Second, we propose the correspond-
ing training strategy. Different from previous methods, our
training strategy optimizes the distribution gap between the
synthesized and real pose sequences, simultaneously allow-
ing the identical sampling pipeline for the generation during
the training and inference procedure.

Furthermore, ACT-VAE can synthesize image sequences
by connecting it with a plug-and-play network thatmaps pose
to images. To this, we design a Pose-to-Image (P2I) network
to convert the predicted pose sequence from ACT-VAE into
the image sequence with realistic appearances. To improve
the synthesis, we explicitly disentangle the foreground part
from the image sequence via an attention mechanism, and
enhance synthesized results further by introducing action
conditional batch normalization (ACBN) to the P2I network.
The foreground attention mechanism can push the model to
pay more attention to the areas that need to be synthesized;
ACBN points out that different action features in the genera-
tor should be separated for better synthesis effects. These two
principles can be applied in various temporal human action
modeling networks to improve their performance.

Extensive experiments on Penn-action dataset (Zhang et
al., 2013) and Human3.6M dataset (Ionescu et al., 2013)
and NTU RGB+D dataset (Shahroudy et al., 2016) show
the effectiveness of our method. Our overall contribution is
threefold.

– We explicitly model individual temporal coherence for
human action video prediction of diverse action types.

– We build ACT-VAE with novel temporal modeling on
latent variables, improving the accuracy of action video
prediction to a new level and simultaneously keep com-
parable diversity with existing methods.

– We show that ACT-VAE is very general and is applicable
to synthesize plausible videos by connecting it with a
plug-and-play P2I network. Significantly, our framework
is flexible to generate various action types from single
input, via controlling action labels.
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Fig. 2 Our framework for human action video prediction from a still
image. It consists of two modules: ACT-VAE and P2I networks. ACT-
VAE can generate future pose sequences with novel temporal modeling

on latent variables to achieve the individual temporal coherence (its
structure is shown in Fig. 3). ACT-VAE can further synthesize image
sequences by connecting it with the plug-and-play P2I network

2 RelatedWork

2.1 Human Image Synthesis

We summarize existing works for human action video pre-
diction,i.e., generating image sequences with the image and
other conditions.
I) The target is single image synthesis, i.e., given the source
image and conditions, the target is to generate the desired
image. The conditions mainly contain the pose-guided (Cui
et al., 2021; Zhu et al., 2019; Tang et al., 2020; Li et al., 2021;
Ge et al., 2021a, b), text-guided (Jiang et al., 2022; Zhou et
al., 2019; Liu et al., 2022), sketch-based image synthesis (Ho
et al., 2020; Chen & Hays, 2018; Ghosh et al., 2019). And
there are also some human image synthesis works without
conditions, so-called unconditional human image synthesis
(Frühstück et al., 2022; Fu et al., 2022; Karras et al., 2020).
II) Different from the single image synthesis, another tar-
get is image sequence/video synthesis, which is also our
work’s target. The most common topics include animation
(Yoon et al., 2021), pose retargeting (Zhu et al., 2022), future
forecast (Yang et al., 2018), etc. Conditions mainly contain
pose-guided (Yoon et al., 2021; Zhu et al., 2022; Yang et
al., 2020; Gafni et al., 2021; Wu et al., 2020; Kappel et al.,
2021), text-guided (Han et al., 2022; Li et al., 2021; Bal-
aji et al., 2019), speech-guided (Siyao et al., 2022; Ren et
al., 2020; Guo et al., 2021), actioon-label-based (Kim et al.,
2019; Yang et al., 2018). Especially, our works belong to the
category of forecast, and consider the challenge and practi-
cal setting where we aim to generate image sequences with
the source image and the action label as the guidance. And
our framework allows users to control the action type in the
generated sequences.
III) There are also some works whose targets are to pre-
dict the pose sequences. The first category is the pose
prediction in the current two-stage-based image sequence

synthesis framework. They use different conditions to gen-
erate sequences, including pose-guided (Yang et al., 2020;
Zhu et al., 2022; Kappel et al., 2021; Gafni et al., 2021), text-
guided, speech-guided (Ren et al., 2020; Guo et al., 2021),
actioon-label-based (Kim et al., 2019; Yang et al., 2018) con-
ditions. There are some works whose targets are only human
pose sequence synthesis with different conditions, including
pose (Mao et al., 2020, 2019), text (Guo et al., 2022; Ahuja
& Morency, 2019), and speech (Lee et al., 2019; Zhuang et
al., 2022).

2.2 ActionVideo Prediction

Some existing works for human action video prediction
adopt deterministic models that directly minimize the dis-
tance between the synthesized action frames and the real
frames, to produce deterministic image sequences (Finn et
al., 2016; Jia et al., 2016; Yoo et al., 2017; Kalchbrenner et
al., 2017; Villegas et al., 2017; Zhao et al., 2018; Wang et
al., 2019; Kwon & Park, 2019; Guen & Thome, 2020) or
future pose (Li et al., 2018; Zhao et al., 2018; Wang et al.,
2019; Guo & Choi, 2019; Gopalakrishnan et al., 2019; Mao
et al., 2019; Cai et al., 2020; Mao et al., 2020; Piergiovanni
et al., 2020). Their corresponding performances are gener-
ally limited since their results may converge to the average
of possible outcomes. To achieve more realistic and dynamic
predictions, recent methods employ deep generative models,
including VAE (Kingma & Welling, 2014), VRNN (Chung
et al., 2015) and GAN (Goodfellow et al., 2014).

GAN-based approaches extend the structure of vanilla
GAN into the sequential one (Wichers et al., 2018; Lee et
al., 2018; Cai et al., 2018; Mathieu et al., 2015). Cai et al.
(2018) predicted human pose sequenceswith a latent variable
in adversarial learning. The basic idea is to construct a dis-
criminator to classify the realness of synthesized sequences
and corresponding real ones. It updates the generator to pass
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the discriminator with good-quality generated sequences. On
the other hand, using VAE (Li et al., 2018; Kim et al., 2019;
Lee et al., 2018; Yan et al., 2018; Babaeizadeh et al., 2017;
Kumar et al., 2019; Razavi et al., 2019; Aliakbarian et al.,
2020) can also achieve promising performance. Kim et al.
(2019) extended VAE with RNN structure, and set a com-
mon latent variable for predicting overall time steps. Lee
et al. (2018) utilized multiple latent variables with identical
distribution for prediction at each time step during inference.
Babaeizadeh et al. (2017)modeledmotion patterns and diver-
sity with a single set of fixed latent variables for prediction.
These strategies do not consider temporal coherence during
inference.

Video prediction can also use VRNN (Castrejon et al.,
2019; Denton & Fergus, 2018; Minderer et al., 2019). Den-
ton and Fergus (2018) proposed a VRNN framework with a
learned prior for inference. Castrejon et al. (2019) improved
the performance by extending hierarchical structures for
latent variables of VRNN. These approaches do not main-
tain individual temporal coherence for each action category,
and thus are different from our work. Besides, our frame-
work’s modeling on latent variables varies from the current
VRNN.

One crucial issue about human action video prediction
is the use of structural information. Some existing works
(Srivastava et al., 2015; Xu et al., 2018; Oliu et al., 2018;
Tulyakov et al., 2018; Wichers et al., 2018; Lee et al., 2018;
Cai et al., 2018) directly synthesized action frames from
networks and achieved success on simple datasets with low
motion variance and image resolution. With the advance in
pose-guided image generation (Zhu et al., 2019; Neverova
et al., 2018; Ma et al., 2017; Siarohin et al., 2019b, a),
recent methods favored a two-stage strategy to generate pose
sequences firstly and then use them as conditions to halluci-
nate image sequences (Li et al., 2018; Kim et al., 2019; Zhao
et al., 2018; Villegas et al., 2017; Wang et al., 2018; Yang et
al., 2018; Walker et al., 2017).

Moreover, besides humanmotionprediction, there are also
some works about human trajectory prediction (Huang et
al., 2019; Kothari et al., 2021; Chen et al., 2021; Duan et
al., 2022; Adeli et al., 2021). These works are mainly built
on the image or spatial position conditions, and aim to esti-
mate the future state of trajectory. Trajectory prediction is a
different task from motion prediction and is not our target.
Meanwhile, our ACT-VAE is different from theirs in terms
of temporal modeling, model structure, and optimization
strategy, since our approach can simultaneously guarantee
temporal coherence and high accuracy within each class, and
has high controllability for generation types.

The ill-posed property of previous works’ solutions is
severe since they have not individually achieved temporal
coherence for each action category, resulting in the solution
space, which is extremely larger than the distribution of real

image sequences. To reduce the ill-posed degree, we are the
first to formulate the individual temporal coherence for the
outputs of ACT-VAE. The distribution of image sequences
with the individual temporal coherence is close to the dis-
tribution of real ones. As a result, our ACT-VAE weakens
the ill-posed problem, improving the model accuracy and
preserving diversity compared with existing methods.

3 Method

Following the task setting of Kim et al. (2019), our model
predicts human actions by synthesizing N futureRGBframes
{̂It+i }i=1,...,N for an initial image It ∈ R

H×W×3 with its
target action label A ∈ R

C (one-hot vector form) as

{̂It+i }i=1,...,N = F(It |A), (1)

where F is the desired action video prediction model, I
denotes a real imagewith pose p, and̂I denotes a synthesized
image with pose p̂. t and t + i index time in a video. H and
W denote image height and width respectively. N and C are
the length of synthesized frames and the number of action
categories to be modeled.

Sequential action modeling should be independent of
object appearance and background. To this end, we propose a
framework consisting of two modules, which are ACT-VAE
and P2I networks, as shown in Fig. 2. With the pose of the
initial input image It and the target action labelA, ACT-VAE
generates pose sequences in key point form. ACT-VAE fur-
ther produces realistic videos by connecting it with the P2I
network that is a plug-and-play module.

3.1 Action Conditional Temporal VAE

Given an initial image It , its initial pose pt (we employ the
setting of Villegas et al. (2017); Zhao et al. (2018) to set pt
for It ), and target action label A, our proposed ACT-VAE
predicts future pose sequence as

{ p̂t+i }i=1,...,N = T (pt |A), (2)

where T is ACT-VAE. Both pt and p̂t can be represented in
the form of key point coordinate values (Kim et al., 2019).

The design of ACT-VAE is motivated by the observa-
tion that a particular kind of action should have a distinctive
primary motion pattern. Meanwhile, it may exhibit diverse
local details for different persons as the diversity of motion.
For example, batting is a standard motion pattern in base-
ball while everybody’s batting differs from each other a bit.
Suchmotion pattern and regional diversity are supposed to be
temporally correlated for realism, and each action category
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Fig. 3 The architecture ofACT-VAE to synthesize future pose sequence
based on an initial human pose pt and an action labelA. ACT-VAE con-
sists of the encoder E and the decoder D, which are both implemented
with LSTM networks. Four future frames from the time index t are
generated here, and ACT-VAE can indeed synthesize the pose sequence
with arbitrary length.Moreover, hE≤t and h

D≤t are set as the initial hidden
state of E and D. In addition, we feed action labels into ACT-VAE by
concatenating them with other input variables of LSTM at each time
step

should have its individual temporal coherence. The individ-
ual temporal coherence for human action video prediction of
diverse action types in our ACT-VAE is achieved not only by
the novel model structure, but also the temporal modeling of
latent variables and the corresponding new training strategy
for ACT-VAE.

Thus, unlike previous VAE-based video prediction meth-
ods (Kim et al., 2019; Li et al., 2018) that take identical
latent variables as the condition for the generation across
all time steps, we equip VAE with the property of temporal
coherence for various action categories. As shown in Fig. 3,
ACT-VAE is different from conventional VAE by modeling
the temporally correlated latent variable {zt+i }i=1,...,N and
pose { p̂t+i }i=1,...,N with a distinctive recurrent structure, and
using different action categories as the condition. Especially,
ACT-VAE models the latent variable at each time step with
features of both previous pose and latent variables. For vari-
able y, y<t denotes the sequence {yt ′ }t ′<t , and y≤t represents
{yt ′ }t ′≤t .

3.1.1 Structure of ACT-VAE

As shown inFig. 3,ACT-VAEhas an encoder E and adecoder
D both in recurrent manner using LSTM (Greff et al., 2016).
The encoder E is to sample latent variable {zt+i }i=1,...,N , if
the initial input pose of ACT-VAE is denoted as pt . In such
process, the sampling of zt+i is implemented by modeling

joint posterior distribution of z<t+i and p̂<t+i conditioned
by the action label A as

(μt+i , σt+i , h
E
t+i ) = E(hE

t+i−1, zt+i−1, p̂t+i−1|A),

zt+i ∼ N (μt+i , σt+i ),
(3)

whereN (μ, σ ) is normal distributionwithmean valueμ and
standard deviation σ , ∼ is the operation of sampling, and
hE
t+i−1 is the hidden state of the encoder E which contains

information from z<t+i−1 and p̂<t+i−1.
The decoder D can synthesize pose sequence recurrently

according to the joint posterior distribution of z≤t+i and
p̂<t+i conditioned by A as

( p̂t+i , h
D
t+i ) = D( p̂t+i−1, h

D
t+i−1, zt+i |A), (4)

where hD
t+i−1 is the hidden state of D, which involves infor-

mation from p̂<t+i−1 and z<t+i .
Our structure is the first framework that can achieve con-

trollable action video prediction with “individual temporal
coherence”, individuallymaintaining temporal coherence for
each action category. Different from previous RNN, VAE
models, and their combinations, in ACT-VAE, the priors of
the action category are explicitly led to the input and inter-
mediate states of RNN with VAE’s latent modeling, using
the fusion strategy of the neural forwarding module. Also,
novel temporal modeling on latent variables is designed in
ACT-VAE, where the latent variable at each time step is
queried based on previous action features and latent vari-
ables. Such a temporal modeling manner is distinct from
existing approaches. VRNNs (Castrejon et al., 2019; Denton
& Fergus, 2018; Minderer et al., 2019) mainly formulate
latent variables z as zt ∼ Qφ(zt |x<t ) where x<t is the
previous observation (e.g., pose sequences). ACT-VAE will
model z as zt ∼ Qφ(zt |z<t , x<t ). Moreover, our temporal
modeling is also varying from the VAE networks (Li et al.,
2018; Kim et al., 2019; Lee et al., 2018; Yan et al., 2018;
Babaeizadeh et al., 2017; Kumar et al., 2019; Razavi et al.,
2019; Aliakbarian et al., 2020), which implement temporal
coherence with temporal-varying conditions, i.e., theymodel
z as zt ∼ Qφ(zt |z<t ).

3.1.2 Learning of ACT-VAE

Suppose the initial input image is denoted as I0 and its pose is
p0, ACT-VAE predicts pose sequence for action category A
as { p̂i }i=1,...,N (i.e., p̂≤N ). Thus, ACT-VAE is to synthesize
future pose by optimizing conditional posterior probabil-
ity Pθ ( p̂≤N |p0,A), which is approximated by a network
with parameters θ . Directly computing Pθ ( p̂≤N |p0,A) is
intractable since it is difficult to compute its probability den-
sity function. In VAE (Kingma & Welling, 2014), regarding
the probability distribution ofPθ ( p̂≤N |p0,A), wemaximize
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its lower bound instead.And this lower bound canbeobtained
with Jensen’s inequality as

ln(Pθ ( p̂≤N |p0,A))

≥ Ez∼Qφ(z| p̂,A)

[

ln
Pθ ( p̂≤N , z|p0,A)

Qφ(z| p̂,A)

]

, (5)

where Qφ(z| p̂,A) is a posterior distribution and ln is the
operation of computing natural logarithm. We further notice
that Pθ ( p̂≤N , z|p0,A) and Qφ(z| p̂,A) can be decomposed
as:

ln(Pθ ( p̂≤N , z|p0,A))

= ln(
∏

t=1:N
Pθ ( p̂t |z≤t , p̂<t ,A)Pφ(zt )), (6)

ln(Qφ(z| p̂,A))

= ln(
∏

t=1:N
Qφ(zt |z<t , p̂<t ,A)), (7)

where Pθ ( p̂t |z≤t , p̂<t ,A) and Qφ(zt |z<t , p̂<t ,A) are two
posterior distributions that are approximated by D and E in
ACT-VAE. Pφ(zt ) is the prior distribution for zt . According
to Eqs. (5), (6), and (7), we can obtain the lower bound of
ln(Pθ ( p̂≤N |p0,A)) as

Ez∼Qφ(z| p̂,A)

[

∑

t=1:N
(ln(Pθ ( p̂t |z≤t , p̂<t ,A))

+ ln(Pφ(zt )) − ln(Qφ(zt |z<t , p̂<t ,A)))

]

.

(8)

Moreover, it is trivial to obtain the expression of an objec-
tive to optimize when the initial input pose is denoted as pt ,
by replacing the corresponding time index. We will show
the superiority of this novel optimization objective for the
accuracy of prediction with experiments in Sect. 4. Note

Ez∼Qφ

[

ln(Pφ(zt )) − ln(Qφ(zt |z<t , p̂<t ,A))

]

= −Ez∼Qφ

[

ln
Qφ(zt |z<t , p̂<t ,A)

Pφ(zt )

]

,

(9)

which is the negative KL-divergence between two distri-
butions of Qφ(zt |z<t , p̂<t ,A) and Pφ(zt ). This is the cost
function of the encoder in ACT-VAE.

For the decoder, its objective is Pθ ( p̂t |z≤t , p̂<t ,A) in
Eq. (8). Maximizing it leads the predicted pose sequence to
be close to its ground truth. It is trivial to obtain the expres-
sion of an objective to optimize when the initial input image
is denoted as It , by replacing the corresponding time index.

3.1.3 Training Objective

If the input pose of ACT-VAE is pt and we predict N frames,
then the optimization target of ACT-VAE is to minimize the
distance Ldis and KL-divergence Ldiv , as

Ldis =
t+N
∑

t ′=t+1

|| p̂t ′ − pt ′ ||1,

Ldiv =
t+N
∑

t ′=t+1

KL(N (μt ′ , σt ′),Pφ(zt ′)),

Lvae = λ1 Ldis + λ2 Ldiv,

(10)

where Lvae is the loss to optimize for ACT-VAE, p̂t ′ is the
generated pose from ACT-VAE, and pt ′ is its correspond-
ing ground truth at time t ′. The prior distribution Pφ(zt ) is
assumed to be the standard normal distribution N (0, I). KL
is to compute the KL-divergence between two distributions.
λ1 and λ2 are loss weights that are obtained by using the
grid search on the validation set. Note that the action labelA
should be consistent with the input image/pose during train-
ing, while can be inconsistent with the input during inference
to control which action type to generate.

3.1.4 Inference

Given the pose of input image pt and the target action label
A, we aim to generate pose sequence { p̂t+i }i=1,...,N during
inference. To obtain p̂t+i , we first sample latent variable zt+i

with Eq. (3) and then use it to compute p̂t+i with Eq. (4).
Obviously, the process to sample {zt+i }i=1,...,N and generate
the pose sequence { p̂t+i }i=1,...,N is same for both training
and inference.

Our modeling on latent variables differs from the cur-
rent VRNN works (Castrejon et al., 2019; Denton & Fergus,
2018): VRNN models zt with the posterior zt ∼ Qφ(zt |
z<t , p̂≤t ) during training and the prior zt ∼ Pφ(zt |z<t , p̂<t )

during inference; ACT-VAEmodels zt with zt ∼ Qφ(zt |z<t ,

p̂<t ) for both training and inference, resulting in higher
accuracy anddiversity as proved inSect. 4.5.2.Besides,ACT-
VAE also differs fromSVG-FP (Denton&Fergus, 2018) that
models zt with a fixed prior during inference.

The novel temporal modeling during training and infer-
ence has several significant benefits compared with previous
methods. First, although previous approaches have consid-
ered the temporal consistency among different frames, our
new modeling strategy can maintain temporal coherence for
each action category, i.e., the synthesized image sequence
will be in accord with the given input action label to con-
trol what action to generate. Second, our temporal modeling
allows the same sampling pipeline for training and inference,
decreasing the gap between the training and inference phase
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and thus improving the generalization. Third, our temporal
modeling has new temporal conditional modeling for latent
variables (different from existing approaches includingVAE,
RNN, and others, as indicated in Sects. 2 and 3.1.1 ), which
can enhance the prediction accuracy as proved by experi-
ments in Sect. 4.

Moreover, as a general approach, ACT-VAE can synthe-
size image sequences, by connecting it with a plug-and-play
network that maps pose sequences to image sequences. To
this, we design an effective Pose-to-Image network.

3.2 Pose-to-Image Network

P2I network (denoted as G) predicts a realistic image
sequence {̂It+i }i=1,...,N by taking input of a pose sequence
{pt+i }i=1,...,N (or { p̂t+i }i=1,...,N ), a still image It with its
pose pt , and an action label A. We employ the encoder-
decoder structure in Zhu et al. (2019) as the backbone, with
our attention mechanism and conditional batch normaliza-
tion.

3.2.1 Foreground Attention

Considering the elusive variance in the background of human
videos, directly generating an image sequence tends to yield
severe artifacts in the background. For the nearly static back-
ground in It , we exploit foreground-background composition
with an attention mechanism. It makes the generator concen-
trate on foreground synthesis, which is our main focus in this
paper.Other background synthesismethodswill be our future
work. Generally, given It and pt and pt+i , the procedure to
synthesize the target frame is

( Īt+i , Mt+i ) = G(It , pt , pt+i ),

̂It+i = Īt+i � Mt+i + It � (1 − Mt+i ),
(11)

where ̂It+i is the generated frame, Mt+i is a soft mask indi-
cating foreground, and � refers to Hadamard product. This
procedure is denoted as ̂It+i = GM(It , pt , pt+i ).

3.2.2 Action Conditional Batch Normalization

We utilize task-related conditions into normalization opera-
tions to improve results (Perez et al., 2018; Clark et al., 2019)
through incorporating action conditional batch normalization
(ACBN) into G. This design is based on the assumption that
statistics of intermediate feature maps in G for each action
category should be distinctive. From this perspective, we
assign affine transformation parameters γA and τA for BN
operations in the decoder ofG with the condition of the action

label A as

x̂ = γA
x − νx

√

ρ2
x + ε

+ τA, (γA, τA) = B(A), (12)

where νx and ρx are mean and variance computed from input
featuremap x , and ε is a small positive constant for numerical
stability. γA and τA for each BN operation in decoder are
predicted byA from a network B as shown in Fig. 2. B is an
embedding layer with the input of action labels.

3.2.3 Training P2I Network

The training objective of the P2I network consists of recon-
struction and adversarial loss. We employ both pixel-level
and perceptual-level (Johnson et al., 2016; Zhu et al., 2017)
reconstruction loss as

Lrec =
N

∑

i=1

5
∑

m=0

E(||Φm(̂It+i ) − Φm(It+i )||1), (13)

where ̂It+i = GM(It , pt , pt+i ), E is the operation to com-
pute mean value, Φ0(·) is the raw pixel space, Φ1(·) to Φ5(·)
are five feature spaces of an ImageNet-pretrained VGG-16
network (Johnson et al., 2016). Further, adversarial learn-
ing is proved to be effective in human video synthesis (Yang
et al., 2018; Wang et al., 2018). Thus, we use the form of
LS-GAN (Mao et al., 2017) for adversarial learning, as

Lgand = E((D(It+i † pt+i ) − 1)2)

+ E((D(̂It+i † pt+i ))
2),

Lgang = E((D(̂It+i † pt+i ) − 1)2),

(14)

where i ∈ [1, N ], † is the operation of channel concatenation,
D is the discriminator and Lgand is its loss term, Lgang is the
loss term for the P2I network. To stabilize adversarial learn-
ing, we utilize feature match lossLaux (Wang et al., 2018) as
an auxiliary part of the adversarial loss, which is the distance
between real and fake samples in the feature space of D.
Compared with the generation with {pt+i }i=1,...,N , the gen-
eration with { p̂t+i }i=1,...,N is harder since there is no ground
truth. To address this issue, we adopt a term of adversarial
loss, similar to Eq. (14), as

Lgan
̂d

= E((D(GM(It , pt , p̂t+i ) † p̂t+i ) − 0)2),

Lganĝ = E((D(GM(It , pt , p̂t+i ) † p̂t+i ) − 1)2).
(15)

In summary, the overall loss terms for G and D are

Ld = λ3 (Lgand + Lgan
̂d
),

Lg = λ4 (Lgang + Lganĝ ) + λ5 Laux + λ6 Lrec,
(16)
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Algorithm 1 Training algorithm for ACT-VAE
1: Input: training image sequences, with their pose sequences and

action labels. Initialized ACT-VAE including the encoder E and the
decoder D;

2: for i = 0 to max I ters do
3: for each training tuple (pt , ..., pt+N ,A) in dataset do
4: Initialize hidden state of E as 0 and set it as hE≤t ;
5: Initialize z≤t ∼ N (0, I );
6: (μt+1, σt+1, hE

t+1) ← E(pt , hE≤t , z≤t |A);
7: zt+1 ∼ N (μt+1, σt+1);
8: Initialize hidden state of D as 0 and set it as hD≤t ;
9: ( p̂t+1, hD

t+1) ← D(pt , hD≤t , zt+1|A);
10: for k = 1 to N − 1 do
11: (μt+k+1, σt+k+1, hE

t+k+1) ← E( p̂t+k , hE
t+k , zt+k |A);

12: zt+k+1 ∼ N (μt+k+1, σt+k+1);
13: ( p̂t+k+1, hD

t+k+1) ← D( p̂t+k , hD
t+k , zt+k+1|A);

14: end for
15: Compute Lvae in Eq. (10) using ( p̂t+1, ..., p̂t+N ),

(pt+1, ..., pt+N ), (zt+1, ..., zt+N ), λ1 and λ2;
16: Update the weights of E and D;
17: end for
18: end for
19: return trained encoder E and decoder D of ACT-VAE;

Algorithm 2 Training algorithm for P2I network
1: Input: training image sequences, with their pose sequences and

action labels.

2: for i = 0 to max I ters do
3: for each tuple [(It , ..., It+N ), (pt , ..., pt+N ),A] in dataset do
4: for k = 1 to N do
5: ̂It+k ← GM(It , pt , pt+k);
6: end for
7: Compute Lrec by Eq. (13);
8: Compute Lgang and Laux by Eq. (14);
9: Compute λ4 Lgang + λ5 Laux + λ6 Lrec , update G;
10: Compute λ3 Lgand by Eq. (14), update D;
11: Take pt , A as input, ACT-VAE outputs ( p̂t+1, ..., p̂t+N );
12: for k = 1 to N do
13: ̂It+k ← GM(It , pt , p̂t+k);
14: Compute λ4 Lganĝ by Eq. (15) to update G;
15: Compute λ3 Lgan

̂d
by Eq. (15) to update D;

16: end for
17: end for
18: end for
19: return trained P2I network G;

where λ3 to λ6 are loss weights that are set based on param-
eters of pose-guided image generation methods (Zhu et al.,
2019; Wang et al., 2018) and grid search. Ld is the loss for
D and Lg is the loss for G. In our experiments, λ1 = 200,
λ2 = 0.002, λ3 = 5, λ4 = 5, λ5 = 1, λ6 = 30.

3.3 Training and Inference Algorithm

To train our framework, ACT-VAE and P2I networks are
trained separately. We denote the operation of sampling as
∼, the variablewith all zero value as 0. The operation A ← B

Algorithm 3 Inference algorithm for action prediction
1: Input: Trained ACT-VAE which includes encoder E and decoder

D, trained P2I network G, input still image It with its pose pt and
action label A;

2: Initialize the hidden state of E as 0 and set it as hE≤t ;
3: Initialize z≤t ∼ N (0, I);
4: (μt+1, σt+1, hE

t+1) ← E(pt , hE≤t , z≤t |A);
5: zt+1 ∼ N (μt+1, σt+1);
6: Initialize the hidden state of D as 0 and set it as hD≤t ;
7: ( p̂t+1, hD

t+1) ← D(pt , hD≤t , zt+1|A);
8: for k = 1 to N − 1 do
9: (μt+k+1, σt+k+1, hE

t+k+1) ← E( p̂t+k , hE
t+k , zt+k |A);

10: zt+k+1 ∼ N (μt+k+1, σt+k+1);
11: ( p̂t+k+1, hD

t+k+1) ← D( p̂t+k , hD
t+k , zt+k+1|A);

12: end for
13: for k = 1 to N do
14: Compute ̂It+k = GM(It , pt , p̂t+k) by using A to compute

parameters of ACBN for G;
15: end for
16: return {̂It+k}k=1,...,N as predicted image sequence;

means that we set the value of A as the output of B. Training
algorithms are given below.

– To train ACT-VAE, we have training data as the pose
sequences with their corresponding action labels. A
detailed training algorithm for ACT-VAE is shown in
Algorithm 1.

– To train P2I network, we need image sequenceswith their
pose sequences and action labels. Its training procedure
is shown in Algorithm 2.

One feature of our ACT-VAE is that the process of sampling
latent variables and generating pose sequences are identical
in training and inference. After we have trained the ACT-
VAE and P2I networks, we can synthesize image sequence
{̂It+k}k=1,...,N by using Algorithm 3, with the input as a still
image It with action label A.

3.4 Network Details

In experiments, the network configuration for each com-
ponent (ACT-VAE and P2I network) in our framework is
summarized as the following.

3.4.1 ACT-VAE

ACT-VAE is structured like an encoder-decoder, and both
encoder and decoder are implemented as one-layer LSTM.
The input size of encoder E is J ×2+C+512 (J is the joint
number in pose and C is the number of action categories),
the hidden size is 1024, the output size is 512; the input size
of decoder D is J × 2 + C + 512, the hidden size is 26, the
output size is J × 2.
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Fig. 4 Detailed structure of the P2I network

The fusion mechanisms of temporal variables and action
labels can be summarized as the following. First, the action
label A is sent through the embedding layer to obtain
its vector representation, and its embedding is fused with
the temporal latent variables with a multi-layer forwarding
module, building the corresponding conditional probabil-
ity distribution. And the fusion of h, z, p̂ in Eqs. 3 and
4 is completed by concatenation with position embedding
to distinguish different input parts. And the fusion with the
embedding of A is also implemented with a multi-layer for-
warding module.

3.4.2 P2I Network

The P2I network has two encoder heads as image encoder
EI (Fig. 4a) and pose encoder EP (Fig. 4b), and it con-
tains an image decoder DI (Fig. 4d). Besides, it is trained
in adversarial manner, hence it is attached with a discrim-
inator for training (Fig. 4e). In Fig. 4, “Conv, 7 × 7, 3 ×
64, 1, BN , ReLU” means that this convolution layer adopts
kernel size of 7×7with stride size of 1, and has 3 input feature
channels and 64 output feature channels. A batch normaliza-
tion layer and an activation function ReLU is applied to the
output of this convolution layer. Meaning of other convolu-
tion layers can be interpreted in the same way.

For the synthesis with input as It , pt and pt+i , the image
encoder EI and pose encoder EP will transform It into image
feature, and transform pair (pt , pt+i ) into spatial feature.
These features are then sent into pose-attentional transfer
blocks (Zhu et al., 2019) (the red rectangles in Fig. 4) and
the image decoder DI to obtain two types of outputs: the
produced image and the mask to distinguish foreground and

background. To compute the parameters of ACBN in DI ,
we use two 1D embedding layers B (Fig. 4c) with the input
dimension as the number of action categories.

4 Experiments

4.1 Datasets

To verify our method’s generality, we employ datasets con-
taining various action categories, which are Penn-action
(Zhang et al., 2013) and Human3.6M (Ionescu et al., 2013).
Penn-action contains videos of humans in 15 sport action
categories. The total number of videos is 2,326. For each
video, 13 human joint annotations are provided as the ground
truth of pose. We adopt the experimental setting of Kim et
al. (2019) with 9 action categories for experiments, includ-
ing baseball pitch, baseball swing, clean and jerk, pull ups,
golf swing, tennis forehand, tennis serve, jumping jacks and
squats. Besides, we follow the same train/test split of Kim et
al. (2019) for a fair comparison.

Human3.6M contains various daily human actions, and
this dataset provides 17 human joint annotations as the
ground truth of pose. Moreover, to conduct experiments on
the action category with obvious motion patterns, we choose
8 action categories from this dataset for experiments: direc-
tions, greeting, phoning, posing, purchases,walking,walking
dog, and walking together. Moreover, we follow the same
train/test split of Mao et al. (2019).

This paper focuses on the modeling of human action, thus
we experiment on action datasets with static or simple back-
grounds to minimize disturbances from backgrounds. This
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is the reason why we choose Penn-action & Human3.6M.
The synthesis with dynamic backgrounds and the model-
ing of general object moving will be our future work. We
set the resolution of both input images and output videos
as 128 × 128, since it is the maximal resolution adopted in
existing methods.

4.2 Implementation Details

To train ACT-VAE and P2I networks, we employ Adam opti-
mizer (Kingma & Ba, 2014) with β1 and β2 set as 0.5 and
0.999 respectively. The learning rate is 10−4 and the batch
size is 24. Our approach is implemented in PyTorch 1.0.1
(Paszke et al., 2019), and runs on an Intel 2.60GHz CPU
and TITANXGPU. On average, our framework can create 4
frames in resolution 128×128 with a single input image and
an action label within 34.93 ms, where 2.57 ms is spent for
ACT-VAE and 32.36ms for P2I network. The model capac-
ity for ACT-VAE and P2I networks are 6.503M and 41.352M
respectively.

4.3 Metrics

4.3.1 Key Points Generation Evaluation

To evaluate the accuracy of estimated future key points, we
adopt L2 distance between coordinates of predicted pose
sequence and the ground truth, the same as in that of Yang
et al. (2018). The coordinate range is [0, 127] × [0, 127] for
128×128 images. Especially, for each sample, we synthesize
100 sequences to compute their distances with the ground
truth and report the average value of 10 smallest distances.
Besides, similar to Li et al. (2018), we compute the standard
deviation of the predicted key point coordinates from the
estimated sequences (these sequences are obtained through
the repeated sampling of latent variables for identical input
pose) as the indication of how diverse the model predictions
are. Specifically, we compute the standard deviation for the
coordinate value of each joint, and take the average value of
these standard deviations on all joints as the metric. This is
also computed with coordinate range as [0, 127] × [0, 127].

4.3.2 Image Sequence Generation Evaluation

For the evaluation of generated image sequences, we adhere
to the protocols in Kim et al. (2019), using FVD (Unterthiner
et al., 2018), L2 distance, action recognition accuracy, and
user study. FVD refers to the Fréchet distance between the
deep features of real and generated videos. Such features are
gained from the I3D model (Carreira & Zisserman, 2017),
as used in Kim et al. (2019). FVD is set to compare the
visual quality, temporal coherence, and diversity for gener-
ated videos. We also employ metrics utilized in Castrejon et

al. (2019), which are SSIM (Wang et al., 2004) and LPIPS
(Zhang et al., 2018). Especially, LPIPS computes perceptual
similarity with deep features.

4.4 Ablation Study

4.4.1 Key Point Generation Evaluation

We first set ablation studies to explore how extra conditions
(action labels) contribute to the prediction in ACT-VAE. In
ACT-VAE, zt ∼ Qφ(zt |z<t , p̂<t ,A), and we conduct exper-
iments without action labels for the encoder and decoder of
ACT-VAE to analyze the role ofA. This setting is called “w/o
A” and zt ∼ Qφ(zt |z<t , p̂<t ). The corresponding results are
shown in Table 1 (We use ↓ to denote “the lower the better”;
use ↑ to denote “the higher the better”). Though its perfor-
mance is inferior to that with action labels, it is still better
than existing methods (as shown in Table 3). Thus, the mod-
eling of ACT-VAE does improve pose prediction accuracy
even without action labels.

Moreover, it is inevitable to prove the contribution of the
condition z<t : we build ACT-VAE without action labels,
remove the input condition z<t , and keep the condition of
the past pose for the encoder of ACT-VAE. This setting is
called “w/o AZ”, directly sampling zt ∼ Qφ(zt | p̂<t ) like
(Denton&Fergus, 2018). Comparedwith “w/o A” inTable 1,
“w/o AZ” has worse results for prediction. Thus, the struc-
tural novelty of setting z<t as the condition to sample zt has
a great contribution to the accuracy and diversity.

We also verify the significance of temporal coherence
by conducting ACT-VAE without action labels and mod-
eling zt as independent Gaussian distribution. The results
(“w/o AC”) are worse than “w/o A” and “w/o AZ”. Thus,
removing temporal coherence reduces performance. The
“temporal coherence” principle should be different within
various actions, which is called “individual temporal coher-
ence”. The superiority of “Ours” over “w/o A” in Table 1
proves its positive impact.

In addition, we provide the visual samples for each abla-
tion setting in Fig. 5, where “w/o AC I/II”, “w/o AZ I/II”,
“w/o A I/II” and “Ours I/II” means two diverse predictions
for identical input, derived from the ablation setting of “w/o
AC”, “w/o AZ”, “w/o A” and our full setting, respectively.
We should note that our full setting leads to the most out-
standing visual accuracy and diversity.

4.4.2 Image Sequence Generation Evaluation

There are two significant parts in our P2I network, i.e., the
foreground-background composition strategy and ACBN.
We conduct an ablation study to illustrate their respective
importance by deleting them from our framework respec-
tively. When remove the foreground-background composi-

123



International Journal of Computer Vision (2023) 131:2699–2722 2709

Table 1 Quantitative results of ablation study on the key point generation evaluation

Penn-action Human3.6M
w/o A w/o AZ w/o AC Ours w/o A w/o AZ w/o AC Ours

L2 (↓) 29.59 30.31 34.74 28.32 30.88 31.01 31.37 30.41

Std (↑) 1.584 1.462 0.732 1.663 0.730 0.672 0.564 0.838

“L2” is the L2 distance to measure accuracy, and “Std” is the standard deviation to measure diversity

tion strategy, the P2I network directly synthesizes images
without mask prediction. We call this setting “w/o mask”.
Removing ACBN from the P2I network, and replacing it
with normal BN is denoted as “w/o ACBN”. The quantita-
tive results are reported inTable 2, and the qualitative samples
are shown in Fig. 6. Clearly, removing any of them leads to
the degeneration of performance.

4.5 Comparison with ExistingMethods

4.5.1 Baselines

For the keypoint generation evaluation, we choose current
state-of-the-art strategies which include the pose generation
module of KL-VP (Kim et al., 2019), IVRNN (Castrejon et
al., 2019), SVG-FP (Denton&Fergus, 2018), SVG-LP (Den-
ton & Fergus, 2018), Dlow (Yuan & Kitani, 2020), MT-VAE
(Yan et al., 2018), pose prediction network of LF-VP (Zhao
et al., 2018), Traj (Mao et al., 2019) and Rep (Mao et al.,

Fig. 5 Visual comparison for ablation study on key point generation
evaluation in the testing set. The column of “real” is the input image
and real future pose sequence. The red rectangles are input conditional
images, the yellow rectangles are real future pose sequences, and the

blue rectangles are the predictions. “I” and “II” are two diverse pre-
dictions for identical input, derived from each ablation setting. And the
black dotted rectangles are the parts that can notably reflect the accuracy
and diversity of our results (Color figure online)
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Fig. 6 Visual comparison for ablation study on image sequence generation evaluation in the testing set. Input images, real future pose sequences,
and the corresponding predictions are marked by red, yellow, and blue rectangles, respectively (Color figure online)

Table 2 Ablation study on image sequence generation evaluation

Method FVD (↓) Accuracy (↑) L2 (↓) SSIM (↑) LPIPS (↓)
w/o mask 1455.2 66.03 50.04 0.7913 0.1132

w/o ACBN 1377.2 68.83 42.16 0.8028 0.1247

Ours 1092.8 70.04 39.82 0.8248 0.0908

Table 3 The results of ACT-VAE and chosen strategies on key point generation evaluation

Method Penn-action Human3.6M
L2 (↓) Std (↑) L2 (↓) Std (↑)

VAE of Kim et al. (2019) 32.88 0.895 32.65 0.336

VRNN (Castrejon et al., 2019) 30.24 1.495 30.96 0.552

SVG-FP (Denton & Fergus, 2018) 31.44 1.543 32.88 0.720

SVG-LP (Denton & Fergus, 2018) 30.72 1.519 31.92 0.648

Dlow (Yuan & Kitani, 2020) 55.84 0.617 31.74 1.082

Mix-and-Match (Aliakbarian et al., 2020) 32.14 1.541 34.03 0.772

MT-VAE (Yan et al., 2018) 31.85 1.328 33.96 0.514

LSTM of Zhao et al. (2018) 33.43 0.000 38.22 0.000

Traj (Mao et al., 2019) 31.18 0.000 38.55 0.000

Rep (Mao et al., 2020) 29.03 0.000 32.35 0.000

ACT-VAE (w/o A) 29.59 1.584 30.88 0.730

ACT-VAE 28.32 1.663 30.41 0.838

“L2” is the L2 distance to measure accuracy, and “Std” is the standard deviation to measure diversity

2020). KL-VP, MT-VAE and Dlow utilize VAE, IVRNN and
SVG-LP employ architectures of VRNN, LF-VP and Traj
and Rep are all deterministic models for prediction. For fair-
ness, we change the input of all chosen approaches to our
pose representation and concatenate it with the action label,
and retrain their models with their released codes for com-
parison. Besides, we align their settings with ours, including
training/testing split and training epochs.

Moreover, five representative methods are taken as base-
lines for image sequence generation evaluation, including
HL-VP (Wichers et al., 2018), LG-VP (Villegas et al., 2017),
LF-VP (Zhao et al., 2018), KL-VP (Kim et al., 2019) and
IVRNN (Castrejon et al., 2019). HL-VP (Wichers et al.,
2018) is a typical GAN-based approach. LG-VP (Villegas et
al., 2017), LF-VP (Zhao et al., 2018) and KL-VP (Kim et al.,
2019) all produce videos by first predicting pose sequences.
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Table 4 Comparison between our method and baselines

Method FVD (↓) Acc (↑) L2 (↓) SSIM (↑) LPIPS (↓) Ranking (↓)
KL-VP (Kim et al., 2019) 1431.2 67.88 44.47 0.7929 0.1127 3.225 ± 0.352

LG-VP (Villegas et al., 2017) 1982.1 52.18 61.39 0.7433 0.1428 6.150 ± 0.522

HL-VP (Wichers et al., 2018) 2814.3 45.21 60.92 0.7231 0.1459 6.300 ± 0.143

LF-VP (Zhao et al., 2018) 1736.9 56.85 58.54 0.7452 0.1368 4.290 ± 0.850

IVRNN (Castrejon et al., 2019) 1970.2 67.35 46.30 0.7548 0.1297 3.590 ± 0.892

KL-VP-Ours 1318.9 62.33 48.61 0.7677 0.1221 2.955 ± 0.241

Ours 1092.8 70.04 39.82 0.8248 0.0908 1.490 ± 0.292

Metrics include FVD (Unterthiner et al., 2018), SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), recognition accuracy (Acc), L2 distance
(L2), and ranking results from user study (written in the form of “mean ± standard deviation”)

IVRNN (Castrejon et al., 2019) achieves the best results
among current works adopting VRNN. We use the authors’
released codes and unify the training/testing setting for fair-
ness. Further, the comparison is conducted on Penn-action
following the setting of Kim et al. (2019). Since our train-
ing setting is the same as that of Kim et al. (2019), we use
its pre-trained model for comparison. Moreover, we retrain
models of Zhao et al. (2018); Villegas et al. (2017); Wichers
et al. (2018); Castrejon et al. (2019) with our task setting for
evaluation.

4.5.2 Key Point Generation Evaluation

To illustrate the superiority of ACT-VAE in future pose
sequence prediction, we compare ACT-VAE with the VAE
proposed by Kim et al. (2019), the hierarchical VRNN
designed by Castrejon et al. (2019), the straightforward
LSTM network adopted in Zhao et al. (2018), SVG-FP and
SVG-LP (Denton & Fergus, 2018), MT-VAE (Yan et al.,
2018), Dlow (Yuan & Kitani, 2020), Mix-and-Match (Ali-
akbarian et al., 2020), Traj (Mao et al., 2019) and Rep (Mao
et al., 2020). For fairness, we change the input of all chosen
baselines to our pose representation and concatenate it with
the action label. Significantly, all methods are implemented
with their public source codes.As listed inTable 3,ACT-VAE
yields the lowest L2 distance. As for diversity, ACT-VAE
achieves higher standard deviations compared with most of
the baselines. Although Dlow results in greater diversity on
Human3.6M, ACT-VAE has lower L2 errors. Besides, ACT-
VAE has superior results than Dlow on Penn-action in terms
of accuracy and diversity. It is mainly the higher complexity
of motion patterns in Penn-action over Human3.6M, which
causes poor results of Dlow on Penn-action. Thus, ACT-VAE
is of higher accuracy and diversity than these approaches on
the whole.

4.5.3 Image Sequence Generation Evaluation

Quantitative results. We unify the training and testing set-
tings of all methods, and the experiments are conducted on
the Penn-action dataset. The comparison of FVD for different
approaches is given in Table 4. “KL-VP-Ours” is produced
by synthesizing pose sequences with the VAE structure of
Kim et al. (2019) and using our P2I network to obtain image
sequences. This table shows that our framework yields the
lowest FVD. Next, as in Kim et al. (2019), we also use
action recognition accuracy to evaluate the plausibility of
synthesized videos. To this end, we train a network for action
recognitionwith the structure of two-streamCNN(Simonyan
et al., 2014) on thePenn-Action dataset,which achieves accu-
racy 82.33%on real testing videos. And it is clearly in Table 4
that the recognition accuracy on our synthesized results is
higher than others. It proves that our synthesized motion is
in accordance with the ground truth. Further, we compute
the L2 distance in pixel-level between the synthesized image
sequence and the ground truth, and a lower L2 distance sug-
gests better performance. The results in Table 4 show that
the L2 distance between our prediction and the ground truth
is the lowest. Moreover, it is also evident in Table 4 that our
approach has the highest SSIMwhile the lowest LPIPS. This
outcome further illustrates our superiority.

Finally, a user study is conducted to check the visual qual-
ity of generation following the strategy of Kim et al. (2019).
For each question, there is a real video for reference and
seven synthesized videos by diverse strategies. The order of
these seven videos is randomly chosen, and we ask users
to rank them based on quality and accuracy of prediction.
We invite 20 participants using Google Form, and report the
average ranking for eachmethod. Each participant is required
to answer 30 questions. Results reported in Table 4 clearly
show that the ranking of our results is the highest with low
variance. Thus, our results are the best in human perception
compared with these baselines.
Qualitative results.Video prediction results of our approach
and the baselines on several categories of action in Penn-
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Fig. 7 Visual comparison between our framework and all baselines in
the testing set. In the column of “real”, the first row is the input image
and the following rows are real future frames. The red rectangles are

input conditional images, the yellow rectangles are real future frames,
and the blue rectangles are the predicted frames from different methods
(Color figure online)

Action, are shown in Fig. 7. Our synthesized videos give
both the realistic image sequences and the plausible motion
for the input action condition. It is also clear that, compared
with these baselines, our method achieves improvements in
both the visual and the dynamics quality.We noteKL-VP and
KL-VP-Ours are the strongest baselines, while our results are
of higher visual realism. For Zhao et al. (2018); Villegas et
al. (2017), the quality of appearance and accuracy of motion
prediction havemore room for improvement. And our results

are also more dynamic and sharper than those of Wichers et
al. (2018) and Castrejon et al. (2019).

4.6 The Control of Action Types in Synthesis

Our method can control the action types of the synthesized
sequences like (Kim et al., 2019). Given an input image, we
can provide a list of action labels A1, ...,Ah , to synthesize
a list of videos whose action types are consistent with the
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Fig. 8 Our framework can control action types of synthesized image sequences, via controlling the input of action labels

input action labels A1, ...,Ah . To verify this, we conduct a
quantitative analysis as follows. We synthesize all types of
action sequences from each testing image via providing vari-
ous action labels, and report the value of FVDand recognition
accuracy for the synthesized image sequences. The FVD and
recognition accuracy of our method are 1257.6 and 58.87;
the results of Kim et al. (2019) are 1573.7 and 50.04. These
results demonstrate that our approach can achieve the control
of action types in the synthesis and outperforms the strong
baseline (Kim et al., 2019). Qualitative comparison samples
are displayed in Fig. 8.

4.6.1 User Study: AB-test

Auser studywithAB-test is conducted to evaluate the control
of action types in synthesis: we invite 20 participants to sees
two videos that are synthesized by our method and Kim et al.
(2019), and they will choose which one is more consistent
with the input action label. To demonstrate the performance
of controlling action types, the action labels are inconsistent
with the input conditional images for synthesis. Each partic-
ipant is required to complete 30 pairs of AB-test and 83.7%
of them prefer our method’s results.

They are also invited to complete the AB-test for the eval-
uation of pose sequence: we synthesize pose sequences with
ourACT-VAEand all other baselineswhose implementations
are reported in Sect. 4.5.1. All baselines can synthesize dif-
ferent types of the action sequences since their inputs include
the action labels. To demonstrate the performance of control-
ling action types, the action labels are inconsistent with the
input conditional images for synthesis. We invite 20 partic-
ipants to sees two pose sequences that are synthesized by
our ACT-VAE and one of the other baselines, and they will
choose which one is more consistent with the input action
label (they can also choose that they have no preference).
Each participant is required to complete 100 pairs of AB-test
(10 baselines and the comparison with each baseline con-
tains 10 questions). The results are shown in Table 5. These
results demonstrate that our ACT-VAE can better implement
the control of action types in the synthesis.

4.6.2 User Study: Scores for Multiple Dimensions

To evaluate the results of image sequence synthesis with con-
trollable action types comprehensively, we further conduct
another user study with 80 participants (age ranges from 15–

123



2714 International Journal of Computer Vision (2023) 131:2699–2722

Table 5 User preference comparison in the user study

Methods Other (%) Same (%) Ours (%)

VAE of Kim et al. (2019) 15.5 8.5 76.0

VRNN (Castrejon et al., 2019) 24.0 4.5 71.5

SVG-FP (Denton & Fergus, 2018) 20.5 6.0 73.5

SVG-LP (Denton & Fergus, 2018) 18.0 13.5 68.5

Dlow (Yuan & Kitani, 2020) 20.5 12.5 67.0

Mix-and-Match (Aliakbarian et al., 2020) 17.5 10.5 72.0

MT-VAE (Yan et al., 2018) 8.0 17.5 74.5

LSTM of Zhao et al. (2018) 12.5 5.5 82.0

Traj (Mao et al., 2019) 19.5 10.0 70.5

Rep (Mao et al., 2020) 9.0 8.5 82.5

“Ours” is the percentage that our result is preferred, “Other” is the percentage that other method is preferred, “Same” is the percentage that the user
has no preference

Table 6 The results of the user study to measure the performance of image sequence synthesis with controllable actions types

Methods KL-VP
(Kim et
al., 2019)

LG-VP
(Villegas
et al.,
2017)

HL-VP
(Wich-
ers et al.,
2018)

LF-VP
(Zhao et
al., 2018)

IVRNN
(Castre-
jon et al.,
2019)

KL-VP-
Ours

Ours

Q1: Are the video frames realistic? 3.79 2.54 2.62 3.16 3.35 3.97 4.29

Q2: Is the video frames temporally smooth? 3.63 2.89 3.06 3.25 3.14 3.82 4.06

Q3: Is the video in accord with the input action label? 4.10 3.52 3.40 4.08 3.96 4.24 4.81

Q4: How is video frames’ visual quality? 3.57 3.11 2.89 3.29 3.48 3.73 4.27

Q5: Are videos with different action labels diverse? 4.05 3.73 3.65 4.02 3.82 4.16 4.54

Q6: What is your overall rating for videos? 3.84 3.16 3.02 3.31 3.50 4.03 4.31

67 and the ratio of male to female participants is about 2.31
to 1). Inspired by your questions, we evaluate the results
from multiple aspects. During the user study, each partici-
pant will be shown the synthesis results with different input
action labels (9 for Penn-action) from one method (ours and
baselines). And the participant should evaluate the videos of
one method by rating six questions, including

Q1: Are the video frames realistic?
Q2: Is the video frames temporally smooth?
Q3: Is the video in accord with input action label?
Q4: How is video frames’ visual quality?
Q5: Are videos with different action labels diverse?
Q6: What is your overall rating for videos?

These questions measure the realistic degrees of videos, tem-
poral smoothness of videos, the consistency between the
generated videos and input action labels, and the diversity
among videos with various input action labels. The rat-
ing ranges from 1 (worst) to 5 (best), with the real image
sequences shown at the beginning of the subjective evalua-
tion as the reference (the scores of the ground truths are all 5).
The results are shown inTable 6, indicating that our generated
image sequenceswith action control are better than baselines,

and they are realistic as well as temporally smooth. Signif-
icantly, the videos generated by our approach are in accord
with the given action labels, and they vary for different input
action labels.

4.7 Hyper-Parameters Analysis

There are two important hyper-parameters for the training of
ACT-VAE, which are λ1 and λ2 in Eq. (10). To analyze the
influence of λ1 and λ2 in training, we conduct experiments
with different values for λ1 and λ2. The value of the pair (λ1,
λ2) in above experiments is (200, 0.002).

In this section, we set its value as (20, 0.002), (2000,
0.002), (200, 0.02), (200, 0.0002) respectively. The results
on Penn-action dataset can be seen in Table 7, which shows
that the value setting (200, 0.002) is rational. And users can
adopt our value setting of λ1 and λ2, as an appropriate ref-
erence for different datasets. The settings of λ3 ∼ λ6 are
based on hyper-parameters of pose-guided image generation
methods (i.e., (Zhu et al., 2019)).
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Fig. 9 The visualization of the mask output from the P2I network

Table 7 Results of ACT-VAE with different λ1 and λ2

(λ1) 200 20 2000 200 200

(λ2) 0.002 0.002 0.002 0.02 0.0002

L2 (↓) 28.32 31.84 29.27 31.99 29.10

Std (↑) 1.663 0.720 1.577 0.749 1.582

4.8 Experiments on NTU RGB+D Dataset

We further conduct experiments on the dataset of the NTU
RGB+D dataset (Shahroudy et al., 2016) that contains 60
action classes. Especially, we increase the capacity of our
approach, by increasing the parameter number of ACT-VAE,
enhancing the P2I networkwithmore SOTA structure (Ren et
al., 2022)while keeping “ForegroundAttention” and “Action
Conditional BatchNormalization”. The image size for exper-
iments is 128 × 128.

For the evaluation without the requirement of action con-
trol, the source image is given with its corresponding action
label provided in the dataset. The evaluation metrics are
the same as that in Table 4, and the results are shown in
Table 8. Especially, we employ the SOTA action recog-
nization approach (Duan et al., 2022) on NTU to train the
recognization network for computing the recognition accu-
racy. The network with multi-modality fusion (RGB + Pose)
can achieve an accuracy of 99.1% on the real data. For the
methods that can synthesize both RGB and pose sequences
(e.g., ours), the RGB and pose outputs are sent into the
recognization network to compute the recognition accuracy.
And we follow the current video synthesis method (Li et al.,
2022) on NTU to evaluate the foreground region, focusing
more on the generated action and computing the key-region-
based FVD scores, L2 error, SSIM, and LPIPS. The results in
Table 8 show the effectiveness of our method and our supe-
riority over other baselines.

Moreover, for the synthesis with action control (the eval-
uation setting in Sect. 4.6), The FVD score and recognition
accuracy of our method are 36.74 and 82.85; the results of
Kim et al. (2019) are 80.67 and 71.73, demonstrating that
our method can also achieve the control of action types in
the synthesis on the NTU dataset and outperforms the strong
baseline (Kim et al., 2019).

Also, since no ground truth is given for the synthesis
with action control, subjective results from the large-scale
user study are still the reliable metric for us to employ.
Thus, we also conduct a user study using the strategy of
“Scores for Multiple Dimensions” in Sect. 4.6 The results
are shown in Table 9. We can see that our approach’s results
on NTU RGB+D still obtain higher ratings on all six ques-
tions, demonstrating that our method can control the action
types in the generation and that the generated realistic and
diverse videos are consistent with the given action labels in
the NTU RGB+D dataset.

4.9 Visual Analysis for Foreground Attention

Since we adopt a foreground-background composition strat-
egy for the P2I network, the P2I network has two types of
outputs which are Īt+i and Mt+i as shown in Eq. (11). We
show several cases about the Mt+i in Fig. 9, which illustrates
that P2I network can distinguish the foreground and back-
ground in unsupervised learning, without the ground truth of
mask.
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Fig. 10 t-SNE visualizations in the feature space of the P2I network
for different action categories

4.10 Visual Analysis for ACBN in Feature Space

The intuition behind the Action Conditional Batch Nor-
malization (ACBN) can be interpreted from a statistical
viewpoint. As indicated in Sec. 3.2.2, we assume that the
statistics of intermediate feature maps for each action cat-
egory are distinctive. Otherwise, the feature maps with
different action kindswill be confusedwith each other, harm-
ing the performance of the P2I network. To prove this, we
visualize the feature distribution of our framework with and
without ACBN. The visualized results are shown in Fig. 10,
indicating that the feature maps of different categories are
distinct and easy to be individually handled by the gener-
ator to achieve high-quality results. On the other hand, for
the P2I network without ACBN, the features from different
action categories are mixed as shown in Fig. 10.

4.11 Our Performance with 2D/3D Keypoints

In our framework, we need the keypoints for the given sin-
gle source image. We employ the 2D keypoints of the source
image rather than 3D keypoints, since estimating 3D key-
points from a single image is a highly ill-posed problem and
3D keypoints are often estimated from videos (Pavllo et al.,
2019; Cheng et al., 2019; Choi et al., 2021) or multi-view
data (Kocabas et al., 2019; Rhodin et al., 2018; Iqbal et al.,
2020). The approaches predicting 3D keypoints from the sin-
gle image are few with limited accuracy. Thus, adopting the
3D keypoints into our framework would increase the error
accumulation in the stage of ACT-VAE. On the other hand,
estimating 2D keypoints from an input image has achieved
great success and accuracy (Cao et al., 2019; Geng et al.,
2021; Wang et al., 2022). Thus, we adopt the format of 2D
keypoints, allowing our framework to be employed in prac-
tice.

To compare the effectiveness of using the predicted 2D
and 3D keypoints in our framework, we adopt SOTA 2D
(Geng et al., 2021) and 3D (Wandt et al., 2021) human pose
prediction networks to obtain the pose of the source image,
respectively. And then, we evaluate the quality of the final
synthesized image sequences. The experimental settingswith
the predicted 2D and 3D keypoints are called “Ours (Pred.
2D)” and “Ours (Pred. 3D)”. The results are shown inTable 8.
From this, it is observed that adopting the performance of
adopting the estimated 2D keypoints is slightly worse than
the effects of using the ground truth of 2D images. And we

Table 8 The comparison for the results when our framework employ either 2D and 3D keypoints

Method FVD (↓) Acc (↑) L2 (↓) SSIM (↑) LPIPS (↓)
Ours (Pred. 3D) 1349.1 67.05 43.68 0.7875 0.1097

Ours (Pred. 2D) 1167.3 68.92 41.47 0.8013 0.1084

Ours 1092.8 70.04 39.82 0.8248 0.0908

Bold denotes the best results and Italics represents the second best results

Table 9 The comparison of our framework with separate and end-to-end training strategy

Method FVD (↓) Acc (↑) L2 (↓) SSIM (↑) LPIPS (↓)
Ours E2E 1309.2 68.41 42.93 0.7970 0.1104

Ours 1092.8 70.04 39.82 0.8248 0.0908

Table 10 The improvement of our framework by increasing the capacity of the P2I network

Method FVD (↓) Acc (↑) L2 (↓) SSIM (↑) LPIPS (↓)
Ours with (Zhu et al., 2019) 1092.8 70.04 39.82 0.8248 0.0908

Ours with (Ren et al., 2022) wo mask 1183.5 70.26 40.26 0.8093 0.0974

Ours with (Ren et al., 2022) wo ACBN 1079.2 73.81 35.18 0.8347 0.0915

Ours with (Ren et al., 2022) 825.4 75.52 32.71 0.8626 0.0713
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Fig. 11 Visual comparisons for the results before (Previous Result) and after (New Result) enhancing the backbone of the P2I network

Table 11 The results of keypoint generation evaluation following the evaluation protocol of Mao et al. (2020) for short-term prediction of 3D joint positions
on H3.6M (Ionescu et al., 2013)

Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Traj (Mao et
al., 2019)

11.1 21.4 37.3 42.9 7.0 14.8 29.8 37.3 7.5 15.5 30.7 37.5 10.8 24.0 52.7 65.8

Rep (Mao et
al., 2020)

10.0 19.5 34.2 39.8 6.4 14.0 28.7 36.2 7.0 14.9 29.9 36.4 10.2 23.4 52.1 65.4

Ours 9.6 17.4 33.5 37.9 8.1 13.5 27.2 37.7 6.7 13.6 28.6 36.1 10.0 25.2 52.4 64.7

Directions Greeting Phoning Posing Purchases Sitting

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Traj (Mao et
al., 2019)

8.0 18.8 43.7 54.9 14.8 31.4 65.3 79.7 9.3 19.1 39.8 49.7 10.9 25.1 59.1 75.9 13.9 30.3 62.2 75.9 9.8 20.5 44.2 55.9

Rep (Mao et
al., 2020)

7.4 18.4 44.5 56.5 13.7 30.1 63.8 78.1 8.6 18.3 39.0 49.2 10.2 24.2 58.5 75.8 13.0 29.2 60.4 73.9 9.3 20.1 44.3 56.0

Ours 7.0 17.9 43.2 55.8 13.3 30.5 63.2 77.4 8.2 18.1 40.5 49.0 9.8 24.7 58.2 76.9 12.5 28.8 61.3 74.2 9.1 21.2 42.7 54.6

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Traj (Mao et
al., 2019)

15.6 31.4 59.1 71.7 8.9 18.9 41.0 51.7 9.2 19.5 43.3 54.4 20.9 40.7 73.6 86.6 9.6 19.4 36.5 44.0 11.2 23.4 47.9 58.9

Rep (Mao et
al., 2020)

14.9 30.7 59.1 72.0 8.3 18.4 40.7 51.5 8.7 19.2 43.4 54.9 20.1 40.3 73.3 86.3 8.9 18.4 35.1 41.9 10.4 22.6 47.1 58.3

Ours 14.3 30.2 58.5 72.4 8.6 18.1 40.2 50.4 8.3 20.8 42.7 53.5 20.7 40.5 73.0 85.9 8.4 18.1 34.7 41.5 10.3 22.5 46.7 57.9

can also see that the results of employing 3D keypoints are
obviously worse than those of using 2D keypoints. Thus, in
practice, 2D keypoints are preferred in our framework.

4.12 Our Performance with End-to-End Training

The main challenge in training our framework end-to-
end is the pose error in the first stage (ACT-VAE) will

influence the appearance modeling in the second stage (P2I
network). Especially, in the phasewhere the predictions from
ACT-VAE are not converged, the error accumulation from
the ACT-VAE will cause the training instability of the P2I
network that utilizes the adversarial training strategy. The
instability leads to unsatisfactory generation effects.
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Table 12 The results of keypoint generation evaluation following the evaluation protocol of Mao et al. (2020) for long-term prediction of 3D joint positions
on H3.6M (Ionescu et al., 2013)

Walking Eating Smoking Discussion

milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Traj (Mao et
al., 2019)

53.1 59.9 66.2 70.7 51.1 62.5 72.9 78.6 49.4 59.2 66.9 71.8 88.1 104.5 115.5 121.6

Rep (Mao et
al., 2020)

47.4 52.1 55.5 58.1 50.0 61.4 70.6 75.7 47.6 56.6 64.4 69.5 86.6 102.2 113.2 119.8

Ours 45.3 51.8 57.2 56.4 53.6 60.5 70.1 77.3 45.1 55.9 62.7 70.2 87.5 100.8 117.9 117.1

Directions Greeting Phoning Posing Purchases Sitting

milli-
seconds

560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Traj (Mao
et al.,
2019)

72.2 86.7 98.5 105.8 103.7 120.6 134.7 140.9 67.8 83.0 96.4 105.1 107.6 136.1 159.5 175.0 98.3 115.1 130.1 139.3 76.4 93.1 106.9 115.7

Rep (Mao
et al.,
2020)

73.9 88.2 100.1 106.5 101.9 118.4 132.7 138.8 67.4 82.9 96.5 105.0 107.6 136.8 161.4 178.2 95.6 110.9 125.0 134.2 76.4 93.1 107.0 115.9

Ours 71.9 87.3 96.5 108.3 100.2 116.5 136.8 142.7 68.1 81.4 98.2 107.6 105.4 135.8 163.0 172.7 92.1 113.8 122.5 131.9 78.2 95.0 103.7 114.6

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

milli-
seconds

560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

Traj (Mao
et al.,
2019)

96.2 115.2 130.8 142.2 72.5 90.9 105.9 116.3 73.4 88.2 99.8 107.5 109.7 122.8 139.0 150.1 55.7 61.3 66.4 69.8 78.3 93.3 106.0 114.0

Rep (Mao
et al.,
2020)

97.0 116.1 132.1 143.6 72.1 90.4 105.5 115.9 74.5 89.0 100.3 108.2 108.2 120.6 135.9 146.9 52.7 57.8 62.0 64.9 77.3 91.8 104.1 112.1

Ours 95.3 113.8 134.2 141.9 74.5 92.3 103.2 113.6 76.0 90.6 98.4 106.2 111.2 120.1 133.5 144.1 53.8 56.9 60.1 63.6 77.2 91.5 103.8 111.2

Table 13 The evaluation on image sequence generation following the evaluation protocol of Kim et al. (2019)

Method FVD (↓) Acc (↑)
LG-VP (Villegas et al., 2017) 2187.5 47.14

HL-VP (Wichers et al., 2018) 3324.9 40.00

KL-VP (Kim et al., 2019) 1509.0 68.89

Ours 1356.9 69.57

To demonstrate the superiority of the separate training
strategy, we set another experiment where the ACT-VAE and
the P2I network are trained end-to-end. The setting is called
“OursE2E”, and the comparisons are shown inTable 9,where
the results of end-to-end training are obtained by repeatedly
training the framework 5 times and taking the average results,
reducing the influence of instability. The results show that the
separate training strategy can lead to better performance.

4.13 Foreground Attention and ACBN for Other
Types of P2I Backbone

We find our proposed foreground attention and ACBN can
be generally applied for other types of P2I backbones,
enhancing the corresponding performance. Different from
the experiments above, we increase the capacity of the P2I
network in this section, evaluate the performance of our
framework with a new P2I network (Ren et al., 2022) and
equip it with our “Foreground Attention” and “Action Con-
ditional BatchNormalization” that are our contributions. The
experiments are conductedwith themachinewith higher effi-
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ciency than TITIAN X, i.e., RTX3090. The results (with
name of “Ours with (Ren et al., 2022)”) in Table 10 show
that the performance of our framework is increased, and the
visual results are also improved, as shown in Fig. 11. And the
results with (Ren et al., 2022) will be decreased obviously
without the foreground attention and ACBN, by comparing
“Ours with (Ren et al., 2022)” and “Ours with (Ren et al.,
2022) wo mask”/ “Ours with (Ren et al., 2022) wo ACBN”
in Table 10. Thus, our proposed “Foreground Attention” and
“Action Conditional Batch Normalization” are general net-
work design principles for action video synthesis in various
backbones to improve the corresponding performance.

4.14 Evaluation of Our Framework with Other
Evaluation Protocols

In this section, we make a further comparison with existing
SOTA methods, using their evaluation settings.

4.14.1 Key Point Generation Evaluation

For the keypoint generation evaluation, most baselines can
not control the action types of the predicted pose sequences.
In their settings, the target is to predict the future pose
sequences only with the condition of the given image’s con-
tent. We evaluate the performance of our framework with
such a setting, by removing the action labels from the inputs.
The results of keypoint generation evaluation are shown in
Tables 11 and 12, where the experiments are conducted
on H3.6M (Ionescu et al., 2013) that is one representative
dataset. Also, we follow the evaluation protocol of Mao et al.
(2020), which is one standard evaluation protocol to evaluate
the short-term and long-term pose sequences prediction per-
formance. We can see that our method still produces better
results than two SOTA baselines, Traj (Mao et al., 2019) and
Rep (Mao et al., 2020), demonstrating the accuracy of our
approach in modeling real-world pose sequences.

4.14.2 Image Sequence Generation Evaluation

For the evaluation of image sequence generation, the dif-
ference between our setting and Kim et al. (2019) is that
keypoints are not provided as the conditions while they are
unsupervised learned by learning the keypoints detector with
the image translator. We follow the task setting of Kim et al.
(2019) by first training a keypoints detector with the P2I
network, and then training the ACT-VAE for the motion gen-
eration.The experiments are conducted onPenn-Action since
the representative baseline (Kim et al., 2019) utilizes this
dataset for evaluation. The evaluation of image sequence gen-
eration is displayed in Table 13. The results demonstrate that
our approach can still result in SOTA performance on image

sequence generation under the standard evaluation protocol
of Kim et al. (2019).

These results show that our approach can still result in
SOTA performance on keypoint and image sequence gen-
eration under the standard evaluation protocol from other
works.

5 Conclusion

We have proposed an effective framework for human action
video prediction from a still image within various action
categories. In our framework, ACT-VAE predicts pose by
modeling the motion patterns and diversity in future videos
with temporal coherence for each action category. The tem-
poral coherence is ensured by sampling the latent variable at
each time step based on both historical latent variables and
pose during inference.When connectedwith a plug-and-play
P2I network, ACT-VAE can synthesize image sequences and
control action types in synthesis. Extensive experiments on
datasets containing complicated action videos illustrate the
superiority of our framework.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01832-
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