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Abstract—Camera-based 3D object detectors are welcome due to their wider deployment and lower price than LiDAR sensors. We

first revisit the prior stereo detector DSGN for its stereo volume construction ways for representing both 3D geometry and semantics.

We polish the stereo modeling and propose the advanced version, DSGN++, aiming to enhance effective information flow throughout

the 2D-to-3D pipeline in three main aspects. First, to effectively lift the 2D information to stereo volume, we propose depth-wise plane

sweeping (DPS) that allows denser connections and extracts depth-guided features. Second, for grasping differently spaced features,

we present a novel stereo volume – Dual-view Stereo Volume (DSV) that integrates front-view and top-view features and reconstructs

sub-voxel depth in the camera frustum. Third, as the foreground region becomes less dominant in 3D space, we propose a multi-modal

data editing strategy – Stereo-LiDAR Copy-Paste, which ensures cross-modal alignment and improves data efficiency. Without bells

and whistles, extensive experiments in various modality setups on the popular KITTI benchmark show that our method consistently

outperforms other camera-based 3D detectors for all categories. Code is available at https://github.com/chenyilun95/DSGN2.

Index Terms—3D object detection, stereo matching, autonomous driving

Ç

1 INTRODUCTION

CAMERA-BASED 3D visual perception is a fundamental and
challenging task in 3D computer vision, which serves as

the essential component for autonomousdriving and robotics.
The main difficulty of camera-based 3D detectors lies in

the fact that cameras provide front-view information but gener-
ally lack top-view cues or depth for accurate 3D object localiza-
tion. A common choice for camera-based 3D detectors is to
leverage the successful 2D object detectors [1], [2], [3], [4]
and depth estimators [5], [6], [7]. A series of approaches [8],
[9], [10], [11], [12], [13], [14], [15], [16] design complicated
strategies to predict 3D boxes with explicit projective geom-
etry of keypoints or boxes.

In contrast, the 2D-to-3D transformation converts the
problem on 3D representation [17], [18], [19], which side-
steps the dimensionality loss in solving 3D problems. Partic-
ularly, the problem of 3D detection can be solved innately
by predicting objects over every 3D spatial location. For
instance, Pseudo-LiDARs [18], [20], [21] generate explicit 3D
representation followed by direct application of 3D

detectors [22], [23], [24]. The explicit 3D form via, e.g., depth
maps, occupancy grids, or pseudo point clouds, removes
the uncertainty and decouples the tasks of depth estimation
and object recognition.

However, predicting depth from images is ill-posed.
Thus, the generated depth cost volume depicts the uncer-
tainty of voxel occupancy. To preserve the knowledge of
depth uncertainty, implicit modeling of geometry-encoded
feature volume becomes popular recently [19], [25], [26],
[27], [28]. Stereo geometry (or epipolar geometry) is encoded
into the concrete 3D voxel grids and guides the following 3D
prediction. In essence, feature transformation from 2D to 3D
representation avoids the loss of geometric uncertainty,
which is proved influential for following 3D prediction [19].

Therefore, valid information flow from 2D semantics to
stereo volume determines the efficacy of the following 3D
geometric representation for both geometric and semantic
cues. However, current 3D modeling remains as an approxi-
mation of realistic 3D representation and poses three vital
challenges for creating effective stereo feature volumes as
follows:

(I) Direct 2D-to-3D information propagation along the ray
constrains volumetric representation power. In geometric
modeling, plane sweeping (PS) [29], [30], [31] is the dom-
inant way to lift 2D information to 3D volume. Specifi-
cally, per-view features are directly propagated by
tracing the ray in the volumetric space [6], [7] for
matching the pixel differences. As 3D volume con-
sumes one more order of magnitude of computation
cost than 2D one, raw 2D features are required to be
compressed to a small channel to reduce the amount
of calculation. Accordingly, the 3D representation
power is limited by the compressed 2D features.
Our finding reveals that alleviating this bottleneck
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unleashes the power of volumetric representation for
the following prediction tasks.

(II) Perception of differently shaped objects. By plane sweep-
ing, we can produce two views of stereo volumes:
Plane-sweep volume (PSV) in camera frustum and
3D-geometry volume (3DGV) in regular 3D space.
However, real-world 3D objects are non-rigid and
irregular-shaped. Some categories like Pedestrian
occupy fewer voxels in the bird’s eye view albeit
being clearly visible in the front view. In our study,
these single-view stereo volumes show varied prop-
erties. Plane-sweep volume extracts more voxel fea-
tures for front-view objects (such as Pedestrian and
Cyclist) while 3D-geometry volume obtains same
gradients for same object at different distances.

(III) Biased modeling. The proportion of the foregrounds is
usually small in the aerial view for outdoor scenes,
which curbs data efficiency. Additionally, imbal-
anced class distribution also gives the biased gradi-
ent flow towards frequent objects and suppresses
the generalization ability of stereo modeling. These
two difficulties restrict the model’s capacity to gener-
ate unbiased estimation.

In this paper, we provide the following three solutions
for addressing the above challenges in 2D-to-3D modeling.
By polishing the overall stereo modeling, we present a
simple yet effective stereo-based 3D detection framework
DSGN++.

First, we present a generic operator for 2D-to-3D trans-
formation – depth-wise plane sweeping (D-PS) to relieve the
bottleneck of 2D-to-3D information propagation. With D-
PS, the transformation allows the input of wider 2D fea-
tures, that encodes depth-guided features within its
expanded channels. And the generated volume yields con-
tinuously changing features that slice the 2D features via the
sliding window technique. A key component called “cyclic
slicing” is employed to realize local feature continuity for
nearby depth planes. Experiments demonstrate its notable
improvement for both monocular and binocular camera-
based 3D object detection.

Second, we provide a new form of stereo volumetric
representation – Dual-view Stereo Volume (DSV) to build
more extensive connections to different views. We aggre-
gate features of differently-shaped voxels from the front
view (plane-sweep volume) and top view (3D-geometry
volume). Notably, with a front-surface depth head, the final
cost volume is generated by transforming volumetric repre-
sentation to camera frustum space because we found that
the geometric supervision of sub-voxel depth values in the
front view provides stronger supervision than discretized
voxel occupancy learning.

Last, to overcome the limited foreground regions in 3D
modeling and make unbiased predictions towards catego-
ries, we seek to apply the copy-paste strategy [32]. How-
ever, the requirement of precise cross-modal alignment
restricts the freedom of data editing. To overcome the limi-
tation, we propose Stereo-LiDAR Copy-Paste (SLCP) that
allows joint stereo and 3D data editing and meets the con-
straint of cross-modal projection. We validate this flexible
data editing improves modeling efficiency and generaliza-
tion ability to various categories.

Our total contribution is fourfold.

� Without additional computation, we propose a novel
volume construction way of depth-wise plane sweeping
(D-PS) to expand the capacity of information flow
and extract depth-relevant 2D features.

� We propose Dual-view Stereo Volume with the
front-surface depth head to extract the features from
two differently spaced stereo volumes and investi-
gates its effectiveness over prior constructions.

� For the first time, the method augments multi-modal
data pair by Stereo-LiDAR Copy-Paste strategy that
ensures the stereo alignments at the sub-pixel level
and improves the data efficiency. We prove that the
strategy greatly mitigates the class imbalanced
problem.

� Without bells and whistles, our proposed DSGN++
achieves the first place for all categories among all
camera-based approaches on the challenging KITTI
benchmark [33] on Nov 20, 2021, and even surpasses
some LiDAR detectors in AP3D, such as AVOD [34]
for the first time.

2 RELATED WORK

Stereo Matching and Multi-View Stereo. With the develop-
ment of neural networks in stereo matching, methods of [6],
[7], [35], [36], [37], [38] process the left and right images by a
Siamese network and construct a 3D cost volume to com-
pute the matching cost. Correlation-based cost volume is
applied in recent work [36], [39], [40], [41], [42], [43]. Meth-
ods of [6], [7] form a concatenation-based cost volume and
apply 3D convolution to regress disparity estimates. For
multi-view scene reconstruction, prior work [31], [44], [44],
[45], [46], [47], [48], [49] even achieves fewer depth errors
than RGB-D sensors, which shows great potential to be an
alternative of expensive depth sensors. MVSMachine [44]
proposes the differentiable projection and unprojection for
better extracting 3D to manipulate the volume construction
from multi-view images.

LiDAR-Based 3D Detection. LiDAR sensors are very pow-
erful to produce data for 3D detectors. The target of LiDAR-
based detectors is to extract discriminative features from
point clouds for 3D object recognition. There are generally
two types of 3D representations, i.e., voxel-based represen-
tation [24], [50], [51], [52] and point-based representa-
tion [22], [53], [54], [55], [56]. Albeit depth sensors (e.g.,
LiDAR sensors and RGB-D cameras) can retrieve accurate
depth cues, they are generally more expensive and are with
sparser sensing resolution than the common off-the-shelf
RGB cameras. We prove that with a simple fusion strategy,
our stereo modeling can further promote the performance
of LiDAR-based 3D detectors.

Camera-Based 3D Detection. In contrast to the high cost
and sparse resolution of depth sensors, cameras are readily
available and applied on a wide scale. The dense imaging
resolutions (> 720P) provide human-readable semantics
that is easy to distinguish. The accessibility and dominance
as the basic perception sensor in the real world make it
attractive to perceive and understand 3D scenes. We classify
methods into two types according to their intermediate 2D
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or 3D representation. The key difference is that 2D represen-
tation extracts features in the front view while 3D or bird’s
eye view (BEV) type extracts features in top views or 3D
space.

For 2D representation-based 3D detectors, an intuitive
solution is to leverage a 2D object detector [3], [4]. Similar to
2D object detectors, prior work [8], [9], [11], [14], [15], [16],
[57], [58], [59], [60] directly estimates 3D bounding boxes
from camera images and relies on perspective modeling of
the 2D projected object and its 3D objects. On the other
hand, depth supervision via point clouds or depth maps is
accessible during training. Explicit learning of depth cues
improves the accuracy of 3D object detection [61]. Methods
of [10], [12], [62] also jointly aggregate the learned depth
cues and semantic cues.

Generally, due to the consistency with 3D spaces, the 3D
form provides an elegant and effective representation with
no complicated post-processing steps. 3DOP [63], [64]
generates point clouds by stereo and encodes the prior
knowledge and depth in an energy function. Several meth-
ods [18], [20], [21] transform the depth map to Pseudo-
LiDAR with point cloud followed by another independent
network. Pseudo-LiDAR [18], [20], [21], [65] introduces the
pseudo point clouds as the intermediate 3D representation
followed by a LiDAR-based 3D detector. This pipeline
yields much improvement over previous 2D representa-
tion-based approaches. E2E-PL [26] further enables back-
propagation to depth coordinates by introducing radial
basis functions. We note that these methods are limited to
explicit modeling of depth maps. They compress the abun-
dant information from pixel-level feature projection and
correspondence. Recent end-to-end pipelines [17], [19], [25],
[27], [66], [67] utilize 3D feature volumes as intermediate
representation. Recently DSGN [19] performs remarkably
by implicitly encoding 3D geometry into neural networks.

CDN [67] further refine depth prediction near object boun-
darys via a Wasserstein distance-based loss. PLUME [25]
designs the efficient 3D-BEV network to achieve proper
trade-off between speed and accuracy. LIGA-stereo [28] fur-
ther leverages the well-learned LiDAR-detector to transfer
the knowledge to DSGN and demonstrates the effectiveness
of cross-modal distillation [68].

3 OUR APPROACH

In Section 3.1, as a prerequisite, we revisit the stereo volume
generation and transformation in DSGN [19] for encoding
implicit cues of geometry and semantics. We introduce our
DSGN++ model (shown in Fig. 1) to increase the capacity of
stereo modeling in the following three aspects.

First, we identify the network bottleneck that limits the
quantity of information flow and introduce a generic operator
– depth-wise plane sweeping (D-PS) (Section 3.2) for allowing
denser connections between 2D and stereo volumes.

Second, in Section 3.3, we compare the volume effective-
ness for differently shaped objects between camera front-
view and top-view. For aggregating more view-specific fea-
tures, we introduce Dual-view Stereo Volume (DSV), which
includes volumes integration and front-surface depth head.

Finally, in Section 3.4, we introduce a multi-modal data
augmentation strategy – joint Stereo-LiDAR copy-paste for
increasing the positive ratios and balancing the category
distribution in each training sample.

3.1 Stereo Volumes Generation Revisit

Given a binocular image pair (IL; IR), the objective is to
detect and localize objects in 3D world space. To avoid
information loss of depth uncertainty in explicit data struc-
tures such as point clouds, recent approaches [19], [25] cre-
ate stereo volumes and encode the geometry cues into the

Fig. 1.Overview of the proposed DSGN++ framework. The whole framework consists of six components. (a) 2D image extraction network for extract-
ing stereo features. (b) Volume construction process by Depth-wise Plane Sweeping. (c) 3D CNN for front-view and top-view feature extraction. (d)
Dual-view flow integration followed by 3D CNN. (e) Front-surface depth head for supervising depth signals in the front-view. (f) 3D detection head
that detects objects in bird’s eye view.
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3D feature volume. With accurate depth cues, the 3D detec-
tion head can detect and regress 3D objects efficiently, espe-
cially for faraway objects. In this section, we briefly revisit
several structures of stereo feature volumes – plane-sweep
volume in camera frustum space and 3D-geometry volume
(or BEV volume [25]) in 3D regular space.

For simplicity, we denote the voxel coordinate u ¼
ðu; v; dÞ in the camera frustum and the voxel coordinate x ¼
ðx; y; dÞ in pre-defined voxel space, where d denotes the
depth dimension. proj : R3 ! R2 represents the projection.

Binocular Images to Plane-Sweep Volume. The binocular
features are generated by feeding a binocular image pair
(IL; IR) into a Siamese network. In stereo matching [7], [30],
[69] and MVS [31], [44], a set of evenly-spaced depth (or dis-
parity) planes are generated towards the target view. By the
classic sweeping planes towards the camera view, multi-
plane images (MPI) [70] are generated by gathering image
features at each depth plane. The per-view mapping func-
tion can be formulated as

PSV : RHI�WI�CI ! RH0
I
�W 0

I
�DV �CV ; PSV ðIÞ ¼ Vproj

where Vproj u; cð Þ ¼ I projðuÞ; cð Þ: (1)

where the size of (HI;
0 W 0

I) is linearly related to (HI;WI) .
Voxels with coordinates fx ¼ ðu; v; dÞgPSV are uniformly
spaced in the camera frustum with CV (CV ¼ CI channels.
By comparing feature similarity of each voxel, the following
neural network infers the underlying 3D geometry at the
target view.

Plane-Sweep Volume to 3D-Geometry Volume. As the final
objective is to detect 3D objects in 3D world space, one way
to encode the scene in the 3D world is to transform PSV to
3DGV. Specifically, a detection area of size ðHV ;WV ;DV Þ
can be discretized into voxel gird. 3D-geometry volume is
computed by reversing 3D projection from camera frustum
space to 3D world space.

Binocular Images to 3D-Geometry Volume. Another way to
construct 3D-geometry volume (or BEV volume [25]) is intro-
duced by the operation of differentiable unprojection [44]. The
discrete grid fðx; y; zÞg3DGV obtains the projected 2D image
features at ðu; vÞ by differentiable bilinear sampling. Image fea-
tures at different views are aggregated inside each voxel.

3.2 Depth-Wise Plane Sweeping for 2D-to-3D
Transformation

3D volume construction from the images is critical to repre-
sent a 3D scene for either monocular or multi-view settings.
It facilitates a series of downstream 3D applications, e.g.,
stereo matching, novel view synthesis, and 3D object detec-
tion. Without loss of generality, for a predefined voxel grid
of size ðHV ;WV ;DV Þ in arbitrarily voxelized space, we retrieve
multi-view features by the per-view projection of each voxel
coordinate p ¼ ðx; y; zÞ. The general formulation from a
camera view to a specific volume V is expressed as

V : RHI�WI�CI ! RHV �WV �DV �CV ;VðIÞ ¼ Vproj

where Vprojðp; cÞ ¼ IðprojðpÞ; cÞ: (2)

where the 2D feature has the shape of ðHI;WI; CIÞ.

2D-To-3D Modeling Bottleneck. During the construction of
stereo volume, an evident fact is that the extra dimension
orthogonal to camera planes is generated. Normally, the fea-
ture grids are filled by replication of image features through
viewing rays. The size of generated 4D tensor V is normally
far larger than the source 2D feature tensor, expressed as

HV �WV �DV � CV � HI �WI � CI: (3)

In prior stereo networks [6], [7], the number of depth planes
(DV ) is usually large, e.g., 192-D and the feature resolution
is maintained at least a quarter of the full resolution for
matching at the pixel level. In other words, the representa-
tion power (a.k.a. effective degree of freedom [71], [72]) of
the constructed 3D volume is constrained by its narrow 2D
feature (small feature channels).

An ideal way for building a denser connection is to
expand the channel size CI of 2D features, which reduces
the tensor dimension gap. However, expanding CV is not
straightforward as expanding volume channels CV leads to
more calculations in 3D. More, the transformation needs to
maintain feature locality for matching the left-right corre-
spondence cost.

Accordingly, we introduce depth-wise (disparity-wise)
plane sweeping (D-PS) to build denser connections between
2D feature maps and 3D feature volumes. Instead of com-
pressing 2D channels to a small number, we preserve the
number of channels CI at a relatively large number (e.g., 96)
and slice the feature via a sliding window (CV channels)
along the channel axis. The shift on the channel axis
depends on pixel disparity (inverse depth) as that distant
object recognition is sensitive to sub-pixel differences. We
empirically show in Section 4.3.1 that overcoming this chal-
lenge leads to considerable performance gain.

However, directly slicing the feature by shift produces
unstable features as the order of feature channels is
unchangeable. Therefore, we propose Cyclic Slicing to ensure
local feature similarity for adjacent objects, i.e., reordering
the channels of the sliced features to maintain channel
consistency.

Cyclic Slicing. Given a voxel coordinate x ¼ ðx; y; dÞ, with
its image feature channel CI , we obtain the feature slice
with CV (CV � CI) channels as the voxel feature. As shown
in Fig. 2, we divide the CI channels into several parts. Each
region contains CV channels except the last part. The sliced
channels are an ordered union of two channel intervals of

disp=CVd e � CV ; dispþ CV½ Þ [ disp; disp=CVd e � CV½ Þ

where d e is the ceiling function. The reordering of the
selected channels ensures feature continuity around nearby
depth planes. For simplicity, we ignore cyclic slicing in (4)
and (5). The way to generate depth-wise plane-sweep vol-
ume (D-PSV) is expressed as

D-PSV : RHI�WI�CI ! RH0
I
�W 0

I
�DV �CV

D-PSV ðIÞ ¼ Vproj (4)

where

Vprojðu; cÞ ¼ I projðuÞ; bfu � baseline

d
casþ c

� �
:
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s is the ratio between 2D feature channelsCI and the number
of depth planes D. u denotes the coordinate ðu; v; dÞ in the
camera frustum. a controls the smoothness of channel shift-
ing rate. fu denotes horizontal focal length and baseline
denotes stereo camera baseline. Similarly, construction of
depth-wise 3D-geometry volume (D-3DGV) is formulated as

D-3DGV : RHI�WI�CI ! RHV �WV �DV �CV

D-3DGV ðIÞ ¼ Vproj (5)

where

Vprojðx; cÞ ¼ I projðxÞ; bfu � baseline

d
casþ c

� �
:

where x denotes the 3D coordinate ðx; y; zÞ.
The computation complexity is exactly same as classic

plane sweeping despite the growth of memory usage (the
expansion of 2D feature map size). Experiments show that
the simple solution to reduce the bottleneck leads to a con-
siderable performance boost without extra techniques.

3.3 Dual-View Stereo Volume for Building Effective
3D Representation

In this section, we compare the information flows of two
pipelines in recent works [17], [19], [25], [27] as shown in
Fig. 3 (a) and (b) and analyze the difference between their
voxel shapes. Further, to effectively represent depth and
semantics, we introduce a new stereo volume – Dual-view
Stereo Volume (DSV), that is susceptible to both views. This
volume construction contains two key steps: Volume Integra-
tion and Front-Surface Depth Head.

Front-View Representation Versus Top-View Representation. In
geometric learning, the front-view (FV) pipeline adopts
plane-sweep volume for front-view depth learning in the
camera frustum. Differently, the top-view (TV) pipeline con-
structs 3D structures within 3D-geometry volume (3DGV) in
3D regular space. The essential difference between the stereo
volumes lies in their different shaped voxels or spaces, which
directly leads to diverse receptive fields and voxel occupancy
densities. Hence, taking KITTI dataset [33] as an example, we
visualize average voxel occupancy counts for all categories
and their performance in Fig. 4. Visually, nearby objects in
PSV occupymuchmore voxels than faraway objectswhile the

3DGV curve is smoother. However, the average voxel occu-
pancy counts for Pedestrian and Cyclist (< 20m) are less than
100 voxels. The limited voxel occupancy impedes effective
gradients towards the smaller objects, resulting in a perfor-
mance reduction in the top-view pipeline. On the other hand,
the distribution in PSV volume can deteriorate the learning of
faraway objects.

Stereo Volumes Integration. After construction of D-PSV
and D-3DGV , we aggregate both information flows in our
framework. Integration of both volumes allows the voxel to
aggregate differently spaced 3D structure information and
further expand the 2D-to-3D information flow. Specifically,
we transform D-PSV to 3D space and concatenate both vol-
umes followed by a 3D Hourglass module [6]. The diversely
spread voxel features are accessible within the combined
feature volume. Experiments demonstrate the joint flows
perform better than each independent volume under strong
augmentation.

Front-Surface Depth Head. Geometric learning deter-
mines the perception accuracy of distant scenes. DSGN [19]

Fig. 2. Depth-wise plane sweeping. Assume the constructed volume is a
4D tensor in the space along ðx; y; depth; channelÞ axes. We visualize
the depth-channel plane of 3D featured volume where the graduated
color indicates channel orders. Depth-wise volume is constructed by
jointly sweeping the depth planes and slicing the features along the
channel dimension. Cyclic slicing reorders the channels to ensure chan-
nel consistency across nearby depth planes.

Fig. 3. Comparison of stereo information flows. Prior stereo detectors
adapt 2D features to plane-sweep volume (green cube) or 3D-geometry
volume (golden cube). Differently, dual-view stereo volume (DSV) aggre-
gates both spaced features in 3D space and enforces geometric learning
in the front view that is fit for visual sensors.

Fig. 4. Comparison of average voxel occupancy per category within the
plane-sweep and 3D-geometry volumes. We set the maximum voxel
numbers to 600 for visualization of distant regions.
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intermediately supervises the depth inside plane-sweep vol-
ume followed by the transformation to 3D-geometry volume
that cannot benefit from the following computations.
PLUME [25] adopts occupancy loss in the voxel grid that dis-
cretizes the depths, which is inferior to reason the geometry
as shown in experiments (Section 4.3.1).

To perceive accurate front-surface depths, the depth
head on stereo volume in 3D space (e.g., DSV) is first trans-
formed to the frustum space followed by front-view depth
supervision. Meanwhile, the semantic supervision (e.g., 3D
bounding boxes) jointly acts on the same feature volume. In
detail, the transformation starts by building the 3D coordi-
nate mapping from camera frustum space to 3D space. With
the coordinate mapping, voxels at ðu; v; dÞ of the front-view
volume obtain stereo volume features at ðx; y; zÞ:

u
v
1

0
@

1
Ad ¼

fu 0 cu
0 fv cv
0 0 1

0
@

1
A x

y
z

0
@

1
A ; (6)

where fu; fv are the horizontal and vertical focal lengths. We
ignored the extrinsics for simplicity. This generated front-
view volume has the identical shape of PSV and is followed
by a upsampling head network. The head network includes
one hidden 3D convolution and a convolution that squeeze
the channels to 1. The generated cost volume is then
upsampled to original image size and supervisedwith depth
loss [19], [28]. The construction enables mono-peak front-
view depth that coincides with the real depth sensor data.
Note that the transformation-based depth head is pluggable
and can be inserted to 3D-geometry volume for both monoc-
ular and stereo settings.

3.4 Stereo-LiDAR Copy-Paste for Improving Data
Efficiency

We illustrate the necessity to augment more and balanced
foreground objects into the training scene as follows:

Limited Foreground Area Ratio in Top View. The 2D-to-3D
transformation reduces the problem of front-view 3D detec-
tion to BEV detection. However, the foreground region ratio
is also reduced in the bird’s eye view. The imbalance
decreases the magnitude of foreground gradients back to
the 2D network, leading to biased model learning.

Imbalanced Class Distribution. Long-tailed distribution
commonly exists [73] in real scenes. For example, pedestrian
and cyclist exists in less than 1/3 of full data, direct training
of the imbalanced data could bias the gradient flow.

Unlike point clouds, multi-modal data augmentation is
constrained by the tight correspondence between image and
point clouds. For the localization of 3D objects, the sub-pixel
misalignment affects the estimation of stereo disparity, lead-
ing to the large localization error for distant objects. Com-
mon copy-paste [32], [74] randomly pastes object patches
onto 2D images, which makes it hard to satisfy the projective
constraint. Moreover, the segmentation mask is unavailable
in binocular images and it is hard to guarantee the left-right
alignment at pixel level without human annotations.

To effectively augment the stereo data at the instance level,
for the first time in literature, we propose a multi-modal data
editing strategy – Stereo-LiDAR copy-paste (SLCP) that main-
tains precise cross-modal alignments at the sub-pixel level.

Specifically, we preserve the 3D location of the source objects
and project the 3D boxes onto imageswith the target camera’s
internal parameters. As shown in Fig. 5, suppose we sample
several objects from their source scene for a target training
scene. The cropped point clouds within objects can be put
into the training scene. For binocular training images, we
compute the projected 2D bounding boxBS for each 3D object
box B3D by the source projection matrices fPS

left; P
S
rightg. By

projecting the same 3D box by target projection fPT
left; P

T
rightg,

we obtain the target bounding box BT . We crop and warp the
source object image patches to the respective target boxes as
BS ! BT . Note stereo alignment still holds under horizontal
flipping. In this way, the alignment between LiDAR and both
stereo images is guaranteed at the sub-pixel level. Also, to
ensure uni-peak depth, the overlapped 3D points, whose pro-
jections arewithinBT , are removed.

For a training scene, we sample a sufficient and balanced
number of objects per category (5 objects per category in
our experiments) from other data and paste objects into the
multi-modal data. Experiments demonstrate that our strat-
egy effectively improves data efficiency and largely miti-
gates the imbalanced class distributions.

Comparison With Geometry-Preserved Copy-Paste. Lian et al.
[75] introduce geometry-preserved way to paste segmented
objects [32], [74] for monocular 3D object detection. Instead
of further position and size change under geometric con-
straints, our copy-paste simply maintains the 3D object loca-
tions for keeping both constraints of projection and stereo

Fig. 5. Joint Stereo-LiDAR copy-paste strategy. For binocular training
samples, the source object patches are cropped with their calibrated
projections fPS

left; P
S
rightg. The augmented scene uses projections

fPT
left; P

T
rightg. Object patches are pasted bilinearly to binocular images.
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alignment. And our method also augments the correspond-
ing point clouds within 3D boxes for LiDAR supervision.

4 EXPERIMENTS

In this section, we conduct extensive experiments to vali-
date the effectiveness of our proposed framework with the
settings of various modalities. In Section 4.1, we briefly
illustrate the datasets and experimental setups for 3D object
detection. The quantitative and qualitative results are pro-
vided in Section 4.2 and Section 4.4, respectively. We further
illustrate the usefulness of each component in the ablation
study (Section 4.3.1). Lastly, the efficiency of our approach
is discussed in Section 4.5.

4.1 Experimental Setup

Datasets. We evaluate methods on the popular KITTI 3D
object detection dataset [33], which is a union of 7,481 stereo
image-pairs and point clouds for training and 7,518 for test-
ing. The training data has annotations for Car, Pedestrian
and Cyclist. The ground-truth depth maps are generated
from point clouds following [18], [19], [21]. Following the
protocol in [19], [50], the training data is divided into a
training set (3,712 images) and a validation set (3,769
images). As KITTI leaderboard limits the access to submis-
sion to the server for evaluating the test set, the ablation
studies are conducted on the KITTI train-val split.

Evaluation Metric. KITTI divides the evaluation metric
into three regimes (Easy, Moderate, and Hard) according to
their recognition difficulty, which considers object occlu-
sion/truncation and the size of an object in the 2D image.
The AP evaluations for 2D, BEV and 3D have diverse IoU
criteria per class, i.e., IoU � 0.7 for Car, IoU � 0.5 for Pedes-
trian and Cyclist. All experiments and ablation studies adopt
AP jR40 by default as the KITTI benchmark altered AP calcu-
lation that utilizes 40 recall positions (AP jR40) instead of the
earlier 11 recall positions (AP jR11).

Experimental Setups. Our models are trained with the
respectively best-performing parameters on four NVIDIA
V100 GPUs, each GPU holding one pair of stereo images of
size 384� 1248. We apply ADAM [80] optimizer with initial
learning rate 0.001. Data augmentation strategy [19]
includes horizontal flipping and Stereo-LiDAR copy-paste.
All models are trained for 60 epochs and the learning rate is
decreased by 10 at the 50-th epoch.

Baseline Methods. We build our framework based on the
official author-released codes – DSGN [19] and LIGA [28]).
LIGA reproduced and improved DSGN in the code frame-
work of OpenPCDet [81] with several technical modifica-
tions for a stronger baseline. More implementation details
are referred to the paper. We discard the strong cross-modal
distillation technique throughout our experiments. Based
on the LIGA ’s reproduced DSGN, we make several modifi-
cations for efficient implementation and adopt it (called L-
DSGN) as the baseline approach unless otherwise specified.
Particularly, we set the kernel size to 1� 1� 1 for all the
first 3D convolution after stereo volumes and move the 3D
hourglass network after Dual-view Stereo Volume as shown
in Fig. 1. Also, as depth-wise plane sweeping supports
wider feature inputs, L-DSGN aggregates the multi-scale
features by concatenation for binocular feature extraction

instead of feature addition. The last 2D convolutional layer
uses the number of filters CI according to the type of plane
sweeping. During testing, the 2D detection head and depth
prediction head are dropped. Synchronized batch normali-
zation is applied throughout the network.

Implementation of Stereo Volumes. PSV is pre-defined with
shape ðWI=4; HI=4; DI=4; 64Þ, where the image size is ðWI ¼
1248; HI ¼ 384Þ. Both left and right image features have 32
channels. The number of depth DI is set to 192 (DSGN) and
288 (L-DSGN). Extra 3D convolutions are applied to
squeeze the channel dimension to 32-D. 3DGV contains a
3D voxel occupancy grid of size ðWV ¼ 300; HV ¼ 20; DV ¼
288Þ along the respective directions in KITTI camera’s view
with each voxel of size ð0:2; 0:2; 0:2Þ (meters). Extra 3D con-
volutions with 32 filters for compressing the features when
generating 3DGV (HV �WV �DV � 64) directly from bin-
ocular images. Both stereo volumes adapt the 2D semantic
features by plane-sweeping. We set the shifting ratio a of
Depth-wise plane sweeping to 0.1 and its input channels
C ¼ 96 by default.

4.2 Quantitative Results

4.2.1 Official Results on the KITTI Test Benchmark

We report experimental results with comparison on the
KITTI test set as shown in Table 1 and Table 2.Without cross-
modal distillation [28], [68], the simple solution DSGN++
outperforms all other stereo-based approaches over all diffi-
culties and evaluation metrics (Car: +2.71 AP3D, +2.16
APBEV , and +1.88 AP2D in moderate difficulty regime). In
terms of AP2D, our approaches achieve the impressively
high 95.70AP, surpassing all the strong 3D object detectors.

As detecting smaller and non-rigid 3D objects pose the
greater challenge for the regime of camera-based 3D detec-
tors, only several approaches report the results for Pedes-
trian and Cyclist. To verify the generalization ability of our
approach, we provide the results of Pedestrian and Cyclist in
Table 2. Our approach achieves noticeable improvements
over prior methods (Cyc.: +7.04 AP3D, Ped.: +2.74 AP3D).

Compared with LiDAR-based approaches, in terms of
AP3D, ourmethod even completely beats some LiDARdetec-
tors includingAVOD for all categories (for the first time in lit-
erature). Concretely, DSGN++ exceeds AVOD by 5.82 AP2D

in the front view while scoring 6.01 APBEV lower than
AVOD in the bird’s eye view. This comparison indicates that
the performance between camera-based approaches mainly
lies in the foreground depth estimation error.

4.2.2 Method Performance in Stereo Setup

As shown in Table 3, we build our model based on two net-
works DSGN [19] (PSMNet [6] backbone) and L-DSGN [28]
(ResNet-34 backbones). We adopt the same experimental
settings for the respective experiments. By incorporating
the proposed techniques, our method significantly sur-
passes the baselines: DSGN (Car: +5.53 AP3D, Ped.: +8.78
AP3D, Cyc.: +11.67 AP3D) and L-DSGN (Car: +5.54 AP3D,
Ped.: +8.32 AP3D, Cyc.: +16.19 AP3D) regarding the moderate
evaluation difficulty. The more noticeable improvements
for Pedestrian and Cyclist reveal that the imbalanced class
learning is greatly alleviated. Even without LiDAR signals
supervision, our method still achieves 66+ AP3D for Car
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category and demonstrates significant improvements (Car:
+10.86 AP3D, Ped.: +6.75 AP3D, Cyc.: +17.15 AP3D) compared
with the baseline.

4.2.3 Method Performance in Multi-Modal Setup

We further validate the effectiveness of our approaches in
the multi-modal setting – binocular cameras and LiDAR.
The adopted LiDAR baseline network is SECOND4x [23],
[28], which downsamples the sparse grid by four times on
the bird’s eye view and has the same grid size with stereo
volume. Without special design, we simply fuse the learned
Dual-view Stereo Volume by feature addition with LiDAR
feature volume generated by SECOND4x. This multi-modal
modeling uses the same training setup as in Section 4.1.

We conduct a set of experiments that input LiDAR sig-
nals from sparse (4 beams) to dense (complete 64 beams)
to validate the complementary effects of stereo cameras.

The low-beams simulation of LiDAR signals follows [21].
As shown in Table 3, SECOND4x cannot handle well with
the low-beams LiDAR and gets only < 50 AP3D with
inputs of � 8-beams LiDAR. With the simple fusion above
with stereo features, all the LiDAR networks obtain notice-
able accuracy gain consistently. The sparser the LiDAR
signal is, the better the acquired improvements are. For
example, an 8-beams LiDAR model gets an accuracy boost
of 29.15 AP3D to 78.15 AP, which is even comparable to the
reported results of SECOND with inputs of 64-beams
LiDAR. Interestingly, DSGN++ with 4 beams even per-
forms worse than DSGN++, which indicates direct fusion
of extremely sparse LiDAR (4-beams) is potentially harm-
ful to stereo 3D detectors. Compared with PV-RCNN,
DSGN++ with 64 beams performs better in primary metric
AP3D and AP2D while getting worse results in APBEV . The
results reveal the LiDAR model benefits more from accu-
rate front-view detection performance than the top-view

TABLE 2
Performance Comparison on the Official KITTI Test Server (Pedestrian and Cyclist)

Sensor Methods Source Ped. AP3D Ped. APBEV Cyc.AP3D Cyc.APBEV

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

LiDAR Point R-CNN [22] CVPR2018 47.98 39.37 36.01 54.77 46.13 42.84 74.96 58.82 52.53 82.56 67.24 60.28
AVOD [34] IROS2018 36.10 27.86 25.76 42.58 33.57 30.14 57.19 42.08 38.29 64.11 48.15 42.37

Stereo

OC-Stereo [65] ICRA2020 24.48 17.58 15.60 29.79 20.80 18.62 29.40 16.63 14.72 32.47 19.23 17.11
Disp R-CNN [77] TPAMI2021 37.12 25.80 22.04 40.21 28.34 24.46 40.05 24.40 21.12 44.19 27.04 23.58
DSGN [19] CVPR2020 20.53 15.55 14.15 26.61 20.75 18.86 27.76 18.17 16.21 31.23 21.04 18.93
CG-stereo [78] IROS2020 33.22 24.31 20.95 39.24 29.56 25.87 47.40 30.89 27.73 55.33 36.25 32.17
YoLoStereo3D [79] AAAI2021 28.49 19.75 16.48 31.01 20.76 18.41 – – – – – –
LIGA [28] ICCV2021 40.46 30.00 27.07 44.71 34.13 30.42 54.44 36.86 32.06 58.95 40.60 35.27
DSGN++ (Ours) – 43.05 32.74 29.54 50.26 38.92 35.12 62.82 43.90 39.21 68.29 49.37 43.79

Best results are highlighted in bold.

TABLE 1
Performance Comparison on the Official KITTI test Server (Car)

Sensor Methods Source L Sup. Car AP3D Car APBEV Car AP2D

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

LiDAR

SECOND [23] Sensors2018 83.34 72.55 65.82 89.39 83.77 78.59 – – –
Point R-CNN [22] CVPR2018 86.96 75.64 70.70 92.13 87.39 82.72 94.00 91.90 88.17
MV3D [50] CVPR2017 74.97 63.63 54.00 86.62 78.93 69.80 – – –
AVOD [34] IROS2018 76.39 66.47 60.23 89.75 84.95 78.32 95.17 89.88 82.83
PL++: P-RCNN +SL* [21] ICLR2020 68.38 54.88 49.16 84.61 73.80 65.59 94.95 85.15 77.78

Stereo

TLNet [13] CVPR2019 7.64 4.37 3.74 13.71 7.69 6.73 76.92 63.53 54.58
Stereo-RCNN [8] CVPR2019 47.58 30.23 23.72 61.92 41.31 33.42 93.98 85.98 71.25
PL: AVOD [18] CVPR2019 ✓ 54.53 34.05 28.25 67.30 45.00 38.40 85.40 67.79 58.50
ZoomNet [76] AAAI2020 ✓ 55.98 38.64 30.97 72.94 54.91 44.14 94.22 83.92 69.00
PL++: P-RCNN [21] ICLR2020 ✓ 61.11 42.43 36.99 78.31 58.01 51.25 94.46 82.90 75.45
OC-Stereo [65] ICRA2020 ✓ 55.15 37.60 30.25 68.89 51.47 42.97 87.39 74.60 62.56
Disp R-CNN [77] TPAMI2021 ✓ 68.21 45.78 37.73 79.76 58.62 47.73 93.45 82.64 70.45
DSGN [19] CVPR2020 ✓ 73.50 52.18 45.14 82.90 65.05 56.60 95.53 86.43 78.75
CDN (DSGN) [67] NeurIPS2020 ✓ 74.52 54.22 46.36 83.32 66.24 57.65 95.85 87.19 79.43
CG-stereo [78] IROS2020 ✓ 74.39 53.58 46.50 83.32 66.44 58.95 96.31 90.38 82.80
YoLoStereo3D [79] AAAI2021 ✓ 65.68 41.25 30.42 76.10 50.28 36.86 94.81 82.15 62.17
PLUME-Middle [25] ICRA2021 ✓ – – – 83.0 66.3 56.7 – – –
LIGA [28] ICCV2021 ✓ 81.39 64.66 57.22 88.15 76.78 67.40 96.43 93.82 86.19
DSGN++ (Ours) – ✓ 83.21 67.37 59.91 88.55 78.94 69.74 98.08 95.70 88.27

* means refining the pseudo point clouds by additional 4-beam LiDAR. Best results are highlighted in bold. LiDAR supervision (L Sup.) represents whether to
apply LiDAR depth supervision.
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one. As a result, the multi-modal 3D detector still performs
better in 3D metrics.

In particular for the complete 64-beams LiDAR setup,
direct multi-modal modeling by fusing L-DSGN even dete-
riorates the detection performance. In contrast, multi-modal
modeling with DSGN++ yet improves the LiDAR network
significantly (Car: +4.09 AP3D, Ped.: +3.63 AP3D, Cyc.: +1.89
AP3D). This comparison reveals the fact that stereo repre-
sentation can provide strong complementary cues over the
vanilla LiDAR signals. The fusion of multi-sensor is promis-
ing and improves the robustness of 3D perception system.

4.3 Ablation Study

In this section, we investigate the effectiveness of the major
adaptations. For fair comparisons, we conduct ablation
studies on the KITTI val set mainly in Table 4. Note that we
primarily adopt the accuracy of Car category for the ablation
study by default, as the dataset contains fewer annotations
for Pedestrian and Cyclist that causes greater result variance.

4.3.1 Ablation Study for Depth-Wise Plane Sweeping

As shown in Table 4 (a. versus b.; d. versus e.; h. versus i.),
with similar computations, models with depth-wise plane

sweeping obtains extra 1.5�3.2 AP improvements. In gen-
eral, performance gains are consistent for all three catego-
ries, which indicates that traditional plane sweeping is
unsuited for representing complicated predictions, and D-
PS much eases it.

Table 5 ablates the expanded channels CI and smooth-
ness factor a for plane sweeping. We observe that the wider
2D features contribute to the learning of 2D semantic fea-
tures. We compare D-PS with another possible choice
(called Group-PS) to input the features with expanded chan-
nels: equally splitting the channels/depths into several
groups; extracting the depth-wise features in respective
groups. However, Group-PS cannot guarantee feature’s
channel-wise similarity between groups for stereo matching
and yields 65.48 AP3D. D-PS is designed to preserve the
local feature continuity and the degree of sharing can be
adjusted w.r.t disparity. The smoothing factors a ¼ 0:1
(66.42 AP3D) for FV and a ¼ 0:5 (64.59 AP3D) for TV yield
best performance. Dual-view stereo volume adopts the
respective best-performing parameters for both volumes.

In addition, to illustrate the generality of D-PS, we also
provide the monocular experiments. We simply adapt the
top-view pipeline for monocular 3D detectors (remove right
image input and right feature) and keep other training

TABLE 3
Performance Comparison on the KITTI val Set in Various Modality Settings

Car Pedestrian Cyclist

Methods AP3D APBEV AP2D AP3D APBEV AP2D AP3D APBEV AP2D

LiDAR Sensor

SECOND [23], [81] 78.62 87.93 89.90 52.98 56.66 66.33 67.15 70.70 77.09
PV-RCNN [82] 84.43 94.03 89.44 54.89 58.14 65.37 71.52 75.31 83.04

Stereo Camera Sensor

DSGN [19] { 56.09 65.24 85.03 35.39 42.58 55.22 25.37 27.43 35.3
ours, DSGN++ on DSGN { 61.62 70.61 89.47 44.17 48.51 62.35 36.04 39.05 43.56
Improvement +5.53 +5.37 +4.44 +8.78 +5.93 +7.13 +10.67 +11.62 +8.26

L-DSGN 63.58 73.53 93.59 33.12 40.50 59.16 28.09 29.58 36.95
ours, DSGN++ on L-DSGN 69.12 78.93 95.85 42.44 50.06 68.92 42.48 45.77 53.81
Improvement +5.54 +5.40 +2.26 +8.32 +8.56 +9.76 +14.39 +16.19 +16.86

L-DSGN w/o LiDAR sup. 55.22 65.36 90.11 24.74 31.90 49.49 21.67 23.04 34.27
ours, DSGN++ on L-DSGN w/o L Sup. 66.08 75.92 95.52 31.49 39.30 63.95 38.82 40.54 54.18
Improvement +10.86 +10.56 +5.41 +6.75 +7.40 +14.46 +17.15 +17.50 +19.91

Multi-Modal Sensors

4-LiDAR SECOND4x 23.82 30.85 32.27 16.70 21.79 24.85 12.18 13.45 14.05
Fusion with DSGN++ 67.41 76.30 95.17 40.85 49.51 62.65 32.31 33.69 46.17
Improvement +43.59 +45.45 +62.90 +24.15 +27.72 +37.80 +20.13 +20.24 +32.12

8-LiDAR SECOND4x 49.00 66.83 66.97 38.19 44.34 44.13 25.88 27.56 31.17
Fusion with DSGN++ 78.15 85.49 95.48 51.03 59.48 71.58 46.83 48.25 53.23
Improvement +29.15 +18.66 +28.51 +12.84 +15.14 +27.45 +20.95 +20.69 +22.06

16-LiDAR SECOND4x 65.31 78.28 80.18 52.97 58.62 59.40 43.86 47.37 49.35
Fusion with DSGN++ 79.41 87.55 95.17 58.07 66.18 74.55 54.08 55.95 59.63
Improvement +14.10 +9.27 +14.99 +5.10 +7.56 +15.15 +10.22 +8.58 +10.28

64-LiDAR SECOND4x 81.23 89.52 94.37 59.40 62.71 68.50 61.90 62.45 68.87
Fusion with L-DSGN 81.13 88.36 94.50 60.05 62.65 68.42 56.94 57.05 65.84
Fusion with DSGN++ 85.32 91.37 95.79 63.03 68.87 76.72 63.79 66.18 73.87
Improvement +4.09 +1.85 +1.42 +3.63 +6.16 +8.22 +1.89 +3.73 +5.00

Results inmoderate difficulty regime for all categories are provided as the main metric. { means training another model for Pedestrian and Cyclist. Best results
are highlighted in bold for each sensor setup. LiDAR Sup. (L Sup.) represents whether to apply LiDAR depth supervision.
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setups the same. As shown at the bottom of Table 5, the
method with D-PS surpasses the baseline by 2.05 AP3D and
2.81 APBEV .

4.3.2 Ablation Study for Stereo Volumetric

Representation

We conduct the comparison of several stereo pipelines (See
information flows in Fig. 3)).

Effects of Front-Surface Depth Head. Table 4(d. versus e., h.
versus i.) compares the effects of different depth supervision
signals (voxel occupancy head versus front-surface depth
head), where FSD head yields the respective performance
gains of Car: +4.64 AP3D and +2.97 AP3D. The improvement

demonstrates that FSD head can take in more precise depth
signals than discretized occupancy classification. We conjec-
ture the consistent shape between cost volume and input
views assists sparse depth supervision with front-view con-
text features between sparse beams.

Effects of Volume Integration. For fair comparisons of both
single-view representations, we ensure the front-view pipe-
line and top-view one share similar volume sizes: PSV is of
shape 72� 80� 32 ¼ 1797120 and 3DGV has the shape of
20� 304� 288 ¼ 1751040, and there is only 2.6% calculation
counts difference. As shown in Table 4 (c. versus g.; b. versus
f.), despite the input of balanced foreground categories, TV
branch cannot achieve the same performance for Ped. and
Cyc., which shows top-view representation may not be well-
suited for smaller objects in bird’s eye view. The volume inte-
gration (k. in Table 4) boosts the performance to (69.12 AP3D,
78.93 APBEV ) for Car, and (42.48 AP3D, 45.77 APBEV ) for Cyc..
In comparison of c., g. and k., top-view representation pro-
videsmore complementary cues forCar andCyc..

4.3.3 Ablation Study for Stereo-LiDAR Copy-Paste

Table 4 (j. versus k.) shows that SLCP augmentation
improves data efficiency (Car: +3.96 AP3D) and greatly miti-
gates imbalanced class learning (Ped.: +5.25 AP3D, Cyc.
+12.47 AP3D.

In terms of depth estimation quality, as visualized in
Fig. 7, the ratio of foreground localization error w.r.t object
distances gets a smoother slope. Overall, our model reduces
the foreground depth estimation error from 0.63 to 0.57 (m).

Table 6 ablates several hyper-parameters used in Stereo-
LiDAR copy-paste. Table 6 (a., b., f., i.) ablates the number of
pasted samples into the training scenes and 5 samples yield
the best performance. Compared with raw data pair inputs
(a.), the sufficient pasted objects greatly alleviate the imbal-
anced problems across categories (f.).

Table 6 (a., c., d.) ablates the effect of more positive num-
bers, where the improvement of þ2:53 AP3D for Car (Table 6
(a. versus c.)) indicates that the current positive instances
limit the modeling efficiency even for the most frequent

TABLE 5
Effects of Expanded Channels and Smoothness

Factor a for Depth-Wise Plane Sweeping

Pipelines Sampling #Chn a Car

AP3D APBEV

Stereo Camera Sensor

FV

PS 32 – 63.58 73.53
Group-PS 96 32-sep 64.98 76.02

D-PS 48 0.1 65.48 76.28
96 1. 65.95 76.71
96 0.1 66.42 77.13
96 0.01 66.28 76.82

TV

PS 32 – 61.33 71.45
Group-PS 96 32-sep 62.50 72.60

D-PS 48 0.1 62.59 73.22
96 1 63.85 73.59
96 0.5 64.59 74.14
96 0.1 64.15 73.40

Monocular Camera Sensor

TV PS 32 – 15.36 21.23
D-PS 96 0.1 17.41 24.04

#Chn denotes the channel number CI of 2D feature for building volumes.
“Group-PS” (32-sep) represents sweeping planes by propagates features from
the evenly-spaced channel groups (each with 32 channels) to the depth planes
of the respective group.

TABLE 4
Main Ablation Studies on the KITTI val Set

id. Pipelines FSD Head D-PS SLCP Car Pedestrian Cyclist

AP3D APBEV AP3D APBEV AP3D APBEV

a.
Front-View

✓ 63.58 73.53 33.12 40.50 28.09 29.58
b. ✓ ✓ 66.42 77.13 34.91 41.76 30.17 34.29
c. ✓ ✓ ✓ 67.63 76.73 42.98 50.64 41.63 43.96

d.

Top-View

56.69 66.05 28.23 32.08 18.59 17.47
e. ✓ 61.33 71.45 29.14 35.02 20.51 19.71
f. ✓ ✓ 64.59 74.14 29.38 39.12 20.45 21.28
g. ✓ ✓ ✓ 67.85 77.16 36.20 43.09 29.17 30.56

h.

Dual-View

61.46 67.81 33.41 40.59 23.42 24.74
i. ✓ 64.43 74.19 33.51 42.48 33.82 35.64
j. ✓ ✓ 66.21 76.96 37.19 44.50 30.01 32.69
k. ✓ ✓ ✓ 69.12 78.93 42.44 50.06 42.48 45.77

As illustrated in Fig. 3, we separate the pipelines according to the information flow types – front-view (FV), top-view (TV), and dual-view (DV). FSD Head
denotes the application of the front-surface depth head (Section 3.3) for geometric learning. SLCP represents Stereo-LiDAR copy-paste. Originally FV applies
depth head and TV is supervised by voxel occupancy loss. “–” denotes the component that is not applicable in the respective pipeline.
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class. (e. - h.) ablates the probability of applying copy-paste.
As the image-level copy-paste produces object patch arti-
facts and occlusion, the larger probability can lead to worse
results. Table 6(f. versus j.) ablates whether to remove the
background point clouds and the results reveal the removal
of background points facilitates the model to better learn
from copy-paste augmentation (Car: þ2:60 AP3D).

4.4 Qualitative Results

Wepresent some representative results in Fig. 6, especially for
the occlusion situations. From the visualization of BEV
results, our approach robustly predicts most objects and esti-
mates their accurate 3D bounding boxes even for the scene 50
meters away (red line in the bird’s eye view). The visualiza-
tion shows the great potential for the low-cost outdoor per-
ception system based on stereo cameras. Noticeably, some
extremely occluded cases in the top row could be still
detected. The bottom row in Fig. 6 also visualizes some failure

cases including missing occluded objects, missing distant
objects, andwrong orientation/dimension predictions.

4.5 Efficiency Study

As the large performance gap between LiDAR-based
approaches and camera-based approaches [25], [27], [28],
most works focus on the improvement of detection accu-
racy. Efficiency comparison of different algorithms is less
investigated due to various experimental setups.

For a fair comparison, we conduct the efficiency compari-
sons on an NVIDIA RTX 2080TI GPU as shown in Table 7.
Generally, the complete DSGN++ with ResNet-34 runs takes
0.273 s on average, where binocular feature extraction takes
2� 0:058 ¼ 0:116s, PSV takes 0.036 s, 3DGV takes 0.045 s,
DSV and 3D network take 0.044 s and last BEV detector costs
0.012 s. The inference time of single-view pipelines TV-DSGN
++ and FV-DSGN++ are 0.198 s and 0.202 s, respectively.
Despite their lower performance compared with DSGN++,
the simple single-viewpipelines can also serve as simple base-
lines for stereo 3D object detection for faster speed.

For accelerating our pipeline, we provide another effi-
cient implementation (R18-DSGN++) to demonstrate the
speed-accuracy trade-off of our work. We replace ResNet-

TABLE 6
Hyper-Parameter Choices for Stereo-LiDAR Copy-Paste

id. Samples Prob Car Ped. Cyc.

a. – 0. 66.21 37.19 30.01
b. {3, 3, 3} 0.6 67.79 39.66 39.56
c. {5, 0, 0} 0.6 68.74 32.50 28.81
d. {0, 5, 5} 0.6 66.18 39.42 43.22

e. {5, 5, 5} 0.4 68.79 39.20 43.51
f. 0.6 69.12 42.44 42.48
g. 0.8 68.41 41.74 39.47
h. 1. 68.55 40.18 38.58
i. {7, 7, 7} 0.6 68.92 41.03 42.93
j. w/o Occ Removal 66.52 38.79 36.27

Models are evaluated using AP3D (Moderate) on the KITTI val set. “Samples”
denotes the augmented object counts for Car, Pedestrian, and Cyclist, respec-
tively. “Prob” indicates the apply SLCP for each training scene. “w/o Occ
Removal” denotes cancelling the removal of occluded point clouds. “Paste by
Distance” represents pasting objects from near to far.

Fig. 6. Qualitative results on the KITTI val set. Green boxes represents ground-truth and red boxes denotes our predictions. The left-view images are
shown in the left column and the BEV point clouds images are shown on the right side. Some failure cases are shown at the bottom of the table.
Please zoom in to observe the prediction details. Redline shown in the bird’s eye view is 50 meters away from the sensor.

Fig. 7. Comparison of foreground object localization error. Red dotted
line computes the regressed line. The localization error computes the
average depth estimation error within the 3D object boxes at the respec-
tive depth ranges.

4426 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 4, APRIL 2023

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 18,2023 at 11:02:19 UTC from IEEE Xplore.  Restrictions apply. 



34 with ResNet-18 and adopt the same 2D upsampling head
for both stereo volumes. The efficient model still achieves
68.12 AP3D despite the backbone network removing about
half of the parameters. This fact also indicates that the origi-
nal 2D backbone network is not fully exploited for the con-
struction of the following stereo volumes as described in
Section 3.2.

We note that the code is not yet fully optimized and
affects the speed of the 3D detector. For example, despite
the same computation, the CUDA implementation of D-PS
costs extra 4 ms than PyTorch built-in implementation of F.
grid_sample for plane sweeping. We leave the further code
optimization to future work.

5 CONCLUSION

We have renewed several key components that build an end-
to-end stereo detection pipeline and provided a new stereo
modeling – DSGN++ – for 3D object detection. Without bells
and whistles, we conducted a set of comprehensive experi-
ments to illustrate the effectiveness of the proposed modules.
Specifically, the proposed depth-wise plane sweeping allows
inputs ofwider 2D features and improvesmodeling efficiency
in 2D-to-3D transformation. Dual-view stereo volumes
provide better 3D representations that grasp differently
spaced features. And Stereo-LiDAR copy-paste strategy largely
improves data efficiency and enhances modeling generaliza-
tion ability for all categories. We expect the framework pro-
vides a strong baseline for the future application of camera-
based 3Dperception systems.
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