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Abstract—This article studies the robust deep stereo vision
in autonomous driving systems and counteracting adversarial
attacks. The autonomous system operation requires real-time
processing of measurement data which often contain significant
uncertainties and noise. Adversarial attacks have been widely
studied to simulate these perturbations in recent years. To coun-
teract the practical attacks in autonomous systems, novel methods
based on simulated attacks are proposed in this article. Univariate
and multivariate functions are adopted to represent the relation-
ships between the left and right input images and the deep stereo
model. A stereo regularizer is proposed to guide the model to
learn the implicit relationship between the images and character-
ize the loss function’s local smoothness. The attacks are generated
by maximizing the regularizer term to break the linearity and
smoothness. The model then defends the attacks by minimizing
the loss and regularization terms. Two techniques are developed
in this article. The first technique, SmoothStereo, explores
the basic knowledge from the physical world and smooth-
ness, while the second technique, SmoothStereoV2, improves
SmoothStereo through leveraging the smooth activation func-
tions during the defense. SmoothStereoV2 can learn and utilize
the gradient information concerning the attacks. The gradients
of the smooth activation functions can handle attacks for improv-
ing the model robustness. Numerical experiments on KITTI
datasets demonstrate that the proposed methods offer superior
performance.

Index Terms—Adversarial defense, autonomous system, local
smoothness, robust stereo vision.

I. INTRODUCTION

W ITH the arrival of the artificial intelligence era,
autonomous driving systems based on deep neural

networks (DNNs) have triggered a new revolution in travel-
ing and have a high potential to change the development of
cities. An autonomous driving system needs to complete the
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Fig. 1. Structure of a typical stereo-based deep vision model. There are two
sibling branches, e.g., feature extraction modules and RPN modules. Each
branch takes left and right images as input, respectively. The extracted feature
maps or object proposals are concatenated or reshaped into a single feature
map for further processing, e.g., regressing 3-D boundary cube, predicting
viewpoints, generating disparity maps, etc. Some models may concatenate
more branches after the sibling branches to conduct complicated tasks, relying
on the knowledge from these sibling branches.

following tasks: sensing, decision making, planning, and con-
trol. Among these, sensing is considered the most fundamental
and important task. In recent years, vision-based matching and
detection systems that utilize DNNs have been widely used as
sensing systems [2].

A stereo-based model is a vision-based system that exploits
sparse, dense, semantic, or geometrical information in stereo
imagery. Most of these models, e.g., Faster R-CNN [3], utilize
large feature networks as their backbone to extract features and
use region proposal networks (RPNs) to generate object pro-
posals which are then refined in subsequent modules. With this
rich information, we can get more accurate key points, view-
points, object dimensions, disparity maps, bounding boxes of
the 3-D objects, etc [4]–[10]. Usually, the left and the right
images cooperate in the stereo-vision system, as shown in
Fig. 1. Three-dimensional spatial knowledge is highly depen-
dent on the left and right stereo-pair images. Contrary to the
stereo systems, monocular approaches suffer from the lack of
accurate depth information and, as a result, cannot provide
comparable performance [8].

Although deep learning algorithms have demonstrated supe-
rior performance in many circumstances, recent researches
reveal that these algorithms are vulnerable to perturbations.
This security risk is hazardous for stereo models used in
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autonomous driving systems. Consequently, the concept of
adversarial attacks [11] came into being to measure these
perturbations. Typically, adversarial perturbations are crafted to
be invisible to human observers and indistinguishable from the
original image. This is achieved by constraining the �p norm
of the adversarial image to a predefined value that ensures
human imperceptibility from a pixel-difference perspective.
However, when added to images, adversarial examples cause
significant errors in the stereo model. Several adversarial attack
algorithms have been designed to attack DNN models [11]–
[19]. Szegedy et al. [11] first demonstrated the existence of
perturbations to natural images that can fool DNN models
into misclassification. To generate adversarial images more
efficiently, Goodfellow et al. [12] proposed a novel method
termed the fast gradient sign method (FGSM) to generate the
perturbations by computing the gradient of the loss function.
Intuitively, this method updates each input image pixel through
its gradient to maximize the loss while model parameters are
kept unchanged. FGSM utilizes the linearity hypothesis of DNN
models, i.e., designs of deep learning models encourage linear
behavior for computational gains. The basic iterative method
(BIM, also known as, I-FGSM) [16] extended FGSM by iter-
atively taking multiple small steps to adjust the perturbation
direction. Projected gradient descent (PGD) [17] studied the
adversarial perturbations from the perspective of optimization.
PGD initializes the search for an adversarial image at a random
point within the perturbation range.

Attacking the stereo models is more challenging compared
to attacking the classification models. Typically, a classifi-
cation model comprises a feature extraction module and a
classifier. In contrast, the stereo models are composed of many
complicated modules to learn enough knowledge, which would
contain lots of redundant information. The classification tasks
target the class labels in one-hot encodings, while the stereo
models detect vehicles that are more difficult. Chen et al. [20]
attacked detectors via the expectation over transformation
(EOT) technique—a method that computes the perturbation
by adding random distortions (e.g., resizing, rotation, etc.) to
natural images. Li et al. [18] attacked the shapes of bounding
boxes and classification labels simultaneously. Li et al. [19]
and Dong et al. [21] attacked more relevant objects by splitting
the whole image into subregions, e.g., foreground and back-
ground, or several superpixels. Adversarial examples also exist
in the physical world. Some adversarial images and road signs
are printed to fool deep vision models [16], [22]. Adversarial
T-shirts can deceive detection systems with a few adversarial
patches on the clothing [23], [24]. Athalye et al. [25] generated
adversarial 3-D objects via transformation-based methods.

Some adversarial defense algorithms have been proposed to
improve model robustness to attacks [26], [27]. A majority
of the literature introducing new adversarial attack methods
trained the models with their attacked inputs which is a prac-
tice termed adversarial training [12], [16], [17]. Some methods
modified the raw inputs by conducting preprocessing opera-
tions, e.g., random resizing [28] and data compression [29]
to introduce the perturbations to the inputs artificially and
help the model learn the critical information robustly under
the perturbations. SafetyNet [30] proposed to append an SVM

classifier to the models such that SVM can use the discrete
feature codes. For an input image, its discrete codes are com-
pared against the codes of training data to determine whether
it is an adversarial image. Generative adversarial networks
(GANs) [31], [32], composed of generators and discrimina-
tors, add two novel modules to help generate perturbations
and discriminate adversarial inputs. Stereopagnosia [33] dis-
cusses the influence of imposing traditional attack methods
directly on the stereo models and shows that the stereo models
are vulnerable to attacks. However, there has been no specif-
ically designed work done on defending against attacks on
stereo-based models to the best of our knowledge.

In this article, we propose a novel attack method with
a physically meaningful regularization term that considers
the characteristics of the stereo models and use a smooth
defense method based on adversarial training to tune the
model. Stereo-based models usually utilize the implicit spatial
information from the left and right images to extract features
independently, i.e., the sibling branches in Fig. 1. The con-
catenated features from these two images are further fused
to learn more information jointly, i.e., the single branch in
Fig. 1. Considering that these two types of mechanisms can
be modeled as univariate and multivariate functions, a novel
stereo-based regularizer targeting the overall loss of these
functions is proposed. The remainders of Taylor expansions
represent the regularizer term to characterize the local lin-
earity and smoothness of the loss surface. Our attacks tend
to break the smoothness of the loss surface by maximizing
the regularizer term to generate the perturbations. The direct
smooth defenses minimize the loss concerning the perturba-
tions to improve the smoothness. With these features, our novel
defense method can counteract adversarial attacks efficiently.
The proposed method is named SmoothStereo [1].

We further improve our method to be SmoothStereoV2
by using the smooth activation function during the model
defense. Some activation functions are employed, including
SoftPlus [34], exponential linear unit (ELU) [35], Gaussian
error linear unit (GELU) [36], and Swish [37], in place of
the widely used nonsmooth activation function rectified lin-
ear unit (ReLU) in existing stereo models. Compared with
the direct defense method in SmoothStereo, the smooth
activation function can capture and utilize more feature and
gradient information concerning the attack images during
defense training and introduce more smoothness into the
model without changing the model structures. Therefore, using
the smooth activation function ameliorates the loss function
during training, and the model is trained to be more robust
to perturbations. Furthermore, using smooth activation func-
tions will not cause extra inference costs because of no
changes to the model structures and tiny computation work-
loads of activation functions. The importance and effectiveness
of the smoothness have been emphasized in some previous
arts [38]–[42].

Focusing on the features and gradients is always of vital
importance to improve the robustness of the stereo mod-
els, and how to handle these has naturally been a critical
topic of the adversarial defenses no matter whether it is for
stereo applications or not [12], [16], [17], [26]–[28], [43].
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Studying the gradients is also a key topic of various appli-
cations and theoretical problems. Akiyama and Suzuki [44]
discussed the two-layer ReLU used in teacher–student learn-
ing and Asi et al. [45] proposed an adaptive gradient method
in convex optimization. Saito et al. [46], Jiang et al. [47],
Sitawarin et al. [48], and Cui et al. [49] focused on different
tasks with distinct settings from our stereo applications and
designed new loss functions to manipulate the gradients and
features in their problems.

The experimental results on the KITTI 2012 and KITTI
2015 stereo datasets [50], [51] show the outstanding
performance of our stereo-based perturbation generation
method and smooth defense method under various strengths
of attacks, compared with FGSM [12], PGD [17], and
I-FGSM [16].

The remainder of this article is organized as follows.
Section II introduces the problem to be addressed and
preliminaries. Section III explains our proposed method
SmoothStereo in detail. Section IV proposes the novel and
more powerful SmoothStereoV2 based on smooth acti-
vation functions. Section V summarizes the defense flow.
Section VI demonstrates the experiments, the results, and
analyses. Finally, Section VII concludes this article.

II. PRELIMINARIES

A. Adversarial Training

Adversarial training can be traced back to the rise of
adversarial attack algorithms [12]. The typical form of the
most representative adversarial training algorithms involves
two steps: 1) the generation of the adversarial image set via
adversarial attacks and 2) the defense training based on the
adversarial images. Most adversarial training methods perform
the following min–max training strategy shown in:

arg min
θ

E(x,y)∈D
[

max
δ∈�

L(x + δ, θ; y)
]

s.t. ‖δ‖p ≤ ε (1)

where D represents the dataset with x as the input image, y as
the ground truth, θ represents the model parameters, δ denotes
the perturbations, � is the perturbation set corresponding to
D, L(·) is the loss function, and E(·) represents the expected
loss over D. ‖ · ‖p is the �p-norm, which constrains the per-
turbation within ε such that the perturbation is imperceptible.
ε reflects the strengths of the attacks. The larger ε permits a
more extensive range of perturbations. The generated images
deviate farther from the clean images and, therefore, are more
harmful to the deep learning models. In comparison, a smaller
ε leads to weaker perturbations. Some experimental results
in Table IV can be taken as examples to illustrate this. For
simplicity, we use � to represent the candidate perturbation
set which is updated under the constraint ε. First, in (1), we
maximize the model loss to learn the adversarial perturbation
δ for each image x via gradient ascent

δi+1 = δi + s · ∇δi L(x + δi, θ; y)

δi+1 = clamp(δi+1;−ε, ε) (2)

Fig. 2. Generated object proposals and the final detected objects. The
proposals determine the final detection objects.

where s is the step size and i is the optimization step with

δ0 = random(−ε, ε) (3)

where random(·) is to generate the random initial perturbation
in [−ε, ε], and clamp(·) is the clamping function to force ‖δi‖p

to fall into the perturbation range. Sometimes researchers con-
strain δi ∈ [−ε, ε]. The input images with their corresponding
perturbations constitute the adversarial set. Second, the adver-
sarial set is used to tune the model parameters to minimize
the model loss via gradient descent

θ i+1 = θ i − η · ∇θ i L(x + δ, θ i; y) (4)

where η is the step size. δ is obtained by solving (2). The initial
parameter θ i=0 is obtained from the pretrained model. After
optimization via (4), the model with the updated parameters
is the robust model to counteract the adversarial attacks.

B. Deep Stereo Models

Deep stereo models have proved successes in autonomous
driving systems [6]–[10]. They are utilized to perform
the stereo matching, object detection, disparity prediction,
and regression tasks by exploiting semantic and geometric
information in stereo imagery. The network architecture can
be briefly divided into two parts, as shown in Fig. 1. The
first module contains two sibling branches that independently
extract features or generate object bounding proposals for the
left and right images. The subsequent module fuses the sibling
features and generates the boundary cube, key point, disparity
maps, and other related 3-D spatial information. An example
is shown in Fig. 2.

C. Problem Formulation

Denote xl and xr as the input left and right images, respec-
tively. The ground-truth features learned from the left and
right images are bl and br, e.g., the object proposals or the
disparity features. The model prediction objective is y, e.g.,
the object box and disparity map. Given a stereo-based model
with parameters θ and loss function L, our task is to solve the
following min–max problem:

arg min
θ

E(xl,xr,y)∈D
[

max
δl,δr∈�

Lo(xl + δl, xr + δr, θ; bl, br, y)
]
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Fig. 3. Bounding boxes generated for the left and right images.

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε (5)

where δl and δr represent the perturbations on the left and right
images, respectively, and are both constrained within the per-
turbation budget ε. In this article, we propose new techniques
by manipulating the loss function to counteract the attacks.
For clarity, we denote the original loss function in (5) as Lo.
The optimization process of (5) follows (2) and (4), while the
specific form of the loss function is adopted to improve the
performance.

III. SMOOTH ADVERSARIAL STEREO METHOD

In this section, we propose the SmoothStereo method,
composed of the smoothness-driven generation of adversarial
attacks and the corresponding smooth defense based on these
attacks.

A. Stereo-Based Regularizer

The stereo-based deep models can handle various tasks
while different tasks can be modeled as distinctive forms of
objective functions. For example, the sibling RPN modules
generate bounding boxes for the left and right images, respec-
tively (as shown in Fig. 3). Therefore, we can model this part
as two independent univariate functions. The regularization
term should constrain both of these two functions. Regressing
the 3-D bounding box or generating the final disparity map
can be represented as a multivariate function. The features
learned from the left–right stereo pair are jointly used as inputs
to the multivariate function. Consequently, the regularization
term should also be able to handle multivariate functions. We
should consider both of these function terms in the regularizer
to characterize the local smoothness of the loss surface.

The features learned from the left and right images share
high intersections, e.g., the intersection over union (IoU) of the
two regressed bounding boxes in Fig. 3. This phenomenon is
consistent with the realistic understanding that stereo cameras
capture the same field of view from a rectified stereo pair with
a small level of disparity. However, the two features contain
differences influenced by physical factors, such as the dis-
tance between the car and the object, the object’s orientation to
the stereo camera, etc. These physical factors vary with envi-
ronments, making them expensive to measure accurately. For
simplicity, we compute the distance between the two features
to characterize the effects of the realistic physical factors.

Let fl(xl) and fr(xr) denote two univariate functions, to rep-
resent the features extracted from the left image xl and right
image xr, respectively. Therefore, the distance between fl(xl)

and fr(xr) is defined as follows:

d(xl, xr) = ‖fl(xl) − fr(xr)‖n (6)

where ‖·‖n is the �n norm. As mentioned above, the physical
characteristics are measured with d(xl, xr). After attacking the
images, the corresponding distance is computed as follows:

d(xl + δl, xr + δr) = ‖fl(xl + δl) − fr(xr + δr)‖n. (7)

The loss term for the sibling branches under attacks is
defined as follows:

Lb = ‖d(xl + δl, xr + δr) − d(xl, xr)‖n. (8)

To improve the robustness of the detection system, we
will minimize (8) to teach the model to reserve the phys-
ical characteristics under attacks. However, minimizing (8)
would possibly result in inflexible optimization and ambiguous
convergence status [52]. The specific hazard is that pushing
d(xl, xr) close to zero makes the model confuse the left and
right images. In other words, the optimization process forces
the left and right branches to output the same results, which
contradicts our goal. For example, d(xl, xr) = 0 would result
in fl(xl) = fr(xr). So is for d(xl + δl, xr + δr). Although the
original model loss function in (5) would alleviate this hazard
by computing the errors between the model results and the
ground truths, Lb would no longer be a help but a burden.

To counteract this optimization ambiguity, we add a mar-
gin m to reinforce the optimization of the distance func-
tions [52], [53]. Take d(xl, xr) as an example. fl(xl) and fr(xr)

are in symmetric positions in d(xl, xr). This means that adding
a positive margin to fl(xl) is equivalent to adding a nega-
tive margin to fr(xr). The margin-based distance functions are
shown as follows:

d(xl, xr) = ‖fl(xl) − fr(xr) + m‖n

d(xl + δl, xr + δr) = ‖fl(xl + δl) − fr(xr + δr) + m‖n. (9)

The same margin m is shared in the two distance metrics
because we expect the model to recover the same results after
being attacked.

The tasks using the fused features learned from the early
module can be modeled as multivariate functions. Denote the
multivariate function as fm(xl, xr), and the function with per-
turbations as fm(xl + δl, xr + δr). We hope the model can get
the same result for the attacked images, therefore the loss term
to be minimized is defined as follows:

Lm = ‖fm(xl + δl, xr + δr) − fm(xl, xr)‖n. (10)

Unlike (9), we do not add a margin here since the features
learned from the perturbed images should equal the original
parts. Lm in (10) is distinct from the original loss function Lo

in (5) though they both use the two inputs. Usually, the Lo

computes the cross-entropy loss on the final results while Lm

computes the distance between the features. Specifically, fm(·)
is the feature tensor in the model rather than the final model
outputs.

Both the Lb and Lm can be added to the loss function as the
stereo-based regularization terms. Together with the original
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loss function Lo in (5), the new optimization objective function
is defined as follows:

L = Lo + Lb + Lm. (11)

Using this L makes our method different from the other
general adversarial methods. For the �n norm in the above
formulations, we usually use the �1 norm for simplicity.

B. Local Smoothness Optimization

Recent work has demonstrated that the robustness of mod-
els usually suffers from the nonlinearity of loss surface and
gradient obfuscation. To simulate the perturbations to attack
the models, violating the linearity of the loss surface is of
help [54]–[56]. Therefore, we propose optimizing the problem
from the perspective of local smoothness while considering the
regularization terms defined above.

Lb defined in (8) is transformed to a formulation shown as
follows:

Lb = ‖‖fl(xl + δl) − fr(xr + δr) + m‖1

− ‖fl(xl) − fr(xr) + m‖1‖1 (12)

where we use the �1 norm for simplicity. The nested norm
parameters are challenging to be solved and m is to be deter-
mined before the optimization. Besides, the difference between
the two terms in ‖ · ‖ is at a high magnitude, while the loss
surface usually has a low magnitude. Inspired by recent work
which approximates the regularization term by the remainder
of its Taylor expansion [54], [55], we propose to relax (12)
as (13). Refer to the Appendix for the details of the relaxation
process

Lb ≤ ‖fl(xl + δl) − fl(xl)‖1 + ‖fr(xr + δr) − fr(xr)‖1

≤ ‖δl∇xl fl(xl)‖1 + γl(ε, xl)

+ ‖δr∇xr fr(xr)‖1 + γr(ε, xr) (13)

where δl∇xl fl(xl) is the first-order term in the Taylor expansion
of fl(xl + δl), and δr∇xr fr(xr) is of fr(xr + δr). γl(ε, xl) and
γr(ε, xr) are the maximums of the high-order remainders of
the Taylor expansions. They are defined as follows:

hl(ε, xl) = ‖fl(xl + δl) − fl(xl) − δl∇xl fl(xl)‖1

hr(ε, xr) = ‖fr(xr + δr) − fr(xr) − δr∇xr fr(xr)‖1

γl(ε, xl) = max
‖δl‖p≤ε

hl(ε, xl), γr(ε, xr) = max
‖δr‖p≤ε

hr(ε, xr)

(14)

where hl and hr represent the high-order remainders for the
left and right images, respectively.

With (13), we can not only erase m but also relax (12)
to its upper bound. Considering the tradeoff between com-
putational workload and model accuracy, the higher order
remainders, e.g., the second-order gradient, are not computed.
The insights behind (13) are straightforward: the difference
between fl(xl + δl) and fl(xl) is constrained by the first-order
gradient term and the high-order remainder of the Taylor
expansion of fl(xl + δl). hl and hr are suitable measures of
how linear the surfaces are within the perturbation range ε.
This kind of quality is called local smoothness measure. By

minimizing the smoothness terms, we will enhance the loss
surface’s smoothness and improve the model’s robustness.
On the contrary, to attack the model, we can manipulate the
input images to maximize the smoothness term to break the
smoothness of the loss surface.

As to the multivariate regularizer Lm, it follows a similar
relaxation strategy. fm(xl + δl, xr + δr) is approximated by

fm(xl + δl, xr + δr) ≈ fm(xl, xr) + δl∇xl fm(xl, xr)

+ δr∇xr fm(xl, xr). (15)

Thus, we can form the following bound:

Lm ≤ ∥∥δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr)
∥∥

1

+ γm(ε, xl, xr) (16)

where γm(ε, xl, xr) is the maximum of the high-order remain-
der hm(ε, xl, xr). They are defined as follows:

hm(ε, xl, xr) = ‖fm(xl + δl, xr + δr) − fm(xl, xr)

− δl∇xl fm(xl, xr) − δr∇xr fm(xl, xr)‖1

γm(ε, xl, xr) = max
‖δl‖p≤ε,‖δr‖p≤ε.

hm(ε, xl, xr). (17)

Combining (14) and (17) together, we define the regular-
ization term for high-order remainder as Lh, as shown as
follows:

Lh = hl(ε, xl) + hr(ε, xr) + hm(ε, xl, xr). (18)

Similarly, we combine all of the first-order gradient terms
together, and then we have the regularization term L∇ defined
as follows:

L∇ = ‖δl∇xl fl(xl)‖1 + ‖δr∇xr fr(xr)‖1

+ ‖δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr)‖1. (19)

By maximizing Lh, we can break the smoothness of the
loss surface, so as to generate powerful adversarial images.
By minimizing these regularization terms together with the
original loss, we can train the model to improve the smooth-
ness and defense the perturbations. Therefore, we rewrite the
min–max formulation in (5) and (11) as follows:

arg min
θ

E(xl,xr,y)∈D
[

Lo + L∇ + max
δl,δr∈�

Lh

]

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε. (20)

The min–max formulation is computed on batches of
input images during the generation of adversarial images and
the model training. The method proposed in the section is
shorted as SmoothStereo. The inner maximization is the
smoothness-driven generation of adversarial images, and the
outer minimization is the smooth defense.

IV. SMOOTH GRADIENT DEFENSE

As mentioned above, SmoothStereo consists of two
parts: 1) smoothness-driven generation of adversarial images
and 2) smooth defense. In this section, we propose to enhance
SmoothStereo as SmoothStereoV2 by using the smooth
activation functions to introduce smoothness to the model
structure and further improve the loss function (20) to defend
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the attacks. In other words, the novel SmoothStereoV2 is
composed of smoothness-driven image generation and smooth
defense with a smooth loss function, as shown in (26).

A. Smooth Gradient Method

During defense training, the model learns the stored pertur-
bations to improve the model’s robustness and tune the model
parameters. Improving the model robustness usually forces the
stereo model to deviate from the original distribution of the
clean images to the perturbations in the attacks. These pertur-
bations would possibly do not exist in some scenarios. These
would result in the degradation of the inference accuracy on
the images with weak perturbations. Tsipras et al. [57] claimed
that the model robustness may be odd with the model accu-
racy, and there exists a tradeoff. Zhang et al. [58] identified
the tradeoff as a guiding principle in defense training and
proposed a novel defense method, composed of an empirical
risk minimization term and a regularization term, to push the
classification boundary away from the data. Wang et al. [59]
proposed a dynamic training strategy to gradually increase
the convergence quality of the adversarial examples and pro-
vide a theoretical guarantee on the defense convergence. Some
researchers suggest improving accuracy by enhancing the gen-
eralization ability of the model to suit a wide range of various
inputs. Yang et al. [60] combined dropout with robust train-
ing methods to obtain better generalization and proposes to
use a novel locally Lipschitz classifier. Balancing the robust-
ness and accuracy is difficult, while these methods only focus
on trivial classification tasks and require heavy model train-
ing from scratch. The actual application scenarios are intri-
cate, thus making these methods targeting classification tasks
not applicable, especially in our complicated stereo-based
tasks.

As mentioned in the above section, violating the smoothness
of the loss surface generates powerful perturbation samples.
Inspired by this, we propose that increasing the smoothness
of the model during defense training would help improve
the robustness to attacks. In this article, we propose to
use a smooth activation function to preserve more details
about the gradients to increase the model’s smoothness and
robustness [40], i.e., smooth gradient learning.

The most widely used activation function in stereo models is
ReLU, a nonsmooth function that introduces nonlinearity into
the network [3], [4], [7], [8], [10]. Typically, a stereo model
is deep and stacks tens of ReLU functions. Using the ReLU
function, the activation values that are less than 0 are forced to
be 0 to improve the sparsity of the data to help emphasize the
crucial data. The ReLU function and its gradient function are
shown in (21) and Fig. 4. Any features less than 0 are forced
to be zero while their gradient values are also zeros. There
is an abrupt change of the gradient at x = 0. General model
training methods use ReLU to ignore the details deliberately
to improve the model’s generalizability and avoid overfitting
because of the redundancy in the training sets. With these
characteristics, ReLU has been used as primary layers in the
existing deep learning models, including the stereo models
discussed in this article. For example, there are 11 and 34

Fig. 4. ReLU function and its gradient function.

ReLU layers in AANet [10] and Stereo R-CNN [8]

f (x) = max(0, x)

f ′(x) =
{

0, x ≤ 0
1, x > 0.

(21)

We conjecture that preserving more gradient information
help improve the ability to perceive disturbances. However,
when x ≤ 0, the activation values and gradients of ReLU
are all equal to 0, and Fig. 4 shows the abrupt changes of
the gradient value at x = 0. This characteristic is adopted to
force to model to forget many details to improve the model’s
generalizability and avoid overfitting since the deep learn-
ing models are usually trained with more than hundreds of
epochs on thousands, even millions of images. In comparison,
in our problem, a smooth function curve and a smooth gradi-
ent curve are preferred to preserve more information since the
stereo models ought to be trained to be sensitive enough to the
subtle perturbations, in a few training epochs with hundreds
of adversarial images and based on the pretrained models.
Meanwhile, the models should perform well under various
attacks, including weak and strong attacks. The function and
gradient values should change continuously, and close to zero
should be held and distinguishable. To deal with this problem,
we propose using the smooth approximation of the ReLU
function, including SoftPlus [34], ELU [35], GELU [36], and
Swish [37].

SoftPlus and its gradient function are given as follows:

f (β, x) = 1

β
log(1 + exp(βx))

f ′(β, x) = 1

1 + exp(−βx)
(22)

where β is a hyperparameter to control the gradient.
ELU takes the smooth form and the gradient function is

shown as follows:

f (x) =
{

x, x ≥ 0
exp(x) − 1, x < 0.

f ′(x) =
{

1, x ≥ 0
exp(x), x < 0.

(23)

GELU weights the inputs nonlinearly by their magnitude,
rather than gates inputs by their sign as in ReLUs. GELU takes
the form f (x) = x · �(x), where �(x) is the cumulative dis-
tribution function of the standard normal distribution. GELU
and its gradient function are approximated [36] as (24) to ease
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Fig. 5. Smooth activation functions and their gradient functions, with β = 1
and β = 15 for SoftPlus.

computations

f (x) = 0.5x
(

1 + tanh
[√

2/π
(

x + 0.044715x3
)])

f ′(x) = 0.5 tanh
(

0.0356774x3 + 0.797885x
)

+
(

0.0535161x3 + 0.398942x
)

sech2
(

0.0356774x3 + 0.797885x
)

+ 0.5. (24)

Swish and its gradient function are shown as follows:

f (x) = xσ(x)

f ′(x) = xσ(x) + σ(x)(1 − xσ(x))

with σ(x) = (1 + exp(−x))−1. (25)

Compared with ReLU in Fig. 4, abrupt changes do not exist
in these smooth activation functions. The values close to zero
(which means they are subtle and difficult to perceive) are well
reserved. During the defense training with smooth activation
functions, the loss value is backpropagated to update the model
parameters concerning these small values to make them more
sensitive. In contrast, in the nonsmooth ReLU models, their
corresponding parameters are ignored and remain unchanged.
Using smooth activation functions does not introduce addi-
tional model weights, thus keeping the model structures and
inference procedures consistent with the ReLU-based models.
The computation workloads of the activation function are neg-
ligible compared with the computationally heavy layers, such
as various types of convolutions and fully connected layers.

Examples of these smooth activation functions and their gra-
dient curves are shown in Fig. 5, with β = 1 and β = 15 for
SoftPlus. Compared with ReLU in Fig. 4, the functions and
gradient functions preserve more information, especially for
x ≤ 0. Though these gradient functions have distinct values
for the same x, the differences for different x are highlighted,
while in ReLU, there are only two values, 1 and 0.

B. Learning via Smooth Activation Functions

Learning via smooth activation functions helps improve
the model robustness to the attacks while considering more
to guarantee the performance under various intense attacks.
There are two categories of adversarial images, one for defense
training and one for testing (i.e., attacks after defense). For
SoftPlus with β values, detailed analyses are necessary to
handle various defense and testing images.

With the increase of perturbations in the generated adversar-
ial examples, the defense training, as shown in (20), increases

Fig. 6. SoftPlus functions and their gradient functions.

the model robustness to stronger attacks during testing.
However, the accuracies for test cases with weaker pertur-
bations degrade relatively, or the performance improvements
are unsatisfying. Some results are shown in the experiments
in Section VI-C. The β value in SoftPlus controls the gradient
of SoftPlus and the rate of value changes of the gradient func-
tion. The β values are adjusted to facilitate model robustness
to strong attacks. If using a smaller β, the curves deviate far-
ther from the x-axis at x = 0. As shown in Fig. 6, smaller β

values possess more f (x) values if x < 0 and have more com-
prehensive ranges of gradient values to update parameters. For
SoftPlus, β = 1 preserves more information compared with
β = 15. That means more information from the perturba-
tions and the more considerable differences between the clean
images and the perturbations are preserved. The differences
pull the model weights farther from the original weight dis-
tribution during defense training. Other activation functions
show more complicated phenomena. For Swish and GELU,
more gradient information is preserved compared with other
functions. For ELU, the gradient is consistent as 1 if x ≥ 0.
As to the function values shown in Fig. 5, ELU, Swish, and
SoftPlus with β = 1 possess higher diversities compared with
GELU. Therefore, in comparison, some critical information is
forgotten by GELU during inference.

We need to guarantee that enough information is learned
during defense training to enable the model to identify the
perturbations. Concerning the perturbation ε, if the adver-
sarial training images are generated under a tight constraint
(i.e., a small ε), using smaller β to preserve more information
is preferred since the perturbations are subtle. Suppose the
perturbation constraint is loose, i.e., a large ε and drastic per-
turbations. In this case, we prefer larger β values to avoid the
strong perturbations to pull the model too far from the origi-
nal distribution. Empirically, the β value in SoftPlus increases
as the perturbations of the adversarial images increase to
improve the overall performance and balance the robustness
and accuracy.

As mentioned above, Swish and ELU preserve more
information, therefore, have higher robustness to weak attacks
than GELU. Various SoftPlus functions are better than GELU
since more features will be preserved during inference.
Compared with the smooth defense training in (20), the
smooth gradient method based on smooth activation functions
improves the model performance. It provides the opportunities
to adjust the balance between robustness and accuracy via β

of SoftPlus. Both ReLU and smooth activations do not contain
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TABLE I
SUMMARY OF THE PROPOSED METHODS

learnable parameters. Although there are some exponential
and product operations in smooth activations, the computation
overheads are tiny compared to convolutions and FC layers.
Some inference latencies are listed in the experimental results
to illustrate this.

In summary, the adversarial images are generated by break-
ing the local smoothness. Then, the generated adversarial
images are used to fine-tune the model enhanced by smooth
activation functions. For clearness, the min–max optimization
formulation in (20) is reformulated as follows:

δl, δr = max
δl,δr∈�

Lh

arg min
θ

E(xl,xr,y)∈D
[
Ls

a = (
Ls

o + Ls∇ + Ls
h

)]
s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε (26)

maxδl,δr∈� Lh is discussed in Section III to generate the per-
turbations based on the original model in which ReLU is
used. Ls

o, Ls∇ , and Ls
h are the modified model loss terms by

replacing the ReLU in the original model with the smooth
activation function, where s denotes smooth. In other words,
smooth activations are only used to help tune the model
parameters during defense training and will not participate in
the generation of adversarial images. The enhanced defense
method proposed in this section together with the method
to generate the adversarial images in Section III is termed
SmoothStereoV2.

Here, we articulate the strength of the attack. A larger ε will
make the images deviate from the clean images farther, result-
ing in more errors, i.e., stronger perturbations. A smaller ε will
lead to weaker perturbations since the deviations are fewer.
Besides, PGD is regarded as a stronger attack method than
FGSM since PGD will result in more significant performance
degradations than FGSM for the same ε, as shown in Table IV.

V. OVERALL FLOW

In the previous sections, we discuss the stereo-based local
smooth regularizer in detail and introduce the smooth activa-
tion function to improve the defense performance. The local
smooth regularizer is maximized to generate the adversar-
ial images. The activation function, either SoftPlus, Swish,
GELU, or ELU, is adopted in the outer minimization to help
the defense training. For clarity, our proposed methods are
summarized in Table I. The overall algorithm framework is
shown in Algorithm 1. If SmoothStereoV2 is adopted,
smooth activation will be used. β is a hyperparameter for
SoftPlus, so we do not treat it as an input parameter of the
optimization flow. Without loss of generality, we use s to
denote the loss functions with smooth activations as shown
in (26), rather than introducing new notations to represent

Algorithm 1 Adversarial Training of Stereo-Based Model

Require: Clean image set D = {(xi
l, xi

r, bi
l, bi

r, yi)}N
i=1, num-

ber of samples N, batch size b, iterations of outer
minimization TO, iterations of inner maximization TI ,
model parameters θ , learning rate η of model parameters,
perturbation range ε, step size p of perturbation.

1: for t1 = 1 → TO do
2: Sample a batch B = {xi

l, xi
r}b

i=1 from D;
3: Generate random initial perturbation � = {δi

l, δ
i
r}b

i=1
for B, under constraint ε;

4: for t2 = 1 → TI do
5: Calculate Lh for the batch B;
6: Update � via back-propagation to maximize Lh,

with perturbation step size p;
7: end for
8: if Using SmoothStereo then
9: Compute Lo, L∇ , Lh according to B and �;

10: Compute La = Lo + L∇ + Lh;
11: Update θ via back-propagation to minimize La,

with learning rate η;
12: else if Using SmoothStereoV2 then
13: Compute Ls

o, Ls∇ , Ls
h according to B and �;

14: Compute Ls
a = Ls

o + Ls∇ + Ls
h;

15: Update θ via back-propagation to minimize Ls
a,

with learning rate η;
16: end if
17: end for
18: return The new model with updated parameters θ .

the loss functions for these different activations separately.
According to the above discussions, to achieve the optimal
defense performance to various attacks, it is preferred to
defend through the SmoothStereoV2 based on adversarial
images generated with strong perturbations.

VI. EXPERIMENTAL RESULTS

A. Experimental Settings

This section evaluates our proposed methods, focusing on
the performance of smoothness-driven generation of adversar-
ial images and the smooth gradient defense. The mainstream-
ing stereo datasets, KITTI 2012 [50] and KITTI 2015 [51],
are adopted as the benchmarks. Some stereo-based tasks
are tested, including object detection Stereo R-CNN [8] and
stereo-matching AANet [10]. Powerful adversarial methods
are adopted as the baselines to generate the adversarial images,
i.e., FGSM [12], I-FGSM [16], and PGD [17]. The optimal
results are bolded. The direct adversarial defense, proposed
in [17], is used to defend against adversarial attacks, and the
results are compared with our proposed methods. The experi-
mental GPU platform is an Nvidia Titan Xp with CUDA 11.0,
and the total global memory is 12196 MB. The CPU platform
has 2 Intel Xeon Silver 4114 CPUs. In physical environments,
the perturbations should fall in a feasible range. We select
some perturbations to test our methods. In experiments, the
left and right images share the same perturbation ranges.
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TABLE II
RESULTS OF ATTACKING STEREO R-CNN BY FGSM AND PGD

Fig. 7. Examples of results on FGSM attacks. The images from left to right are: original detection results (ground truth), adversarial images generated via
FGSM with ε = 2, defense results via direct adversarial training, and defense results via our SmoothStereo and SmoothStereoV2.

Fig. 8. Example of results on PGD attacks. The images from left to right are: original detection results (ground truth), adversarial images generated via
PGD with ε = 2, defense results via direct adversarial training, and defense results via our SmoothStereo and SmoothStereoV2.

In the object detection task Stereo R-CNN, we test our
proposed methods with two perturbation ranges ε = 0.7 and
ε = 2. In Stereo R-CNN, two sibling branches propose many
region proposals for the objects, and then a single branch
generates the final object boxes. The two KITTI sets are
fused to train and test Stereo R-CNN. In comparison, in the
stereo-matching task, AANet matches the features extracted
from the two sibling branches to learn the disparity knowl-
edge. Therefore, this task is more sensitive to the changes
of features and more vulnerable to attacks than the object
detection tasks. We test AANet with more perturbations,
ε = {0.7, 2, 2.55, 5.1, 10.2}. The perturbation step sizes for
these ε values are {0.01275, 0.051, 0.06375, 0.51, 0.765}. In
the experimental results, SmoothStereoV2 includes Swish,
ELU, GELU, and SoftPlus. A set of β values for SoftPlus
is tested, i.e., {1, 3, 5, 10, 15}. The experimental stereo-input
images are selected from KITTI sets, following [8] and [10].

B. Smooth Adversarial Methods on Stereo-Object Detection

Some experiments are conducted on object detection Stereo
R-CNN [8] to test our methods, compared with FGSM
and PGD. The detection performance metrics include AP2d
that representing the average detection precision of the 2-D
bounding box, AOS that representing the average orientation
similarity of the joint 3-D detection, AP3d that representing

the average detection precision of the 3-D bounding box, and
APbv that representing the average localization precision of the
bird’s eye view. The error statistics are computed according
to boxes with IoU ≥ 0.7 (IoU). The KITTI object detection
set has three categories of inputs: 1) easy; 2) moderate; and
3) hard, which reflect the difficulties of the detection tasks.
The perturbation step is 2.

The results of directly using FGSM and PGD to attack
Stereo R-CNN are listed in Table II. By applying attacks, the
detection qualities degrade significantly.

To improve the model robustness to these attacks, we use
direct defense training to tune the model with the FGSM-
and PGD-generated images as the defense training set. The
defense sets are generated with the same perturbations as
the testing sets. The testing results of our proposed meth-
ods are listed in Table III. The results show that our methods
SmoothStereo and SmoothStereoV2 outperform the
baselines significantly in most cases. SmoothStereo wins
the baselines, and SmoothStereoV2 with smooth activation
functions improves the performance further. The performance
improvements are pretty impressive for the instances under
PGD attacks, demonstrating the effectiveness of enhancing the
model smoothness under strong attacks.

Figs. 7 and 8 show some examples of using FGSM, PGD,
and our methods to defend against the attacks. The adversarial
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TABLE III
ACCURACY RESULTS OF TESTING STEREO R-CNN AFTER DEFENSE TRAINING

images mislead the model to misclassify cars and incorrectly
predict the object orientations. Direct defense training still
loses cars while misclassifying the granite steps as a car. In
comparison, our methods can correctly predict the locations
and directions of the vehicles. Moreover, our regularization
and smoothness terms outperform the original Stereo R-CNN
detection model in some cases. Fig. 7 shows that our robust
models correctly detect cars that were misclassified by the
original model. In Fig. 8, our methods detect the vehicle suc-
cessfully and find the nearest object that hinders the vehicle.
Our approach can also overcome the poor performance and
instability of Stereo R-CNN.

C. Smooth Adversarial Methods on Stereo Matching

To demonstrate the performance, we test our methods on a
more general stereo-matching task, AANet [10]. The perturba-
tion step is equal to 40. The performance metric is the average
L1 loss between the predicted disparities and the ground truths.
The lower loss value reflects better performance.

Without defense training, the results of attacking AANet
using the generated adversarial images are listed in Table IV.
The L1 loss for clean input images is 11.17. Our generated
adversarial images seriously mislead the model compared with
PGD and FGSM. As the perturbation range ε increases, our
advantages are more noteworthy. For example, for ε = 10.20,
the loss value under our SmoothStereo attack is 88.55,

TABLE IV
L1 LOSSES OF ATTACKING AANET ON KITTI 2015

9.97% higher than PGD, and 419.35% higher than FGSM. The
results also illustrate the strengths of attacks. Larger ε values
result in stronger attacks, i.e., more significant performance
degradations.

We analyze the performance of SmoothStereoV2 with
various β values of SoftPlus to illustrate the importance
of smooth gradients under attacks. Then, we compare the
performance on AANet after applying other defense training
methods to highlight our approaches further.
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Fig. 9. SmoothStereoV2 defense results with different β values and two
defense training sets, under various FGSM attacks.

Fig. 10. Defense sets are generated with ε = 5.10. FGSM represents FGSM-
based defense method. S.S. represents SmoothStereo defense. The β

terms represent the SmoothStereoV2 with these β values. ε = 0.7 is
weak attack and ε = 10.2 is strong.

β value of the SoftPlus function plays a vital role dur-
ing the model inference. By default, researchers set β as 1.
We will choose suitable β flexibly to adjust the gradient in
SmoothStereoV2. Some results are plotted in Fig. 9. First,
increasing the perturbation ε of the adversarial defense set
would remarkably improve the robustness of the model to
defend the attacks. As shown in Fig. 9, the L1 loss values
are usually higher than 20 with ε = 0.70 (i.e., weak attacks in
the training set), while most L1 loss values are smaller than
15 with ε = 10.2 (i.e., strong attacks in the training set). This
phenomenon is consistent with empirics that stronger pertur-
bations contribute more to the model’s robustness. Besides, if
the adversarial image set is generated with ε = 0.7, the default
β = 1 has good performance, especially when FGSM attacks
are stronger. However, if the adversarial defense set is gen-
erated with ε = 10.2, the performance of the default β = 1
is the worst while β = 15 is optimal. Larger β can always
guarantee performance under subtle attacks.

Generally, models perform well under weak attacks, while a
satisfying model should still perform well under strong attacks.
To illustrate our performance, we plot the results of AANet
after defense training under weak PGD attack ε = 0.7 and
strong PGD attack ε = 10.2, as shown in Fig. 10. Under strong
and weak FGSM attacks, the experimental results show similar
results. It demonstrates that our methods achieve consistent
performance under strong and weak attacks while the baselines
are inferior under strong attacks.

More results are listed in Table V for KITTI 2012
and KITTI 2015, including different defense meth-
ods and defense sets with different perturbations
ε ∈ {0.70, 2.00, 2.55, 5.10, 10.20}. The result values are
the average L1 losses of five attacks with attack perturbations
ε ∈ {0.70, 2.00, 2.55, 5.10, 10.20}. For KITTI 2015, the

TABLE V
L1 LOSSES OF ATTACKING AANET

results show that with the increasing perturbation ε of the
defense set, larger β contributes to the lower L1 loss. Swish
and ELU perform well on both the two KITTI sets, while
GELU achieves outstanding results on KITTI 2012. The fam-
ily of smooth activation functions shows good performance
on the strong PGD attacks on these two sets. Some practical
stereo-image examples are shown in Fig. 11 with β = 10.
The original model performs poorly on the perturbed images,
while after defense with our methods, the display map is of
high quality.

In summary, our proposed methods outperform the base-
lines significantly in improving the model robustness to strong
attacks while balancing the accuracies to subtle attacks. As
discussed above, traditional models with nonsmooth activation
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Fig. 11. Examples of AANet disparity results. The defense and test pertur-
bations are both with ε = 10.20. The images from top to down are: original
left and right images, perturbed left and right images, disparity map of the
perturbed images generated by the original model, and disparity map gener-
ated by SmoothStereoV2 with SoftPlus β = 10. Our disparity map can
well reflect the actual physical characteristics while the outputs of the original
model are of chaos.

TABLE VI
INFERENCE LATENCIES (MS) ON KITTI 2012

functions ignore information during inference and backpropa-
gation to avoid overfitting the redundant data. In our adversar-
ial problems, preserving information to counteract attacks is
essential. The model accuracy is also guaranteed since we can
handle weak attacks successfully. To achieve the optimal aver-
age performance under attacks, we suggest a strong defense set
generated by our smoothness-driven generation method with
large perturbation ε = 10.2, and the smooth defense method
SmoothStereoV2 with large β values for SoftPlus (e.g., β

= 10 or 15), Swish, or ELU.

D. Analyses on the Inference Costs

The time costs of model inferences are listed in Table VI.
We compare the inference latencies of baselines and our meth-
ods on KITTI 2012 and AANet. Each latency is the average
value of six trials. Results show that using our methods or the
baselines will not degrade the real-time inference performance
of the stereo model. In deep learning models, the computa-
tional workloads arise mainly from the convolutions and fully

connected layers. In comparison, the activation layers can be
finished quickly, thus impacting the inference speed slightly.

VII. CONCLUSION

To counteract adversarial attacks and improve the robustness
of object detection models for autonomous driving systems,
novel defense methods that explicitly consider the physical
meaning of the stereo-based models are proposed in this arti-
cle. Our regularization terms can help the model learn the
relationships between the left and right images and physical
meanings. These terms reflect the local linearity and smooth-
ness of the loss function. Furthermore, a smooth defense
method based on the smooth activation function is proposed
to improve the model’s smoothness during defense training.
An optimal defense strategy is summarized based on our
smoothness-driven generation of adversarial images and the
smooth defense method. It is shown in the results that our
methods outperform the baselines significantly. To the best of
our knowledge, this is the first work proposing novel meth-
ods specifically for the stereo-based problems in autonomous
systems.

APPENDIX

RELAXATION OF EQUATION (12)

According to the triangle inequality

||a| + |b|| ≤ |a ± b| ≤ |a| + |b| (27)

which is one of the defining property of the normed vector
space [61], (12) can be relaxed to a upper bound

Lb = ‖‖fl(xl + δl) − fr(xr + δr) + m‖1

− ‖fl(xl) − fr(xr) + m‖1‖1

≤ ‖fl(xl + δl) − fr(xr + δr) + m

− (fl(xl) − fr(xr) + m)‖1

= ‖(fl(xl + δl) − fl(xl)) − (fr(xr + δr) − fr(xr))‖1

≤ ‖fl(xl + δl) − fl(xl)‖1 + ‖fr(xr + δr) − fr(xr)‖1. (28)

The left and right images are in the symmetric positions
in (28), i.e., fl(xl + δl) − fr(xr + δr) leads to the same
deduced results with fr(xr + δr) − fl(xl + δl). Furthermore,
fl(xl +δl) can be approximated by its first-order Taylor expan-
sion fl(xl) + δl∇xl fl(xl). Thus, we can have the following
bound:

‖fl(xl + δl) − fl(xl)‖1

= ‖δl∇xl fl(xl) + fl(xl + δl) − fl(xl) − δl∇xl fl(xl)‖1

≤ ‖δl∇xl fl(xl)‖1 + ‖fl(xl + δl) − fl(xl) − δl∇xl fl(xl)‖1

≤ ‖δl∇xl fl(xl)‖1 + γl(xl, ε) (29)

where γl(xl, ε) is defined as the maximum of the remainder
of the first-order Taylor expansion of fl(xl + δl), i.e.

γl(xl, ε) = max
‖δl‖p≤ε

‖fl(xl + δl) − fl(xl) − δl∇xl fl(xl)‖1. (30)

Similarly, the term for the right image is relaxed as follows:

‖fr(xr + δr) − fr(xr)‖1 ≤ ‖δr∇xr fr(xr)‖1 + γr(xr, ε). (31)
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Given (29) and (31), Lb is further relaxed to its upper bound
as shown as follows:

Lb = ‖‖fl(xl + δl) − fr(xr + δr) + m‖1

− ‖fl(xl) − fr(xr) + m‖1‖1

≤ ‖δl∇xl fl(xl)‖1 + γl(xl, ε)

+ ‖δr∇xr fr(xr)‖1 + γr(xr, ε). (32)

REFERENCES

[1] Q. Sun, A. A. Rao, X. Yao, B. Yu, and S. Hu, “Counteracting adversarial
attacks in autonomous driving,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Des. (ICCAD), 2020, pp. 1–7.

[2] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby,
and A. Mouzakitis, “A survey on 3D object detection methods for
autonomous driving applications,” IEEE Trans. Intell. Transp. Syst.,
vol. 20, no. 10, pp. 3782–3795, Oct. 2019.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. Int. Conf.
Adv. Neural Inf. Process. Syst., 2015, pp. 91–99.

[4] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun, “3D object
proposals using stereo imagery for accurate object class detection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 5, pp. 1259–1272,
May 2018.

[5] P. Li, T. Qin, and S. Shen, “Stereo vision-based semantic 3D object
and ego-motion tracking for autonomous driving,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 646–661.

[6] J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2018,
pp. 5410–5418.

[7] S. Duggal, S. Wang, W.-C. Ma, R. Hu, and R. Urtasun, “DeepPruner:
Learning efficient stereo matching via differentiable PatchMatch,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 4384–4393.

[8] P. Li, X. Chen, and S. Shen, “Stereo R-CNN based 3D object detection
for autonomous driving,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2019, pp. 7644–7652.

[9] Y. Chen, S. Liu, X. Shen, and J. Jia, “DSGN: Deep stereo geometry
network for 3D object detection,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2020, pp. 12536–12545.

[10] H. Xu and J. Zhang, “AANet: Adaptive aggregation network for effi-
cient stereo matching,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2020, pp. 1959–1968.

[11] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
Int. Conf. Learn. Represent. (ICLR), 2014.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2015.

[13] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A sim-
ple and accurate method to fool deep neural networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016, pp. 2574–2582.

[14] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
2017, arXiv:1705.07204.

[15] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 1369–1378.

[16] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2016, arXiv:1607.02533.

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2018.

[18] Y. Li, D. Tian, X. Bian, S. Lyu, and M.-C. Chang, “Robust adversarial
perturbation on deep proposal-based models,” in Proc. Brit. Mach. Vis.
Conf. (BMVC), 2018, p. 231.

[19] Y. Li, X. Bian, M.-C. Chang, and S. Lyu, “Exploring the vulnerability
of single shot module in object detectors via imperceptible background
patches,” in Proc. Brit. Mach. Vis. Conf. (BMVC), 2019, p. 218.

[20] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “ShapeShifter:
Robust physical adversarial attack on faster R-CNN object detector,” in
Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2018,
pp. 52–68.

[21] X. Dong et al., “Robust superpixel-guided attentional adversarial attack,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020,
pp. 12895–12904.

[22] K. Eykholt et al., “Robust physical-world attacks on deep learning
visual classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2018, pp. 1625–1634.

[23] K. Xu et al., “Adversarial t-shirt! Evading person detectors in a physical
world,” 2019, arXiv:1910.11099.

[24] Z. Wu, S.-N. Lim, L. S. Davis, and T. Goldstein, “Making an invisibility
cloak: Real world adversarial attacks on object detectors,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2020, pp. 1–17.

[25] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust
adversarial examples,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018,
pp. 284–293.

[26] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14410–14430,
2018.

[27] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent advances in
adversarial training for adversarial robustness,” in Proc. Int. Joint Conf.
Artif. Intell. (IJCAI), Aug. 2021, pp. 4312–4321.

[28] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating
adversarial effects through randomization,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2018, pp. 1–16.

[29] N. Das et al., “Keeping the bad guys out: Protecting and vaccinating
deep learning with jpeg compression,” 2017, arXiv:1705.02900.

[30] J. Lu, T. Issaranon, and D. Forsyth, “SafetyNet: Detecting and rejecting
adversarial examples robustly,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 446–454.

[31] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Conf. Neural
Inf. Process. Syst. (NIPS), 2014, pp. 2672–2680.

[32] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, “Perceptual gen-
erative adversarial networks for small object detection,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 1222–1230.

[33] A. Wong, M. Mundhra, and S. Soatto, “Stereopagnosia: Fooling stereo
networks with adversarial perturbations,” in Proc. AAAI Conf. Artif.
Intell., vol. 35, 2021, pp. 2879–2888.

[34] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia,
“Incorporating second-order functional knowledge for better option pric-
ing,” in Proc. Conf. Neural Inf. Process. Syst. (NIPS), vol. 13, 2001,
pp. 472–478.

[35] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (ELUs),” 2015,
arXiv:1511.07289.

[36] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

[37] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” 2017, arXiv:1710.05941.

[38] T. Miyato, A. M. Dai, and I. Goodfellow, “Adversarial training meth-
ods for semi-supervised text classification,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2017, pp. 1–11.

[39] A. Dabouei, S. Soleymani, F. Taherkhani, J. Dawson, and
N. M. Nasrabadi, “SmoothFool: An efficient framework for com-
puting smooth adversarial perturbations,” in Proc. IEEE/CVF Winter
Conf. Appl. Comput. Vis., 2020, pp. 2665–2674.

[40] C. Xie, M. Tan, B. Gong, A. Yuille, and Q. V. Le, “Smooth adversarial
training,” 2020, arXiv:2006.14536.

[41] E. Rosenfeld, E. Winston, P. Ravikumar, and Z. Kolter, “Certified robust-
ness to label-flipping attacks via randomized smoothing,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2020, pp. 8230–8241.

[42] M. Weber, X. Xu, B. Karlaš, C. Zhang, and B. Li, “RAB: Provable
robustness against backdoor attacks,” 2020, arXiv:2003.08904.

[43] J. Li, Y. Liu, T. Chen, Z. Xiao, Z. Li, and J. Wang, “Adversarial attacks
and defenses on cyber–physical systems: A survey,” IEEE Internet
Things J., vol. 7, no. 6, pp. 5103–5115, Jun. 2020.

[44] S. Akiyama and T. Suzuki, “On learnability via gradient method for
two-layer ReLU neural networks in teacher-student setting,” in Proc.
Int. Conf. Mach. Learn. (ICML), 2021, pp. 152–162.

[45] H. Asi, J. Duchi, A. Fallah, O. Javidbakht, and K. Talwar, “Private
adaptive gradient methods for convex optimization,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2021, pp. 383–392.

[46] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier
discrepancy for unsupervised domain adaptation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2018, pp. 3723–3732.

[47] P. Jiang, A. Wu, Y. Han, Y. Shao, M. Qi, and B. Li, “Bidirectional
adversarial training for semi-supervised domain adaptation,” in Proc.
Int. Joint Conf. Artif. Intell. (IJCAI), 2020, pp. 934–940.

[48] C. Sitawarin, S. Chakraborty, and D. Wagner, “SAT: Improving adver-
sarial training via curriculum-based loss smoothing,” in Proc. 14th ACM
Workshop Artif. Intell. Security, 2021, pp. 25–36.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 22,2022 at 08:03:22 UTC from IEEE Xplore.  Restrictions apply. 



5206 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 12, DECEMBER 2022

[49] J. Cui, S. Liu, L. Wang, and J. Jia, “Learnable boundary guided adver-
sarial training,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2021,
pp. 15721–15730.

[50] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2012, pp. 3354–3361.

[51] M. Menze and A. Geiger, “Object scene flow for autonomous vehi-
cles,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015,
pp. 3061–3070.

[52] Y. Sun et al., “Circle loss: A unified perspective of pair similarity
optimization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2020, pp. 6398–6407.

[53] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss
for convolutional neural networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), vol. 2, 2016, pp. 507–516.

[54] C. Qin et al., “Adversarial robustness through local linearization,” in
Proc. Conf. Neural Inf. Process. Syst. (NIPS), 2019, pp. 13842–13853.

[55] J. Xu, Y. Li, Y. Bai, Y. Jiang, and S.-T. Xia, “Adversarial defense via
local flatness regularization,” 2019, arXiv:1910.12165.

[56] B. Yu, J. Wu, J. Ma, and Z. Zhu, “Tangent-normal adversarial regular-
ization for semi-supervised learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2019, pp. 10676–10684.

[57] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2019, pp. 1–25.

[58] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan,
“Theoretically principled trade-off between robustness and accuracy,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2019, pp. 7472–7482.

[59] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu, “On the conver-
gence and robustness of adversarial training,” in Proc. Int. Conf. Mach.
Learn. (ICML), vol. 97, 2019, pp. 6586–6595.

[60] Y.-Y. Yang, C. Rashtchian, H. Zhang, R. Salakhutdinov, and
K. Chaudhuri, “A closer look at accuracy vs. robustness,” in Proc. Conf.
Neural Inf. Process. Syst. (NIPS), 2020, pp. 1–14.

[61] R. Kress, Numerical Analysis (Graduate Texts in Mathematics).
New York, NY, USA: Springer, 1998. [Online]. Available:
https://books.google.com.hk/books?id=e7ZmHRIxum0C

Qi Sun (Graduate Student Member, IEEE) received
the B.Eng. degree in computer science from Xidian
University, Xi’an, China, in 2018. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong, Hong Kong.

His current research interests include deep neural
network hardware acceleration, high-level synthesis,
and design space exploration.

Xufeng Yao received the B.Eng. degree in
information system and information management
from Fudan University, Shanghai, China, in 2016,
and the M.Sc. degree in computer science from
The Chinese University of Hong Kong, Hong
Kong, in 2020, where he is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering.

His research interests include computer vision and
machine learning.

Arjun Ashok Rao is currently pursuing the
B.Eng. degree in financial technology with The
Chinese University of Hong Kong (CUHK),
Hong Kong.

He currently works on efficient decentralized
learning algorithms with the Systems Engineering
Department, CUHK. His research interests broadly
include advancing fundamental deep learning
results, focusing on adversarial robustness,
optimization algorithms for improved general-
ization, and machine learning for novel science
applications.

Bei Yu (Member, IEEE) received the Ph.D. degree
from The University of Texas at Austin, Austin, TX,
USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received nine Best Paper Awards from
DATE 2022, ICCAD 2021 and 2013, ASPDAC
2021 and 2012, ICTAI 2019, Integration, the VLSI
Journal in 2018, ISPD 2017, and SPIE Advanced
Lithography Conference 2016, and six ICCAD/ISPD

contest awards. He has served as the TPC Chair for ACM/IEEE Workshop
on Machine Learning for CAD, and in many journal editorial boards and
conference committees. He is an Editor of IEEE TCCPS Newsletter.

Shiyan Hu (Senior Member, IEEE) received the
Ph.D. degree in computer engineering from Texas
A&M University, College Station, TX, USA, in
2008.

He is a Professor and the Chair of Cyber–
Physical System Security with the University of
Southampton, Southampton, U.K. His research
interests include cyber–physical systems and cyber–
physical system security, where he has published
more than 150 refereed papers.

Prof. Hu is a recipient of the 2017 IEEE Computer
Society TCSC Middle Career Researcher Award and the 2014 U.S. National
Science Foundation CAREER Award. His publications have received a
few distinctions, such as the 2018 IEEE SYSTEMS JOURNAL Best Paper
Award, the 2018 IEEE TCSC Most Influential Paper Award, the 2017
Keynote Paper in IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN

OF INTEGRATED CIRCUITS AND SYSTEMS, and the Front Cover Paper in
IEEE TRANSACTIONS ON NANOBIOSCIENCE in March 2014. He is the
Chair for IEEE Technical Committee on Cyber–Physical Systems. He is the
Editor-in-Chief of IET Cyber–Physical Systems: Theory & Applications. He
is/was an Associate Editor of IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS, ACM Transactions on Design Automation for Electronic Systems,
and ACM Transactions on Cyber–Physical Systems. He is/was a Guest Editor
of eight IEEE/ACM journals, such as PROCEEDINGS OF THE IEEE and IEEE
TRANSACTIONS ON COMPUTERS. He has held chair positions in various
IEEE conferences. He is a member of European Academy of Sciences and
Arts and a Fellow of IET and British Computer Society. He is an ACM
Distinguished Speaker and an IEEE Systems Council Distinguished Lecturer.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 22,2022 at 08:03:22 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


