
8

Memristive Crossbar Mapping for Neuromorphic

Computing Systems on 3D IC

QI XU, Hefei University of Technology, China

HAO GENG, The Chinese University of Hong Kong, Hong Kong

SONG CHEN, University of Science and Technology of China, China

BEI YU, The Chinese University of Hong Kong, Hong Kong

FENG WU, University of Science and Technology of China, China

In recent years, neuromorphic computing systems based on memristive crossbar have provided a promising

solution to enable acceleration of neural networks. However, most of the neural networks used in realistic

applications are often sparse. If such sparse neural network is directly implemented on a single memristive

crossbar, then it would result in inefficient hardware realizations. In this work, we propose E3D-FNC, an en-

hanced three-dimesnional (3D) floorplanning framework for neuromorphic computing systems, in which the

neuron clustering and the layer assignment are considered interactively. First, in each iteration, hierarchical

clustering partitions neurons into a set of clusters under the guidance of the proposed distance metric. The

optimal number of clusters is determined by L-method. Then matrix re-ordering is proposed to re-arrange

the columns of the weight matrix in each cluster. As a result, the reordered connection matrix can be easily

mapped into a set of crossbars with high utilizations. Next, since the clustering results will in turn affect

the floorplan, we perform the floorplanning of neurons and crossbars again. All the proposed methodologies

are embedded in an iterative framework to improve the quality of NCS design. Finally, a 3D floorplan of

neuromorphic computing systems is generated. Experimental results show that E3D-FNC can achieve highly

hardware-efficient designs compared to the state of the art.

CCS Concepts: • Hardware → Emerging architectures; Physical design (EDA); 3D integrated circuits;

Additional Key Words and Phrases: Neuromorphic computing, memristive crossbar, 3D floorplanning, hier-

archical clustering

ACM Reference format:

Qi Xu, Hao Geng, Song Chen, Bei Yu, and Feng Wu. 2019. Memristive Crossbar Mapping for Neuromorphic

Computing Systems on 3D IC. ACM Trans. Des. Autom. Electron. Syst. 25, 1, Article 8 (November 2019), 19

pages.

https://doi.org/10.1145/3365576

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grants No.

61904047, No. 61874102, and No. 61732020; the Fundamental Research Funds for the Central Universities under Grants

No. JZ2019HGBZ0159 and No. WK2100000005; the Beijng Municipal Science & Technology Program under Grant

No. Z181100008918013; and The Research Grants Council of Hong Kong SAR (Project No. CUHK24209017).

Authors’ addresses: Q. Xu, School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, China;

email: xuqi@hfut.edu.cn; H. Geng and B. Yu, Department of Computer Scinece and Engineering, The Chinese University of

Hong Kong, Shatin, Hong Kong; emails: {hgeng, byu}@cse.cuhk.edu.hk; S. Chen and F. Wu, Department of Electronic Sci-

ence and Technology, University of Science and Technology of China, Hefei, China; emails: {songch, fengwu}@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1084-4309/2019/11-ART8 $15.00

https://doi.org/10.1145/3365576

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

https://doi.org/10.1145/3365576
mailto:permissions@acm.org
https://doi.org/10.1145/3365576

8:2 Q. Xu et al.

1 INTRODUCTION

Neuromorphic computing systems (NCS) based on hardware designs intend to mimic neuro-
biological architectures [12]. Different from conventional von Neumann architectures, NCS is of-
ten constructed with highly parallel, extensively connected, and collocated computing and storage
units, which eliminates the gap between CPU computing capacity and memory bandwidth. How-
ever, CMOS technology implementation has been shown to suffer from mismatch between NCS
building blocks (neuron and synapse) and CMOS primitives (Boolean logic) [7]. Consequently, the
conventional CMOS realization of synapse functionality requires a large number of transistors to
mimic a single synapse [2]. To address the problem, many neuromorphic designs on device and ar-
chitecture level have been explored. For example, the emerging memristive technology is adopted
to implement synapse circuit due to the similarity between the memristive and the synaptic behav-
iors [1]. Besides, memristive crossbar has been proven as one of the most efficient nanostructures
that carry out matrix-vector multiplications while the hardware cost and the computation energy
are significantly reduced compared with the state-of-the-art CMOS design [12]. Despite of these
tremendous advantages, NCS implementation on memristive crossbars also encounter some de-
sign challenges.

In realistic applications, the size of neural networks is often very large. For instance, AlexNet
proposed by Krizhevsky et al. [18] in 2012 contains 650K neurons and 60M synapses. Most of large
neural networks are sparse. In low-density parity check (LDPC) coding based on a message pass-
ing algorithm, the network sparsity is higher than 99% [19]. If a sparse neural network is directly
implemented on a memristive crossbar, then the crossbar utilization can be low, resulting in highly
area-inefficient designs. Xia et al. [27] proposed an architectural simulation platform to evaluate
memristive crossbar architectures. Ankit et al. [6] developed a reconfigurable architecture with
memristive crossbars for spiking neural network. However, the sparsity of the neural network
is not considered in the two works. Thus mapping a sparse neural network to one memristive
crossbar will produce high hardware consumption. To overcome the issue, many previous works
have been proposed to enable the efficient realization on memristive crossbars. Ankit et al. [7]
presented a training framework that transforms deep neural networks to crossbar friendly archi-
tectures. Wen et al. [25] proposed a design automation framework for large-scale hybrid neuro-
morphic computing systems. Wu et al. [26] developed a thermal optimization for memristor-based
hybrid neuromorphic computing systems. In References [25, 26], an iterative spectral clustering is
performed to group the connections into memristive crossbars. In each iteration, all the already-
clustered connections will be removed first, and then the spectral clustering is applied again to
cluster the remaining connections of the network. The process will be terminated until the major-
ity of the weight connections are partitioned into clusters. Cui et al. [13] proposed a sparse matrix
re-ordering method, which uses row and column permutation matrices to group connections into
crossbars. However, crossbar utilization is not considered, and thus memristive crossbars with low
utilizations may be generated. A sparse neural network mapping method based on k-means clus-
tering is presented to achieve high crossbar utilizations in Reference [20]. However, the physical
design is not implemented.

To achieve increasingly demanding computational tasks, NCS with high complexity and high
connectivity is required. But traditional two-dimensional (2D) integration may not meet these
requirements, as longer signal transmission distances are introduced due to a large number of
connections in 2D integration. Three-dimensional integrated circuits (3D ICs) involve vertically
stacking multiple dies connected by through silicon vias (TSVs), providing a promising way to
enable high density and high computation speed in NCS [16]. Besides, 3D design in NCS can em-
ulate real biophysical processing in the human brain [4]. In References [25, 26], a 2D placement is

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:3

Fig. 1. (a) Connection matrixW of a feed-forward neural network with six pre-synaptic neurons {i1, . . . , i6}
and six post-synaptic neurons {o1, . . . ,o6}; (b) the connections are mapped to five memristive crossbars with

high utilizations and one discrete synapse.

implemented to estimate the NCS hardware cost. Although the 2D NCS architecture may not be
equivalent to 3D NCS design, the idea of partitioning the sparse connections into a set of memris-
tive crossbars can be leveraged.

Recently, several 3D NCS designs have been explored. An et al. [5] proposed a 3D NCS com-
bining monolithic 3D integration and vertical resistive random-access memory technology. Ehsan
et al. [15] presented a 3D NCS architecture by using redundant TSVs to supply the neuronal mem-
brane capacitance. However, these works only focused on electrical modeling and analysis of 3D
NCS without considering the constraints derived from physical synthesis stage. In the conference
version [29], a 3D floorplanning framework for neuromorphic computing systems (3D-FNC), is
presented in consideration of both crossbar utilization and design cost. However, the clustering
and the 3D floorplanning are considered separately. In this article, we argue that taking account of
weight clustering and floorplanning in 3D design interactively will benefit the 3D NCS design. That
is because layer results of neurons influence the clustering results of weights between neurons,
which in turn affect the final floorplan. In accordance with this argument, we propose E3D-FNC, an
enhanced 3D floorplanning framework for neuromorphic computing systems, in which the neu-
ron clustering and the floorplanning are considered interactively. Figure 1 presents an example to
illustrate how the proposed framework can effectively map the connections into crossbars with
high utilizations. As shown in Figure 1(a), if the sparse connection matrix is directly mapped to a
crossbar, then the utilization of the crossbar is low. However, through several techniques in our
framework (e.g., hierarchical clustering, matrix re-ordering), the mapped crossbars with high uti-
lizations are generated as shown in Figure 1(b). The corresponding 3D floorplan example is shown
in Figure 2(b). Key technical contributions of this work are listed as follows.

• An iterative 3D floorplanning framework for NCS is proposed, in which the neuron clus-
tering and the layer assignment of neurons and crossbars are considered interactively.

• A hierarchical clustering based method is proposed to partition weight connections of a
sparse neural network into a set of clusters. To enhance the utilization of the mapped mem-
ristive crossbars, the pre-synaptic neurons connecting more common post-synaptic neurons
are partitioned into the same cluster, under the guidance of the proposed distance metric
used in clustering. Besides, to reduce the number of TSVs, the proposed distance metric also
forces neurons located at the same layer to be grouped into the same cluster.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:4 Q. Xu et al.

Fig. 2. (a) The structure of a memristive crossbar block; (b) 3D floorplan example of the mapping results of

the neural network in Figure 1(a).

• An L-method with a post-processing step is developed to determine the optimal number of
clusters.

• Matrix re-ordering is proposed to re-arrange the connection matrix of each cluster. The
reordered connection matrix can be easily mapped into suitable sized memristive crossbars
with high utilizations or discrete memristors.

• Experimental results show that, compared with state of the art, the proposed framework
can enhance the crossbars utilization and reduce the hardware cost.

The remainder of this article is organized as follows. Section 2 presents preliminaries and gives
the problem formulation. Section 3 describes the proposed E3D-FNC framework in details. Sec-
tion 4 lists experimental results, followed by conclusion in Section 5.

2 PRELIMINARIES

2.1 Memristive Crossbar

In a neural network, pre-synaptic (i.e., input) neurons I send signals into the network, while post-
synaptic (i.e., output) neurons O receive information through the synapses [21]. The synapses
will apply different weights on the information during transmission, which can be expressed as
O =W · I . An element wi j in the weight matrix W represents the weight of a synapse between
the pre-synaptic neuron i in I and the post-synaptic neuron j in O . The synaptic weight matrix
W is represented as (1, 0)-matrix, where “1” indicates a connection exists between two corre-
sponding neurons and “0” vice versa. Note that “synaptic weight matrix” and “connection matrix”
are interchangeable in this article. Since the resistance of memristor can be programmed by ap-
plying current or voltage, the memristor is suitable for storing the synapse weight. Therefore, a
memristor is used to link the pre-synaptic neuron and the post-synaptic neuron in the crossbar
structure. An example of memristive crossbar structure is shown in Figure 2(a). Figure 2(b) shows
a two-layer floorplan example of a neural network based on a memristive crossbar, where six input
neuron blocks {i1, i2, i3, i4, i5, i6} connect to six output neuron blocks {o1,o2,o3,o4,o5,o6} through
five memristive crossbar blocks.

2.2 Problem Definition

In this work, the utilization of a memristive crossbar is given by the ratio between the utilized
connections in the network and the total available connections in the crossbar. Specifically, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:5

Fig. 3. The flow of E3D-FNC.

higher the better. Besides the crossbar utilization, we also exploit other three metrics, area, wire-
length, and the number of TSVs of the 3D floorplan, to quantify the simulation results. We define
the enhanced 3D floorplanning for neuromorphic computing systems (E3D-FNC) as follows:

Input: A sparse neural networkW .
Output: A 3D floorplan for neuromorphic computing systems, including a set of memristive

crossbars for the synapses in the sparse network to be mapped to.
Objective: Enhancing crossbars utilization and simultaneously reducing chip area, wirelength,

and TSV numbers.

3 E3D-FNC FRAMEWORK

Figure 3 illustrates the overall flow of the proposed E3D-FNC framework, which mainly consists
of five stages. Given a sparse neural network, since layers of neurons will influence the clustering
result, we first perform the neuron floorplanning to determine layers of the neurons. Then the
hierarchical clustering partitions neurons into a set of clusters. The optimal number of clusters
is determined by the proposed L-method. To enhance the utilization of the mapped memristive
crossbars, the proposed distance metric used in hierarchical clustering forces the input neurons
connecting more common output neurons to be partitioned into the same cluster. In addition, to
reduce the number of TSVs, neurons located at the same layer are prone to be grouped into the
same cluster. Then based on the clustering result of neurons, matrix re-ordering is to re-arrange the
connection matrix in each cluster so that the reordered connection matrix is gathered. As a result,
the gathered connections can be efficiently mapped to a set of memristive crossbars. Because the
clustering results will also in turn affect the floorplan, afterwards we perform the floorplanning
of neurons and crossbars again. If the hardware cost of the floorplan is not improved under fixed
number of iterations, then the flow will be terminated. Otherwise, the hierarchical clustering is
re-performed based on the current layer information of neurons. Finally E3D-FNC results with
high crossbars utilization and low hardware cost are generated. For convenience, some notations
used in this section are listed in Table 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:6 Q. Xu et al.

Table 1. Notations Used in This Section

W Connection matrix of a sparse neural network
n,m Number of rows (input neurons) and columns (output neurons) ofW
W i Connection matrix of cluster i

tier_no The total number of device layers
t̂ The optimal number of clusters
P Column permutation matrix forW i

W ′
i Reordered connection matrix of cluster i

λ Aspect ratio of a floorplan

ALGORITHM 1: Hierarchical clustering to cluster neurons

Input: Connection matrixW , layer information of all neurons.

Output: A dendrogram of neurons.

1: Assign each neuron to a cluster;

2: Calculate distances among clusters; � Equation (1)

3: for i ← 1 to n − 1 do

4: Merge two clusters {r } and {s} with the shortest distance;

5: d {k }, {r,s } ← min[d {k }, {r },d {k }, {s }]; � Update distances between {r , s} and other clusters {k}

6: end for

7: All neurons are clustered into one cluster;

3.1 Hierarchical Clustering

In real applications, large neural networks are often sparse. If a sparse neural network is directly
implemented on a memristive crossbar, then the crossbar utilization can be low, resulting in highly
area-inefficient designs. In this work, the hierarchical clustering is adopted to partition sparse
connections into a set of dense clusters. Hierarchical clustering generates clusters in a bottom-
up iterative manner [14]. In every iteration, two clusters with the shortest distance are merged.
Implication of “distance” varies with specific applications in practice. The iterative merging is
repeated until all data points are formed into one cluster. In our framework, we propose a distance
metric between two input neurons, ip and iq (1 ≤ p, q ≤ n), as follows:

d(ip , iq) =
n10 + n01

n11 + n10 + n01
+
|tier (ip) − tier (iq) |

tier_no
, (1)

where n11 represents the number of output neurons simultaneously connecting to ip and iq , n10

and n01 count the number of output neurons only connecting to ip or iq , and tier (ip) and tier (iq)
describe the layer where ip and iq are located. In each iteration of hierarchical clustering, two
groups with the shortest distance are merged. The first part of Equation (1) forces input neurons
connecting more common output neurons to be clustered. As a result, the generated clusters can
be easily mapped to memristive crossbars with high utilizations. The second part of Equation (1)
also guides neurons located at the same layer to be partitioned into the same cluster, which shows
the proposed clustering method can reduce the number of TSVs.

The flow of hierarchical clustering is shown in Algorithm 1. Starting from n data points (input
neurons), hierarchical clustering first treats each point as a single cluster (line 1). Then the iterative
merging steps are performed n-1 times and eventually build a dendrogram (cluster tree) (lines 3–
7). During the clustering, the data points that are close will be merged first, and those that are far

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:7

Fig. 4. A hierarchical clustering dendrogram.

away will not be merged until the late iterations [3]. Figure 4 is used to illustrate the process of
hierarchical clustering. For the connection matrixW of a feed-forward neural network shown in
Figure 1(a), it contains six pre-synaptic neurons and six post-synaptic neurons. In the floorplanning
stage, the layers of neurons have been determined, an example is shown in Figure 2(b). When
hierarchical clustering performs, according to the distance calculated by Equation (1), the first
iteration step merges the pre-synaptic neurons i1 and i3, because the distance between them is the
smallest (locate at the same layer, and connect three common post-synaptic neurons o2, o4, and o6).
Then the second iteration step groups the input neurons i2 with i5, and i4 is merged with i6 in the
third iteration step. Next, the input neuron {i1, i3} is clustered with {i4, i6} in the fourth iteration
step. Finally, the two clusters containing {i1, i3, i4, i6} and {i2, i5}, respectively, are merged in the
last iteration step.

3.2 Optimal Number of Clusters

Although the hierarchical clustering can generate a cluster tree, however, if the number of clusters
is not given, the hierarchical clustering cannot build the final clustering result. In this work, the
L-method is proposed to find the optimal number of clusters. We summarize the major steps of the
L-method for selection of the optimal number of clusters in Algorithm 2. The L-method is derived
from the fact that for many clustering algorithms, it is possible to plot an evaluation graph, where
the x-axis is the number of clusters and the y-axis is the evaluation metric used by the clustering
algorithm. For the hierarchical clustering, the y-axis values are the merge distance between the
last two merged clusters at x clusters [30]. The evaluation graph has three distinctive regions:
a sharply-sloping region to the left, a curved transition area in the middle, and a flat region to
the right. Note that the sharp transition point on the evaluation graph is considered to be the
optimal number of clusters [22]. Since the hierarchical clustering merges a pair of clusters in every
iteration, the evaluation graph can be produced by running the clustering algorithm only once
(line 1).

To illustrate how the L-method works, we use the connection matrix shown in Figure 1(a) as an
example. Based on the dendrogram generated by hierarchical clustering, we plot the evaluation
graph in Figure 5(a), where the x-axis shows the number of clusters and the y-axis represents the
merge distance d calculated by Equation (1). The L-method tries to determine the optimal number
by searching for two lines that can best-fit the evaluation graph, and the intersection of these two
lines represent the transition point of the graph. In Figure 5(b), the two lines can accurately fit the
graph where one line fits the data in the interval x ∈ [2, 3] and the other line fits the data in the
interval x ∈ [4, 6]. It can be noticed that the sharp transition point is located at x = 3, meaning that
the neurons should be grouped into three clusters.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:8 Q. Xu et al.

Fig. 5. (a) The evaluation graph of the connection matrix shown in Figure 1(a); two best-fit lines are obtained

at the transition point (b) x = 3 and (c) x = 4 by the L-method.

ALGORITHM 2: L-method for selection of cluster numbers
Input: A cluster tree generated by the hierarchical clustering.

Output: The optimal number of clusters t̂ .

1: Construct the evaluation graph based on the cluster tree;

2: for t ← 3 to n − 2 do

3: Solve the regression problem with the transition point x = t ; � Equation (2)

4: Calculate RMSEt ; � Equation (3)

5: end for

6: Determine t̂ ; � Equations (4) and (5)

Mathematically, the L-method can be formulated as the regression problem [3] (lines 2–5). Con-
sidering the evaluation graph where the number of clusters varies from 2 ton (n-1 data points), and
the data points are partitioned into a left region and a right region at transition point x = t . The
left region has points with x ∈ [2, . . . , t], and the right region has points with x ∈ [t + 1, . . . ,n].
To ensure each region contains at least two points, the value of t ranges from 3 to n-2. Then the
regression problem is solved respectively to achieve two best-fit lines for the left and the right
regions as follows:

RMSEl = min
sl ,bl

‖dl − sl · x l − bl · 1‖2,

RMSEr = min
sr ,br

‖dr − sr · xr − br · 1‖2,

where

x l = (2, 3, . . . , t)�, xr = (t + 1, t + 2, . . . ,n)�,

(2)

where dl and dr are the merge distance values for left region x l and right region xr . (sl , bl) and
(sr , br) represent the slope and bias for left-fit and right-fit lines. RMSEl and RMSEr are the root
mean square error of the two best-fit lines. Then the total root mean square error (RMSEt) is defines
as follows:

RMSEt =
t − 1

n − 1
· RMSEl +

n − t
n − 1

· RMSEr . (3)

We solve the regression problems for all values of t , and the transition point that achieves the
minimum RMSEt is assumed as the optimal number of clusters (line 6):

t̂ = argmin
t ∈[3, ...,n−2]

RMSEt . (4)

Although the L-method tries to match the human intuition in finding the transition point of the
evaluation graph, it can result in an unexpected answer in some cases. For example, Figure 5(b)

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:9

ALGORITHM 3: Matrix re-ordering to map the weight connections into crossbars or synapses

Input: Connection matrixW i of cluster i (1 ≤ i ≤ t̂).
Output: The memristive crossbars or synapses.

1: Permute columns of the original connection matrixW i ;

2: Map the reordered connection matrixW ′
i into a set of groups G with suitable sizes;

3: for д ∈ G do

4: if the utilization of group д > 0.4 then

5: The connections in group д are mapped to a suitable sized memristive crossbar;

6: else

7: The connections in group д are mapped to synapses.

8: end if

9: end for

and Figure 5(c) show the results fitted by setting t = 3 and t = 4, respectively. It can be noticed
that both fitting curves achieve small error. Thus the choice of t = 3 or t = 4 by the L-method is
arbitrary in this example. To address the issue, a post-processing step is added to check if a sharp
transition occurs at the point t or t + 1 [30]. That is, the second-order difference for the evaluation
graph in the logarithmic domain is calculated as:

s (t) = [log (dt+1) − log (dt)] − [log (dt) − log (dt−1)], (5)

where dt denotes the merge distance value at point t . A large second-order difference means an
abrupt transition in the evaluation graph. Therefore, after obtaining t̂ from the L-method, s (t̂) and
s (t̂ + 1) are compared to accurately determine the number of clusters.

After the L-method with the post-processing step determines the number of clusters, the hierar-
chical clustering builds the final clustering results of neurons. For example in Figure 5, the optimal
number of clusters determined by L-method equals to 3, and the absolute value of s (3) is larger
than s (4). As a result, the neurons should be partitioned into 3 clusters. The three clusters are
{i1, i3}, {i2, i5}, and {i4, i6}, respectively.

3.3 Matrix Re-ordering

Due to the reliability issue, the size of current crossbars cannot be larger than 64 × 64 [25]. How-
ever, since the size of the weight matrix in each cluster may violate the size limitation, the cluster
cannot be directly mapped to a memristive crossbar. In addition, considering the hardware utiliza-
tion, it is impossible to partition all connections into memristive crossbars, especially for the neural
networks with randomly distributed connections. In this case, the discrete memristors are more
efficient for realizing the connections. We recognize the outliers as the connections belonging to
none of the crossbars. In this work, the matrix re-ordering method is proposed to map the weight
connections of each cluster into crossbars or discrete memristors. First, the connection matrix of
each cluster will be re-arranged so that the reordered connection matrix is gathered. Then we map
the gathered connections to a set of suitable sized memristive crossbars with high utilizations of
crossbars considered. The flow of matrix re-ordering is shown in Algorithm 3.

Given a connection matrixWi of cluster i , the objective is to find a convenient column permu-
tation matrix P subject to W ′

i =Wi · P . The reordered connection matrix W ′
i can be partitioned

into several groups (lines 1 and 2). If the utilization of a formed group is larger than a predefined
thresholdut , then the weight connections in the group will be efficiently mapped to a suitable sized
memristive crossbar. Otherwise, the connections (outliers) should be mapped to discrete synapses
instead of memristive crossbar (lines 3–7). As a result, a set of suitable sized memristive crossbars

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:10 Q. Xu et al.

Fig. 6. (a) The column permutation matrix P . (b) The original matrixW 1 of cluster 1. (c) The reordered matrix

W ′
1 .

that have high utilizations, and several discrete memristors are generated. The utilization threshold
of the memristive crossbar is set to 0.4 by the experimental results shown in Section 4.2.

We give an example to illustrate the process of matrix re-ordering. Given the cluster {i1, i3}, the
original connection matrixW1 is shown in Figure 6(b). By applying the column permutation matrix
P shown in Figure 6(a), a reordered matrixW ′

1 is obtained as shown in Figure 6(c). It can be noticed
that the reordered connection matrixW ′

1 can be efficiently mapped to two memristive crossbars
with high utilizations. The corresponding two memristive crossbars are shown in Figure 6(c) with
the red and blue boxes.

3.4 Physical Implementation

The hardware cost of E3D-FNC is estimated based on floorplan area (Ac), wirelength (Wire) and
TSV numbers (Via). In the floorplanning stage, the neurons, the memristive crossbars and the dis-
crete memristors are considered as blocks. The neuron blocks connect to the crossbar blocks or
the discrete memristor blocks through wires. The partitioned sequence pair (P-SP) [24] is used
to represent multi-layer 3D floorplans. A fixed-outline multi-layer floorplanner (IAR-MLFP) [11]
is adopted to conduct the floorplanning. In IAR-MLFP, an insertion-after-remove method is pre-
sented to perturb solutions during floorplanning, which can greatly accelerate searching-based
algorithms, since many solutions that fail to meet the fixed-outline constraints are skipped. Each
time we remove a block from the multi-layer floorplan randomly, and a proper position including
the coordinates and the appropriate layer will be selected for the removed block. As a result, the
neuron clustering and the layer assignment can be effectively updated.

The cost function of a floorplan is defined as follows:

Cf = α · Ac + β ·Wire + γ ·Via, (6)

whereα , β , andγ are user-defined parameters to determine the importance of chip area, wirelength
and TSV numbers. Because of the difference scales of the three objectives, it is difficult to choose
the three parameters. Instead of evaluating solutions solely, we adopt a method of calculating the
improvement percentage of one solution (S1) to another (S2) to compare two solutions [10].

The chip area Ac is evaluated by Equation (7), which takes the fixed-outline constraint into
account,

EW + EH · λ +C1 ·max{EW ,EH · λ} +C2 ·max{W ,H · λ}, (7)

whereW and H are the maximum width and height of all layers, EW =max {W −W0, 0} and EH =

max {H − H0, 0} are the excessive width and height of the floorplan when considering the fixed-
outline constraint, λ is the aspect ratio of the floorplan, and C1 and C2 are user-defined constants.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:11

Fig. 7. Decomposition of a net spanning multiple layers.

Fig. 8. The flow of 3D-FNC [29].

Following the experimental configuration in Reference [28], C1 = 3 and C2 = 1/16. Using this
equation, we not only penalize greater excessive width and excessive height but keep the area
item effective when combined with other objectives.

The wirelengthWire is estimated by the half perimeter wirelength (HPWL) model. In this work,
we adopt the calculation model in Reference [9] to decompose the nets spanning multiple device
layers into sub-nets, one on each device layer, by introducing dummy pins corresponding to TSVs.
For example, as depicted in Figure 7, a net includes pins {p1,p2,p3,p4,p5}, where p1 and p2 are
on device layer 2, p3 on layer 1, and p4 and p5 on layer 0. By introducing dummy pins pvia1,
corresponding to the TSV on layer 1, andpvia2, corresponding to the TSV on layer 2, we decompose
the net into 3 sub-nets: {p1,p2,pvia2}, {p3,pvia1,pvia2}, and {p4,p5,pvia1}.
Via is the sum of the TSV numbers for all nets. If a net spans layer i to layer j, then |j − i | TSVs

are required for the net. As shown in Figure 7, the net crosses three device layers, two TSVs are
needed to connect pins.

3.5 Framework Extension

In the 3D-FNC framework [29] shown in Figure 8, the clustering and the floorplanning are con-
sidered separately. Given a sparse neural network, the hierarchical clustering generates clusters
of neurons, and then the weight connection matrix of each cluster is directly mapped to a mem-
ristive crossbar. Finally, the 3D floorplanning of memristive crossbars and neurons are performed
to estimate the hardware cost.

In 3D NCS design, the floorplanning should interact with the weight clustering. That is because
the weight clustering results influence the floorplan, which also in turn affects the weight clus-
tering. Therefore, an iterative framework E3D-FNC shown in Figure 3 is proposed to improve the
quality of NCS design. The algorithmic flow of the proposed iterative framework is summarized in
Algorithm 4. Given a sparse neural network, since layers of neurons will influence the clustering
result, we first perform the neuron floorplanning to determine layers of the neurons. Then after
the memristive crossbars are generated by the hierarchical clustering and the matrix re-ordering
method (lines 2 and 3), we perform the floorplanning of neurons and crossbars again to estimate

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:12 Q. Xu et al.

ALGORITHM 4: Interactive process of weight connection clustering and floorplanning.

1: repeat

2: Perform the clustering based on the current layer information of neurons; � Equation (1)

3: Map connections into a set of crossbars; � Matrix re-ordering

4: Re-perform the floorplanning of neurons and crossbars;

5: Evaluate the hardware cost of the current floorplan; � Equation (6)

6: until the cost is not improved under fixed number of iterations

7: Output the 3D floorplan of the memristive crossbar-based NCS.

the hardware cost (lines 4 and 5). The procedure is repeated until the hardware cost of the floorplan
is not improved over a predefined threshold iteration number.

4 EXPERIMENTAL RESULTS

In this work, a mixed programming is implemented by integrating MATLAB functions into C++
files using MATLAB API interface. The hierarchical clustering, the L-method and the matrix re-
ordering are implemented in MATLAB, and 3D floorplanning is implemented in C++ language on a
12-core 2.0-GHz Linux server with 64GB RAM. The wirelength is estimated by the half perimeter
wirelength (HPWL) model. The areas of neurons and memristive crossbars with different sizes are
extracted from Reference [8, 23]. Since the device defects, process variations, and IR-drop decrease
the reliability of crossbar, the size of current memristor crossbars cannot be larger than 64× 64 [25].
In the experiment, the allowable sizes of the utilized crossbars range from 32 to 64 at a step size
of 4. First the experiment is tested on three Hopfield networks (b11–b13). Then a two-layer feed-
forward neural network for MNIST handwritten digit recognition is exploited. Four corresponding
sparse connection matrices of the neural network are generated to evaluate the proposed algorithm
(b21–b24). Next a convolutional neural network (CNN) for CIFAR-10 [17] dataset is trained, which
consists of two convolutional layers, two pooling layers and three fully connected layers. By using
the synapse-granularity pruning, two sparse weight matrices of the last fully connected layers are
achieved (b31–b32). Since in convolutional layer each neuron is connected to only a small region of
the input volume, a sparse local connection matrix of the convolutional layer is gained without the
weight sharing (b33). Finally AlexNet is trained for ImageNet [18]. Two sparse weight matrices of
the last fully connected layers (b41–b42) and a sparse weight matrix of the convolutional layer (b43)
are also generated. Table 2 lists all the statistics of different test cases. The layer number tier_no
is set to 2 and the aspect ratio λ equals to 1.

4.1 Comparison with Previous Work

In this section, we compare E3D-FNC with some previous works to see the effectiveness of
the proposed methodologies. First, to see the effect of the proposed hierarchical clustering, we
compare E3D-FNC with AutoNCS [25]. In AutoNCS [25], the iterative spectral clustering is used
for grouping connections into memristive crossbars. In each iteration, all the already-clustered
connections are removed first, and then the spectral clustering is applied again to cluster the
remaining connections of the network. Therefore, AutoNCS [25] cannot partition the sparse
neural network into clusters globally. Based on clustering results, a 2D placement is implemented
in AutoNCS to estimate the NCS hardware cost. Although the 2D NCS architecture may not be
equivalent to our 3D NCS design, the idea of partitioning the sparse connections into a set of
memristive crossbars in Reference [25] can be leveraged. In this experiment, we just compare our
clustering method with the iterative spectral clustering in AutoNCS. To provide a fair comparison,
we also implement a 3D floorplanning based on the iterative spectral clustering results of

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:13

Table 2. Benchmark Statistics

Benchmark Type Size Sparsity
b11 Hopfield network 300 × 300 69.97%
b12 Hopfield network 400 × 400 63.99%
b13 Hopfield network 500 × 500 68.93%
b21 Fully connected layer 784 × 10 56.45%
b22 Fully connected layer 784 × 10 60.36%
b23 Fully connected layer 784 × 10 62.95%
b24 Fully connected layer 784 × 10 66.06%
b31 Fully connected layer 192 × 10 79.06%
b32 Fully connected layer 192 × 10 85.73%
b33 Convolutional layer 144 × 144 87.94%
b41 Fully connected layer 4,096 × 1,000 84.99%
b42 Fully connected layer 4,096 × 1,000 90.01%
b43 Convolutional layer 169 × 169 95.46%

AutoNCS. The experiment is tested on all benchmarks. The average statistic results are listed in
the columns “E3D-FNC” and “AutoNCS [25]” in Table 3, respectively. “Area,” “Wire,” and “#TSV”
represent chip area, total half-perimeter wirelength overhead, and the number of TSVs, respec-
tively. “Util” gives the average utilization of all mapped crossbars. As shown in Table 3, E3D-FNC
behaves even much better with an average TSV numbers of 526 and an average crossbar utilization
of 0.43 that surpass AutoNCS with 6.3% less TSV numbers and 9.3% higher crossbar utilization. In
addition, in E3D-FNC, the hierarchical clustering (HC) is only performed once to build the final
clustering results. However, in AutoNCS, the spectral clustering is executed in every iteration to
partition connections into clusters. We use Figure 9(a) to compare the runtime of two clustering
methods. From the figure, we can notice that AutoNCS could be time consuming when the neural
network is large. Besides, we use Figure 9(b) to compare the number of clustering iterations of
AutoNCS and E3D-FNC. From the figure we notice that the number of clustering iterations in
E3D-FNC is always equal to 1, while the spectral clustering in AutoNCS will be performed several
iterations until the majority of the weight connections are partitioned into clusters.

Second, to verify the effectiveness of the proposed matrix re-ordering, we compare the E3D-FNC
with the generalized sparse matrix re-ordering method (GSMR) in Reference [13]. In GSMR, only
row and column permutation matrices are used to break down sparse matrices into sub-clusters.
Then the sub-clusters will be directly mapped to suitable size crossbars without considering the
crossbar utilization. Thus many memristive crossbars with small sizes and low utilizations are
generated. The experiment is tested on all benchmarks. Columns “E3D-FNC” and “GSMR [13]” in
Table 3 list the statistic results. It can be noticed that compared with GSMR [13], the proposed
hierarchical clustering and the matrix re-ordering method can increase the utilization of cross-
bars by 44.2%, which demonstrates the proposed hierarchical clustering and matrix re-ordering
can achieve hardware-efficient design. In Figure 10, we depict the utilization distributions of all
crossbars in testbenches b11, b22, and b43. The sizes of crossbars are between 32 and 64.

Third, we compare E3D-FNC with 3D-FNC framework presented in the conference version [29].
The differences between E3D-FNC and 3D-FNC are illustrated in Section 3.5. The results are, re-
spectively, shown in the columns “E3D-FNC” and “3D-FNC [29]” in Table 3. As shown in Table 3,
compared with 3D-FNC [29], E3D-FNC can significantly reduce the number of TSVs by 5.7%, while
the utilizations of all mapped crossbars are comparable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:14 Q. Xu et al.

T
a
b

le
3.

C
o

m
p

a
ri

so
n

b
et

w
ee

n
O

u
r

F
ra

m
ew

o
rk

a
n

d
S

ta
te

-o
f-

th
e-

A
rt

W
o
rk

s

B
en

ch

A
u

to
N

C
S

[2
5]

G
SM

R
[1

3]
3D

-F
N

C
[2

9]
E

3D
-F

N
C

A
re

a
W

ir
e

#T
SV

U
ti

l
A

re
a

W
ir

e
#T

SV
U

ti
l

A
re

a
W

ir
e

#T
SV

U
ti

l
A

re
a

W
ir

e
#T

SV
U

ti
l

(μ
m

2
)

(μ
m

)
(μ

m
2
)

(μ
m

)
(μ

m
2
)

(μ
m

)
(μ

m
2
)

(μ
m

)

b
11

20
78

37
.0

0
28

93
51

.3
7

46
8

0.
36

20
61

69
.0

0
29

22
23

.5
6

47
3

0.
22

20
63

34
.0

0
29

14
27

.9
6

46
9

0.
41

20
79

36
.0

0
28

70
56

.5
4

44
0

0.
40

b
12

27
70

36
.0

0
46

03
82

.0
2

62
9

0.
40

27
66

37
.0

0
46

16
00

.6
2

63
0

0.
23

27
66

93
.0

0
46

12
97

.0
9

62
4

0.
42

27
87

84
.0

0
45

29
93

.7
4

58
8

0.
42

b
13

34
59

27
.0

0
64

65
19

.0
2

78
1

0.
36

34
64

17
.0

0
65

07
37

.6
3

78
6

0.
21

34
66

26
.0

0
64

93
06

.5
5

78
8

0.
40

34
92

81
.0

0
63

89
17

.6
5

73
6

0.
41

b
21

50
12

59
.0

0
43

52
76

.3
1

42
4

0.
43

49
93

78
.0

0
44

53
24

.4
6

44
9

0.
26

49
98

49
.0

0
43

40
74

.2
0

42
2

0.
47

50
41

00
.0

0
43

73
64

.4
3

41
9

0.
47

b
22

48
63

91
.0

0
41

80
12

.2
5

41
8

0.
37

48
61

16
.0

0
42

05
75

.6
1

43
6

0.
23

48
72

04
.0

0
41

65
54

.0
0

41
4

0.
42

49
00

00
.0

0
41

33
01

.5
0

40
5

0.
41

b
23

47
85

33
.0

0
40

43
09

.6
5

43
8

0.
37

47
50

94
.0

0
40

89
49

.2
3

42
7

0.
22

47
61

00
.0

0
40

37
01

.6
2

44
2

0.
40

47
88

64
.0

0
40

17
17

.3
2

39
8

0.
41

b
24

46
23

10
.0

0
39

97
62

.7
9

47
2

0.
38

45
91

41
.0

0
38

88
71

.5
4

43
9

0.
20

45
96

84
.0

0
40

77
42

.7
2

46
7

0.
40

46
37

61
.0

0
38

21
08

.3
7

41
0

0.
41

b
31

12
78

73
.0

0
15

53
23

.4
2

15
0

0.
43

12
76

17
.0

0
15

56
30

.9
9

14
8

0.
31

12
77

45
.0

0
15

57
84

.7
7

14
6

0.
46

12
81

30
.0

0
15

37
85

.5
6

13
2

0.
46

b
32

11
66

95
.0

0
14

65
18

.4
8

14
2

0.
41

11
64

61
.0

0
14

65
63

.7
0

14
4

0.
28

11
65

78
.0

0
14

68
08

.9
1

13
8

0.
43

11
70

46
.0

0
14

52
11

.5
8

12
6

0.
42

b
33

18
82

91
.0

0
24

75
99

.9
6

39
0

0.
44

18
81

01
.0

0
24

83
28

.2
0

39
3

0.
32

18
86

70
.0

0
24

63
87

.2
2

38
5

0.
47

18
96

18
.0

0
24

27
43

.0
6

37
6

0.
49

b
41

35
08

63
1.

00
17

97
07

0.
07

12
55

0.
38

35
05

09
8.

00
17

98
63

3.
63

12
59

0.
23

35
15

69
5.

00
17

86
48

8.
69

12
50

0.
41

35
32

35
7.

00
17

63
56

2.
38

11
82

0.
42

b
42

31
97

10
4.

00
15

52
32

0.
84

12
06

0.
36

31
93

88
5.

00
15

59
75

2.
71

12
11

0.
20

31
99

32
3.

00
15

49
26

8.
10

11
97

0.
41

32
18

63
5.

00
15

26
37

2.
51

11
58

0.
40

b
43

23
43

94
.0

0
30

34
79

.5
0

49
1

0.
40

23
41

59
.0

0
30

40
73

.9
7

49
9

0.
27

23
46

30
.0

0
30

28
85

.0
2

48
7

0.
44

23
55

72
.0

0
29

72
36

.5
1

46
3

0.
43

av
g
.

77
94

06
.2

3
55

81
48

.1
7

55
9

0.
39

77
80

21
.0

0
56

00
97

.3
7

56
1

0.
24

77
96

25
.4

6
55

78
25

.1
4

55
6

0.
43

78
41

60
.3

1
54

94
13

.1
7

52
6

0.
43

ra
ti

o
0.

99
4

1.
01

6
1.

06
3

0.
90

7
0.

99
2

1.
01

9
1.

06
7

0.
55

8
0.

99
4

1.
01

5
1.

05
7

1.
00

1.
00

1.
00

1.
00

1.
00

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:15

Fig. 9. Comparison between the two clustering methods of AutoNCS [25] and E3D-FNC.

Fig. 10. The utilization distributions of all crossbars in testbenches (a) b11, (b) b22, and (c) b43.

4.2 Impact of E3D-FNC on Hardware Cost

In the fourth experiment, we show the advantage of the proposed E3D-FNC design in terms of
hardware cost when compared to 2D-based design. We compare the area and wirelength of the
E3D-FNC design with that of 2D-based design. The experiment is tested on all benchmarks. As
shown in Figure 11, compared with 2D-based design, E3D-FNC can significantly reduce the area
and the wirelength overhead.

In the fifth experiment, to see the effectiveness of the L-method, we compare the floorplanning
results of E3D-FNC with and without the L-method. In the proposed E3D-FNC, based on the eval-
uation graph generated by hierarchical clustering, the optimal number of clusters is determined
by L-method. Without the L-method, the number of clusters is determined by the way, in which
iteratively increasing the number of clusters by one until the size of the largest crossbar is be-
low the size limitation. The maximum size of crossbars is set to 64 ×64 in the experiment. The
average statistic results are listed in the columns “E3D-FNC” and “E3D-FNC w/o. LM” in Table 4,
respectively. We can see that in the case without L-method, the utilization of mapped crossbars are
reduced by 30.2%. In addition, area and wirelength are increased by 2.3% and 2.6%, which demon-
strates the hierarchical clustering with L-method can result in highly hardware-efficient designs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:16 Q. Xu et al.

Fig. 11. Comparison between the 2D-based design and the E3D-FNC design.

Table 4. Effectiveness of the Proposed E3D-FNC

Bench
E3D-FNC w/o. LM E3D-FNC

Area Wire
TSV Util

Area Wire
TSV Util

(μm2) (μm) (μm2) (μm)
b11 214382.00 295955.29 438 0.22 207936.00 287056.54 440 0.40
b12 286590.00 467172.44 590 0.26 278784.00 452993.74 588 0.42
b13 358758.00 657957.40 738 0.27 349281.00 638917.65 736 0.41
b21 517492.00 451023.32 415 0.35 504100.00 437364.43 419 0.47
b22 503230.00 426072.52 403 0.30 490000.00 413301.50 405 0.41
b23 492655.00 414491.93 406 0.31 478864.00 401717.32 398 0.41
b24 475772.00 393162.77 408 0.33 463761.00 382108.37 410 0.41
b31 132358.00 157937.76 136 0.30 128130.00 153785.56 132 0.46
b32 120674.00 148723.87 125 0.28 117046.00 145211.58 126 0.42
b33 195548.00 250025.32 378 0.36 189618.00 242743.06 376 0.49
b41 3603004.00 1800597.19 1176 0.27 3532357.00 1763562.38 1182 0.42
b42 3286226.00 1559952.71 1160 0.27 3218635.00 1526372.51 1158 0.40
b43 242461.00 305856.37 460 0.33 235572.00 297236.51 463 0.43
avg. 802242.31 563763.76 526 0.30 784160.31 549413.17 526 0.43
ratio 1.023 1.026 1.00 0.698 1.00 1.00 1.00 1.00

In addition, in matrix-reordering stage, the value of the utilization thresholdut is chosen through
experimental results. The experiment is performed on b11,b22, andb43, and the results are shown in
Figure 12. We noticed that as ut increases, although the utilizations of mapped crossbars enhance
accordingly, the wirelength of floorplan is sharply increasing. That is because, the larger ut , the
more connections are mapped to discrete synapses instead of memristive crossbars, resulting a
higher hardware cost. This trend can also be observed in other testbenches. Therefore, according
to Figure 12, ut = 0.4 achieves the relatively high utilization and low wirelength cost.

A two layer floorplan example generated by E3D-FNC is shown in Figure 13.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:17

Fig. 12. Effect of the value of utilization threshold ut on performance.

Fig. 13. Three-dimensional floorplan example of neural network b21: (a) layer 0 and (b) layer 1 (area:

0.5041 mm2).

5 CONCLUSION

In this article, we have proposed an enhanced 3D floorplanning framework for neuromorphic
computing systems, in which the neuron clustering and the layer assignment are considered in-
teractively. A set of algorithms, e.g., hierarchical clustering, L-method and matrix re-ordering have
been developed. Because the floorplanning interacts with the weight clustering, all the proposed
methodologies are embedded in an iterative framework to improve the quality of 3D NCS design.
Experimental results show that, compared with state of the art, the proposed E3D-FNC can achieve
highly hardware-efficient designs. Memristive crossbar gives hope for the anticipated efficient im-
plementation of artificial neuromorphic networks, thus we expect to see a lot of researches to
provide more efficient physical synthesis solutions.

In this work, once the dense weight clusters are generated, the clusters will be directly im-
plemented on memristive crossbars. However, the faults occurred in the fabrication process can
make a memristor get stuck at high or low resistance state, which leads to a significant yield loss
and errors in NCS. Therefore, there exists a mapping relationship between weight clusters and
memristive crossbars. In future we plan to derive a weight-memristor mapping for fault tolerance.

ACKNOWLEDGMENTS

The authors thank the Information Science Laboratory Center of USTC for hardware and software
services, as well as Professor Tsung-Yi Ho from National Tsing Hua University for providing test
benches.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

8:18 Q. Xu et al.

REFERENCES

[1] Simone Acciarito, Alessandro Cristini, Gianluca Susi, et al. 2017. Hardware design of LIF with Latency neuron model

with memristive STDP synapses. Integration 59 (2017), 81–89.

[2] Filipp Akopyan, Jun Sawada, Andrew Cassidy, et al. 2015. Truenorth: Design and tool flow of a 65 mw 1 million

neuron programmable neurosynaptic chip. IEEE J. Technol. Comput. Aid. Des. 34, 10 (2015), 1537–1557.

[3] Mohamed Baker Alawieh, Fa Wang, and Xin Li. 2018. Identifying Wafer-level systematic failure patterns via unsu-

pervised learning. IEEE J. Technol. Comput. Aid. Des. 37, 4 (2018), 832–844.

[4] Hongyu An, M. Amimul Ehsan, Zhen Zhou, Fangyang Shen, and Yang Yi. 2019. Monolithic 3D neuromorphic com-

puting system with hybrid CMOS and memristor-based synapses and neurons. Integration 65 (2019), 273–281.

[5] Hongyu An, M. Amimul Ehsan, Zhen Zhou, and Yang Yi. 2017. Electrical modeling and analysis of 3D synaptic array

using vertical RRAM structure. In Proceedings of the International Symposium on Quality Electronic Design (ISQED’17).

1–6.

[6] Aayush Ankit, Abhronil Sengupta, Priyadarshini Panda, and Kaushik Roy. 2017. Resparc: A reconfigurable and

energy-efficient architecture with memristive crossbars for deep spiking neural networks. In Proceedings of the Design

Automation Conference (DAC’17). 27.

[7] Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2017. TraNNsformer: Neural network transformation for mem-

ristive crossbar based neuromorphic system design. Proceedings of the International Conference on Control, Automation

and Diagnosis (ICCAD’17).

[8] Andrew S. Cassidy, Paul Merolla, John V. Arthur, and et al. 2013. Cognitive computing building block: A versatile and

efficient digital neuron model for neurosynaptic cores. In Proceedings of the International Joint Conference on Neural

Networks (IJCNN’13). 1–10.

[9] Song Chen, Liangwei GE, Mei-Fang Chiang, and Takeshi Yoshimura. 2009. Lagrangian relaxation based inter-layer

signal via assignment for 3-D ICs. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. 92, 4 (2009), 1080–1087.

[10] Song Chen and Takeshi Yoshimura. 2008. Fixed-outline floorplanning: Enumerating block positions and a new ob-

jective function for calculating area costs. IEEE J. Technol. Comput. Aid. Des. 27, 5 (2008), 858–871.

[11] Song Chen and Takeshi Yoshimura. 2010. Multi-layer floorplanning for stacked ICs: Configuration number and fixed-

outline constraints. Integration 43, 4 (2010), 378–388.

[12] Yiran Chen, Hai Helen Li, Chunpeng Wu, Chang Song, Sicheng Li, Chuhan Min, Hsin-Pai Cheng, Wei Wen, and

Xiaoxiao Liu. 2018. Neuromorphic computing’s yesterday, today, and tomorrow–an evolutional view. Integration 61

(2018), 49–61.

[13] Jianwei Cui and Qinru Qiu. 2016. Towards memristor based accelerator for sparse matrix vector multiplication. In

Proceedings of the International Symposium on Circuits and Systems (ISCAS’16). 121–124.

[14] Richard C. Dubes and Anil K. Jain. 1988. Algorithms for Clustering Data. Prentice Hall. Englewood Cliffs, NJ.

[15] M. Amimul Ehsan, Hongyu An, Zhen Zhou, and Yang Yi. 2018. A novel approach for using TSVs as membrane

capacitance in neuromorphic 3-D IC. IEEE J. Technol. Comput. Aid. Des. 37, 8 (2018), 1640–1653.

[16] Md Amimul Ehsan, Zhen Zhou, and Yang Yi. 2017. Neuromorphic 3D integrated circuit: A hybrid, reliable and en-

ergy efficient approach for next generation computing. In Proceedings of the ACM Great Lakes Symposium on VLSI

(GLSVLSI’17). 221–226.

[17] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report. Citeseer.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In Proceedings of the Conference and Workshop on Neural Information Processing Systems (NIPS’12). 1097–

1105.

[19] Zheng Li, Chenchen Liu, Yandan Wang, Bonan Yan, Chaofei Yang, Jianlei Yang, and Hai Li. 2015. An overview on

memristor crossabr based neuromorphic circuit and architecture. In Proceedings of the International Conference on

Very Large Scale Integration and System-on-Chip (VLSI-SoC’15). 52–56.

[20] Jilan Lin, Zhenhua Zhu, Yu Wang, and Yuan Xie. 2019. Learning the sparsity for ReRAM: mapping and pruning

sparse neural network for ReRAM based accelerator. In Proceedings of the Asia and South Pacific Design Automation

Conference (ASPDAC’19). 639–644.

[21] Beiye Liu, Yiran Chen, Bryant Wysocki, and Tingwen Huang. 2012. The circuit realization of a neuromorphic com-

puting system with memristor-based synapse design. In Neural Information Processing. 357–365.

[22] Stan Salvador and Philip Chan. 2004. Determining the number of clusters/segments in hierarchical cluster-

ing/segmentation algorithms. In Proceedings of the IEEE International Conference on Tools with Artificial Intelligence

(ICTAI’04). 576–584.

[23] Jae-sun Seo, Bernard Brezzo, Yong Liu, and et al. 2011. A 45nm CMOS neuromorphic chip with a scalable architec-

ture for learning in networks of spiking neurons. In Proceedings of the IEEE Custom Integrated Circuits Conference

(CICC’11). 1–4.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

Memristive Crossbar Mapping for Neuromorphic Computing Systems on 3D IC 8:19

[24] Pun Hang Shiu, Ramprasad Ravichandran, Siddharth Easwar, and Sung Kyu Lim. 2004. Multi-layer floorplanning for

reliable system-on-package. In Proceedings of the International Symposium on Circuits and Systems (ISCAS’04), Vol. 5.

V–69.

[25] Wei Wen, Chi-Ruo Wu, Xiaofang Hu, Beiye Liu, Tsung-Yi Ho, Xin Li, and Yiran Chen. 2015. An EDA framework for

large scale hybrid neuromorphic computing systems. In Proceedings of the Design Automation Conference (DAC’15).

1–6.

[26] Chi-Ruo Wu, Wei Wen, Tsung-Yi Ho, and Yiran Chen. 2016. Thermal optimization for memristor-based hybrid neuro-

morphic computing systems. In Proceedings of theAsia and South Pacific Design Automation Conference (ASPDAC’16).

274–279.

[27] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Xiling Yin, Wenqin Huangfu, Pai-Yu Chen, Shimeng Yu, Yu Cao, Yu Wang,

et al. 2016. MNSIM: Simulation platform for memristor-based neuromorphic computing system. In Proceedings of the

Design, Automation and Test in Europe Conference (DATE’16). 469–474.

[28] Qi Xu, Song Chen, and Bin Li. 2016. Combining the ant system algorithm and simulated annealing for 3D/2D fixed-

outline floorplanning. Appl. Soft Comput. 40 (2016), 150–160.

[29] Qi Xu, Song Chen, Bei Yu, and Feng Wu. 2018. Memristive crossbar mapping for neuromorphic computing systems

on 3D IC. In Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI’18). 451–454.

[30] Wangyang Zhang, Xin Li, Sharad Saxena, Andrzej Strojwas, and Rob Rutenbar. 2013. Automatic clustering of wafer

spatial signatures. In Proceedings of the Design Automation Conference (DAC’13). 71.

Received January 2019; revised May 2019; accepted September 2019

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 1, Article 8. Pub. date: November 2019.

