
Triple/quadruple patterning layout
decomposition via linear
programming and iterative rounding

Yibo Lin
Xiaoqing Xu
Bei Yu
Ross Baldick
David Z. Pan

Yibo Lin, Xiaoqing Xu, Bei Yu, Ross Baldick, David Z. Pan, “Triple/quadruple patterning layout
decomposition via linear programming and iterative rounding,” J. Micro/Nanolith. MEMS
MOEMS 16(2), 023507 (2017), doi: 10.1117/1.JMM.16.2.023507.

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Triple/quadruple patterning layout decomposition via
linear programming and iterative rounding

Yibo Lin,a,* Xiaoqing Xu,a Bei Yu,b Ross Baldick,a and David Z. Pana

aUniversity of Texas at Austin, Electrical and Computer Engineering Department, Austin, Texas, United States
bChinese University of Hong Kong, Department of Computer Science and Engineering, New Territories, Hong Kong

Abstract. As the feature size of the semiconductor technology scales down to 10 nm and beyond, multiple
patterning lithography (MPL) has become one of the most practical candidates for lithography, along with
other emerging technologies, such as extreme ultraviolet lithography (EUVL), e-beam lithography (EBL),
and directed self-assembly. Due to the delay of EUVL and EBL, triple and even quadruple patterning is con-
sidered to be used for lower metal and contact layers with tight pitches. In the process of MPL, layout decom-
position is the key design stage, where a layout is split into various parts and each part is manufactured through a
separate mask. For metal layers, stitching may be allowed to resolve conflicts, whereas it is forbidden for contact
and via layers. We focus on the application of layout decomposition where stitching is not allowed, such as for
contact and via layers. We propose a linear programming (LP) and iterative rounding solving technique to reduce
the number of nonintegers in the LP relaxation problem. Experimental results show that the proposed algorithms
can provide high quality decomposition solutions efficiently while introducing as few conflicts as possible. © 2017
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.16.2.023507]

Keywords: multiple patterning lithography; layout decomposition; linear programming.

Paper 17031P received Mar. 23, 2017; accepted for publication May 18, 2017; published online Jun. 14, 2017.

1 Introduction
Triple patterning lithography (TPL) and quadruple pattern-
ing lithography (QPL) are promising techniques to enhance
lithography resolution when the feature size of semiconduc-
tor technology scales down to 10 nm and beyond. While it is
true that there are other techniques, such as extreme ultravio-
let lithography (EUVL), e-beam lithography (EBL), and
directed self-assembly (DSA), the merits and demerits of
these techniques result in various choices according to differ-
ent applications.1

A typical process of TPL consists of litho-etch-litho-etch-
litho-etch steps, which need three exposure/etching steps.
In order to manufacture with TPL technology, it is necessary
to split a single layer into three masks so that the features on
each mask are far away enough to meet the resolution
requirement of the optical system. This process is called
“layout decomposition.” Similarly for QPL, one layer is
decomposed into four masks for manufacturing.

The condition for splitting features is usually related to
the distance between them. For any feature pair, if two fea-
tures are very close to each other, they should be split into
different masks; otherwise, a “conflict” is introduced and it is
not possible to manufacture them. In layout decomposition,
each feature can be viewed as a vertex in a graph. If two
features are too close to be manufactured in the same mask,
a conflict edge is introduced to connect corresponding ver-
tices. Vertices that share the same conflict edge must be
assigned to different masks, or in other words, labeled with
different colors. Then, the layout decomposition problem
can be formulated into a graph coloring problem, as shown
in Fig. 1. That is, TPL can be formulated to three-coloring
and QPL can be formulated to four-coloring. The minimum

distance to insert a conflict edge between two features is
defined as “coloring distance.”

Graph coloring is known as a nondeterministic polyno-
mial time (NP) complete problem for a color number larger
than two.2 A layout may include subgraphs, such as four-
clique (K4) structure that is not three-colorable. In Fig. 1
(c), vertices a, b, c, and d form a K4 structure, so at least
four masks are needed. The main objective of layout decom-
position is to minimize the number of conflicts. For metal
layers, stitching may be allowed to resolve conflicts; i.e.,
a feature can be split into two parts with different colors.
But stitches are forbidden for contact and via layers. Even
for metal layers, some fabs do not allow stitch insertion
as it degrades the manufacturing yield. While layout decom-
position is still different from traditional graph coloring, the
NP completeness still holds.

Various algorithms have been proposed for the MPL
layout decomposition problem, including integer linear
programming (ILP), semidefinite programming (SDP), and
other heuristic approaches.3–10 Although ILP can solve the
problem optimally, it suffers from an exponential runtime.
SDP and other heuristic approaches are introduced to
speedup the decomposition process with tradeoffs between
runtime and solution quality. In order to improve the feature
uniformity on each mask, density balance is also introduced
as a secondary optimization target during decomposition.11,12

Li et al.13 formulate the TPL layout decomposition to 0-1
program and solve by the branch-and-bound method. Jiang
and Chang14 propose an exact set cover formulation to MPL
layout decomposition with complex coloring rules. For row-
based layout structures, even faster approaches have been
proposed with the guarantee of optimality.15–18 For a single
standard cell, Yu et al.19 proposed search-based methods to

*Address all correspondence to: Yibo Lin, E-mail: yibolin@utexas.edu 1932-5150/2017/$25.00 © 2017 SPIE

J. Micro/Nanolith. MEMS MOEMS 023507-1 Apr–Jun 2017 • Vol. 16(2)

J. Micro/Nanolith. MEMS MOEMS 16(2), 023507 (Apr–Jun 2017)

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1117/1.JMM.16.2.023507
http://dx.doi.org/10.1117/1.JMM.16.2.023507
http://dx.doi.org/10.1117/1.JMM.16.2.023507
http://dx.doi.org/10.1117/1.JMM.16.2.023507
http://dx.doi.org/10.1117/1.JMM.16.2.023507
http://dx.doi.org/10.1117/1.JMM.16.2.023507
mailto:yibolin@utexas.edu
mailto:yibolin@utexas.edu

enumerate all possible coloring solutions. Besides, Yu et al.20

developed an incremental framework to accelerate conven-
tional layout decomposition flow. Recently, Guo et al.21

studied the lithography impact of different decomposition
solutions based on lithography models.

In this paper, we focus on the application of layout
decomposition where stitching is not allowed such as for
contact and via layers. Given a layout with either rectangles
or polygons where stitch insertion is forbidden, our goal is to
provide high quality decomposition results efficiently while
introducing as few conflicts as possible. Our major contribu-
tions are listed as follows:

1. We develop a linear programming (LP) and iterative
rounding (IR) scheme to solve layout decomposition
efficiently with high performance.

2. We propose an odd cycle-based technique to prune
native noninteger solutions in the feasible set of LP,
which can effectively reduce noninteger solutions in
LP.

3. Experimental results show that our algorithm gets
3.3× speedup for TPL and 4.7× speedup for QPL
compared with the state-of-the-art SDP-based layout
decomposer with less 1% degradation in final conflict
numbers.

The rest of the paper is organized as follows. In Sec. 2, we
discuss the preliminary and problem formulation. In Sec. 3,
we explain the algorithms, such as integer LP formulation,
LP relaxation and our IR scheme. The experimental result is
presented in Sec. 4 and we conclude this paper in Sec. 6.

2 Preliminaries and Problem Formulation

2.1 Preliminaries

Given a layout with rectangular or polygon shapes, we
construct decomposition graph where each feature is denoted
by a vertex in the graph. An edge is inserted if two corre-
sponding features have a distance smaller than a minimum
coloring distance. In the decomposition graph, if two vertices
connected by a conflict edge are assigned to same color, a
conflict is generated. The main target during layout decom-
position is to minimize the number of conflicts. Figure 2(a)
shows an example of conflict, where nodes c and d are
assigned to the same mask, which results in a conflict high-
lighted by a red line.

In addition, the density of features at each mask should
also be considered to reduce lithography hotspots and
improve critical dimension uniformity.12 Figures 2(b) and
2(c) compare two coloring solutions. The former one is
unbalanced because most nodes are assigned to the first
and second mask, and the third mask has only one node.
The latter has more uniform distribution of nodes on each
mask. Therefore, during the decomposition process, it is nec-
essary to maintain density uniformity in each mask as well as
the density ratios along different colors.

2.2 Problem Formulation

Given a layout with features of rectangular or polygon
shapes, decomposition graph is constructed. The layout
decomposition problem assigns features to different colors
such that the total number of conflicts is minimized and

b

a c

d

e

(a) (b)

a

b

d
c

f
e

(c) (d)

First mask Second mask Third mask Fourth mask

Fig. 1 Multiple patterning layout decomposition: (a) metal layer conflict graph, (b) corresponding decom-
position, (c) contact layer conflict graph, and (d) corresponding decomposition.

a b

d

c

f h
e

g

(a)

a b

d

c

f h
e

g

(b)

a b

d

c

f h
e

g

(c)

First mask Second mask Third mask

Fig. 2 Example of (a) conflict decomposition, (b) unbalanced decomposition, and (c) balanced decom-
position in triple patterning layout decomposition.

J. Micro/Nanolith. MEMS MOEMS 023507-2 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

meanwhile the coloring density at each mask is balanced.
The coloring density balancing is defined as the difference
between the most frequently used color and the least fre-
quently used color.3

3 Algorithms
In this section, we will go over the overall flow of our algo-
rithm. Then, we introduce our ILP formulation of layout
decomposition, which is slightly different from conventional
decomposition and explain its corresponding LP relaxation
with the IR scheme in detail.

3.1 Overall Flow

The overall flow of our framework is shown in the left part of
Fig. 3. It first constructs conflict graph from the layout and
performs graph simplification, which will generate a set of
simplified components. Each simplified component will be
fed to kernel coloring algorithm based on linear program-
ming and iterative rounding (LPIR). As some vertices are
removed from the original graph to generate simplified com-
ponents during graph simplification, it is necessary to re-
cover them during postcolor assignment. In the end, the
final coloring results are produced. The detailed flow for
LPIR will be explained in Sec. 3.3.

3.2 Integer Linear Programming Formulation

Given a conflict graph GðV; EÞ, it is necessary to introduce
two binary variables for each node to represent three/four
colors in the TPL/QPL layout decomposition problem. The
ILP formulation is shown in Eq. (1). For each conflict edge in
the conflict edge set Ec, the situation of identical colors on
both vertices is forbidden by constraints of Eqs. (3)–(6); e.g.,
the constraint of Eq. (3) requires that xi1, xi2, xj1, and xj2
cannot be zero at the same time, which would otherwise
result in conflict at edge eij, and so forth for the other con-
straints. The constraint of Eq. (2) is only used to eliminate the
fourth color in TPL layout decomposition, so it is not needed
in the QPL decomposition problem. Different from the ILP
formulation in Ref. 3, additional stitch edge variables are not

introduced since stitch insertion is not allowed. There are no
additional conflict variables either because we handle the
minimization of conflicts in the LP relaxation. Instead of
minimizing the total cost from conflicts, the target of our
ILP formulation is to seek a feasible color assignment to the
variables while optimizing the changeable objective function.

EQ-TARGET;temp:intralink-;e001;326;686 min obj; (1)

EQ-TARGET;temp:intralink-;e002;326;656s:t: xi1 þ xi2 ≤ 1; (2)

EQ-TARGET;temp:intralink-;e003;326;631xi1 þ xi2 þ xj1 þ xj2 ≥ 1; ∀ eij ∈ Ec; (3)

EQ-TARGET;temp:intralink-;e004;326;606xi1 þ x̄i2 þ xj1 þ x̄j2 ≥ 1; ∀ eij ∈ Ec; (4)

EQ-TARGET;temp:intralink-;e005;326;580x̄i1 þ xi2 þ x̄j1 þ xj2 ≥ 1; ∀ eij ∈ Ec; (5)

EQ-TARGET;temp:intralink-;e006;326;554x̄i1 þ x̄i2 þ x̄j1 þ x̄j2 ≥ 1; ∀ eij ∈ Ec; (6)

EQ-TARGET;temp:intralink-;e007;326;528x̄i1 ¼ 1 − xi1; ∀ i ∈ V; (7)

EQ-TARGET;temp:intralink-;e008;326;503x̄i2 ¼ 1 − xi2; ∀ i ∈ V; (8)

EQ-TARGET;temp:intralink-;e009;326;478xi1; xi2 ∈ f0;1g; ∀ i ∈ V: (9)

3.3 Linear Programming and Iterative Rounding Flow

Although the proposed ILP formulation is able to find opti-
mal color assignment when there exists conflict free solution,
it has an exponential runtime and is not capable of minimiz-
ing total conflicts if there is at least one conflict in the opti-
mal solution due to the infeasibility. With LP relaxation of
the problem, it is possible to avoid the infeasibility issue and
find a solution with few conflicts. The relaxation from ILP to
LP will result in noninteger solutions, so it is critical to find a
proper rounding scheme for quality guarantee.

The LPIR flow for our coloring framework is demon-
strated in the right part of Fig. 3. The framework starts

Binding constraint analysis

LP Relaxation

Add additional constraints
 and objective biasing

Solving LP

Noninteger
reduced?

Final Coloring Results N

Y

Kernel coloring - LPIR

Vertex color recovery

component

Colored
component

Input layout

Graph simplification

ILP with objective = 0

Detect noninteger bits

generate simplified components

Construct conflict graph

Fig. 3 Overall flow for our coloring framework.

J. Micro/Nanolith. MEMS MOEMS 023507-3 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

with the LP with an objective of zero. To deal with nonin-
tegers in the solution from LP, we identify some native
noninteger solutions in the feasible set resulted from odd
cycles. Then, additional constraints are introduced to prune
these native noninteger solutions. During each iteration,
objective function is changed from the original LP formu-
lation to push nonintegers to integers. In particular, these

Fig. 6 An example of binding constraints analysis.

3

2

4

1

5

3

2

4

1

5

1

3

2

4

1

5

1

2

3

2

4

1

5

1

2

3

4

5

Fig. 7 An example of IVR in TPL.

(0.5,0.5)

Fig. 4 The polyhedron for feasible LP solutions. The shaded region
denotes the feasible space for LP. The dashed red line denotes the
objective function with optimal value. The grids consisting of dashed
black lines are possible solutions with integer bits.

(a) (b)

Fig. 5 One possible odd cycle in the conflict graph: (a) a coloring con-
flict from due to identical first bit values of nodes and (b) resolved
conflict.

Algorithm 1 Density Aware IVR Vertex Color Recovery.

Require: A stack S containing uncolored vertices.

Ensure: Assign colors with balanced density.

1. Define available color set C for TPL/QPL and available color set
Cv for vertex v ;

2. Define distance dc;v for vertex v as the distance with the closest
vertex with color c;

3. Define best color bcv for vertex v and bdv as the corresponding
distance;

4. while S ≠ ∅ do

5. v←S:popðÞ;

6. for c ∈ C do

7. Compute dc;v ;

8. end for

9. Compute Cv for vertex v ;

10. bcv← − 1, bdv← −∞;

11. for c ∈ Cv do

12. if dc;v > bdv then

13. bdv←dc;v , bcv←c;

14. end if

15. end for

16. Assign color bcv to vertex v ;

17. end while

J. Micro/Nanolith. MEMS MOEMS 023507-4 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

additional constraints and objective function change will not
break the feasibility of possible coloring assignment. We
continue the LPIR iterations until the number of nonintegers
fail to reduce, and we round the solutions of variables to
nearest integers. Then, a simple greedy refinement is applied
to further reduce conflicts. For each edge, we try to reduce
the conflict cost by enumerating the color assignment of its

two vertices. The refinement continues until no vertex
changes its coloring solution.

3.4 Linear Programming and Iterative Rounding

The ILP formulation in Eq. (1) is relaxed to LP by replacing
the constraint of Eq. (9) with 0 ≤ xi1 ≤ 1 and 0 ≤ xi2 ≤ 1.

3

2

4

1

5

6

8

7

4

5

6

8

7

3

2

1

b

a

c 3

2

4

1

5

6

8

7

First mask Second mask Third mask

Fig. 8 An example of biconnected BCE and color recovery.

Table 1 Comparison on runtime and performance for TPL.

Circuit

ILP3 SDP3 MIS5 LPIR

cn# CPU (s) cn# CPU (s) cn# CPU (s) cn# CPU (s)

C432 4 0.211 4 0.273 4 0.034 4 0.024

C499 0 0.174 0 0.071 0 0.033 0 0.025

C880 7 0.347 7 0.078 7 0.034 7 0.031

C1355 3 0.242 3 0.185 3 0.041 3 0.028

C1908 1 0.189 1 0.148 1 0.050 1 0.050

C2670 6 0.504 6 0.186 6 0.066 6 0.051

C3540 9 0.814 9 0.250 9 0.080 9 0.066

C5315 9 0.871 9 0.361 9 0.125 9 0.089

C6288 205 10.988 205 0.386 205 0.237 205 0.144

C7552 22 1.831 22 0.509 22 0.158 22 0.141

S1488 2 0.379 2 0.132 2 0.048 2 0.033

S38417 95 28.784 95 1.897 96 0.888 95 0.579

S35932 157 82.615 157 5.642 158 2.463 157 1.637

S38584 230 81.172 230 5.299 231 2.555 231 1.612

S15850 212 71.115 212 4.384 212 2.328 212 1.531

Average 64 18.682 64 1.320 64 0.609 64 0.403

Ratio 0.999 46.388 0.999 3.278 1.002 1.513 1.000 1.000

J. Micro/Nanolith. MEMS MOEMS 023507-5 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

The critical issue from LP relaxation is that it may introduce
many nonintegers in the solution, because a typical LP algo-
rithm like simplex walks through the boundaries of the poly-
hedron space of feasible set and search for best solutions. It is
very likely that the solutions at the boundaries of the poly-
hedron space contain nonintegers. For instance, with the con-
straint of Eq. (7), a trivial feasible solution is xi1 ¼ 0.5,
xi2 ¼ 0.5, ∀ i ∈ V. As shown in Fig. 4, the feasible space
for the LP is denoted as the shaded region. The dashed
red line denotes the objective function with optimal value.
The grids consisting of dashed black lines are possible sol-
utions with integer bits. We can see that the optimal solution
from LP is (0.5,0.5). Efficient techniques are needed to push
the LP solution to those blue dots in the feasible region with
integer solutions while being close to the optimal point.

3.4.1 Odd cycle constraints

It is known that an odd cycle in a graph needs at least three
colors. For the odd cycle example shown in Fig. 5, if the first
bits of the vertices are equal, e.g., xi1 ¼ xj1 ¼ xk1 ¼ xl1 ¼
xm1 ¼ 0, then it is not possible to obtain a solution without
conflicts by adjusting xi2, xj2, xk2, xl2, xm2. The LP relaxa-
tion will produce all 0.5 solutions for xi2, xj2, xk2, xl2, xm2 to

satisfy constraints of Eqs. (3)–(6). These solutions are native
noninteger solutions in the feasible set, which should be
pruned. To avoid such kind of situations, the first bits of the
vertices should not be equal. Figure 5(b) shows that as long
as xi1, xj1, xk1, xl1, xm1 are not all equal, it is very easy to find
a coloring solution without any conflicts. We can avoid the
situation of equality of the first bits by adding the following
constraints, which forbid the cases of all zeros and all ones:

EQ-TARGET;temp:intralink-;e010;326;664xi1 þ xj1 þ xk1 þ xl1 þ xm1 ≥ 1; (10)

EQ-TARGET;temp:intralink-;e011;326;634ð1− xi1Þ þ ð1− xj1Þ þ ð1− xk1Þ þ ð1− xl1Þ þ ð1− xm1Þ ≥ 1:

(11)

It must be noted that although constraints of Eqs. (10) and
(11) disallow the first bits to be identical, it helps to resolve
the potential conflicts and nonintegers for the second bits.
Similar technique can be applied to the second bits.

For a general odd cycle C, we have the following con-
straints:

EQ-TARGET;temp:intralink-;e012;326;527

X
i∈C

xi1 ≥ 1; (12)

Table 2 Comparison on runtime and performance for QPL.

Circuit

ILP9 SDP9 MIS5 LPIR

cn# CPU (s) cn# CPU (s) cn# CPU (s) cn# CPU (s)

C432 2 0.237 2 0.137 2 0.022 2 0.018

C499 5 0.296 5 0.078 5 0.043 5 0.032

C880 1 0.083 1 0.074 1 0.035 1 0.028

C1355 4 0.292 4 0.098 4 0.048 4 0.041

C1908 4 0.389 4 0.184 4 0.057 4 0.052

C2670 6 0.464 6 0.161 6 0.073 6 0.061

C3540 3 0.337 3 0.196 3 0.077 3 0.069

C5315 14 1.053 14 0.272 14 0.111 14 0.094

C6288 9 0.789 9 0.261 9 0.109 9 0.103

C7552 15 1.343 15 0.400 15 0.162 15 0.152

S1488 6 0.381 6 0.103 6 0.066 6 0.063

S38417 567 262.293 567 4.004 567 1.434 569 1.200

S35932 N/A >3600 1792 18.994 1792 4.740 1810 3.761

S38584 N/A >3600 1691 14.614 1691 3.710 1707 2.881

S15850 N/A >3600 1500 12.054 1502 3.048 1505 2.405

Average N/A >737.8 375 3.442 375 0.916 377 0.731

Ratio N/A >1009.8 0.993 4.711 0.993 1.253 1.000 1.000

J. Micro/Nanolith. MEMS MOEMS 023507-6 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

EQ-TARGET;temp:intralink-;e013;63;741

X
i∈C

ð1 − xi1Þ ≥ 1; (13)

EQ-TARGET;temp:intralink-;e014;63;705

X
i∈C

xi2 ≥ 1; (14)

EQ-TARGET;temp:intralink-;e015;63;681

X
i∈C

ð1 − xi2Þ ≥ 1; (15)

where constraints of Eqs. (12) and (13) forbid the possibility
of the first bits to be all zeros or all ones; constraints of
Eqs. (14) and (15) forbid the same thing to the second bits.
These constraints prune invalid solutions without losing the
feasibility of the LP problem.

3.4.2 Objective function biasing

To eliminate the noninteger results in an LP solution, one
heuristic is to push the corresponding variables to 0 or 1 by
adjusting the objective function. For example, if xi1 turns out
to be 0.6, it indicates that xi1 has the tendency to 1; hence, we
add ð1 − xi1Þ to the objective function so that xi1 tends to be
pushed to 1 during the next iteration. It can be generalized to
the following rules:

EQ-TARGET;temp:intralink-;e016;63;484obj ¼
�
objþ ð1 − xiÞ; if xi > 0.5;
objþ ðxiÞ; if xi < 0.5:

(16)

3.4.3 Binding constraints analysis

One drawback for the objective function biasing technique is
that it cannot handle the noninteger value 0.5. Therefore, we
propose a method to round those vertices with coloring sol-
ution ðxi1; xi2Þ ¼ ð0.5; 0.5Þ pairwisely by analyzing the
related binding constraints. For a constraint in LP, if the
inequality turns out to be equality according to the LP sol-
ution, we call it “binding”, and this constraint is called “bind-
ing constraint.”

Figure 6 shows an example of constraints for a vertex
whose solution is (0.5,0.5). Let Si1 be the set of constraints
only related to xi1, Si2 be the set of constraints only related to
xi2, and the set of shared constraints is denoted by Sic. For
simplicity during illustration, assume each constraint is for-
matted in such a way that all variables are on the left side of
the inequality operator and only constants are on the right
side. At the same time, the coefficients for xi1 should remain
positive.

If all constraints in Si1 share the same kind of operators
such as “≤” then these constraints will not be violated if xi1 is
pushed from 0.5 to 0; similarly, if all operators are “≥,” then
xi1 can be pushed from 0.5 to 1. The condition also holds for
xi2 by checking all constraints in Si2. With the analysis
above, we can generate a candidate rounded solution for ðxi1;
xi2Þ. The solution will not be accepted unless the rounded
solution also satisfies all constraints in Sic. For the example
in Fig. 6, we can generate a candidate rounded solution (0,1)
and then check if constraints in Sic are satisfied as well. If
true, ðxi1; xi2Þ are rounded to (0,1). This technique will not
affect the feasibility of the LP.

3.4.4 Anchoring highest degree vertex

During color assignment, one vertex of the graph can be
assigned any arbitrary color, which has the effect of reducing
the solution space without eliminating any optimal solutions
and can improve performance. The degree of vertices in the
graph varies from vertex to vertex, and the selection of pre-
colored vertex leads to different coloring results. As a high-
degree vertex has a large set of neighbors, the solution space
will be largely reduced if its color is predetermined. There-
fore, when constructing the mathematical formulation, we
anchor the color of the vertex with highest degree.

3.5 Graph Simplification

Since the conflict graph constructed from initial layout is
very large, we perform graph simplification to reduce the
problem sizes. As the conflict graph is usually not strongly
connected, independent components are extracted. Then, for
each independent component, two more steps are further
adopted to simplify it: iterative vertex removal (IVR)3 and
biconnected component extraction (BCE).5 It shall be noted
that if a simplification technique modifies the original graph,
it needs a corresponding approach to recover the colors of
vertices at the proper time. Since the two simplification
methods we adopt will either remove vertices from the graph
or divide graphs into components, we will also explain its
recovery approach. In our experiment, IVR is performed

Table 3 Density variation.

Circuit LPIR for TPL LPIR for QPL

C432 0.022 0.044

C499 0.007 0.026

C880 0.001 0.005

C1355 0.001 0.014

C1908 0.001 0.014

C2670 0.003 0.010

C3540 0.001 0.009

C5315 0.006 0.003

C6288 0.000 0.006

C7552 0.001 0.012

S1488 0.008 0.016

S38417 0.001 0.041

S35932 0.000 0.065

S38584 0.000 0.055

S15850 0.000 0.055

Average 0.004 0.025

J. Micro/Nanolith. MEMS MOEMS 023507-7 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

before BCE, so during the recovery process, the recovery
algorithm for IVR is executed after that of BCE.

3.5.1 Iterative vertex removal and density aware
recovery

In the graph coloring problem, if the degree of a vertex is
smaller than the number of colors n, we can always remove
it temporarily and assign color later, because its neighboring
vertices in the graph will take, at most, n − 1 colors. There
will always be available colors left for this vertex. When a
vertex is removed, some other vertices may turn out to be
removable, so this procedure can be performed iteratively,
which is shown in Fig. 7. In each iteration, the removed ver-
tices are pushed into a stack, which is used to maintain the
proper order during the vertex color recovery.

When assigning color to removed vertices during vertex
color recovery, it is necessary to keep the popping order of
the stack. For the example of Fig. 7, we will assign color in
an order of 5, 4, 3, 2, 1. During the recovery process, a vertex
may have multiple available colors; e.g., if vertex 5 is
assigned to color 1, then vertex 4 will have two candidate
colors, i.e., 2 and 3, in TPL. The choices of colors in the
recovery stage play an important role in color density balancing.

Therefore, we design an algorithm to consider color density
during recovery, as shown in Algorithm 1. The basic idea is
to compute the priority for each candidate color c of vertex v
based on the distance dc;v with closest vertex of the same
color c. The larger dc;v is, the higher priority the color c has.
Eventually, the candidate color with largest dc;v will be
chosen. The main loop from line 4 to line 17 in Algorithm 1
iterates though the vertices with the order defined by the
stack. For each candidate color of a vertex, the distance dc;v
is computed in line 7. The best color is computed from line
10 to line 15.

3.5.2 Biconnected component extraction and color
recovery

In graph theory, a biconnected component is defined as a
maximal biconnected subgraph. In TPL and QPL, we can
divide a graph into biconnected components so that each
component can be solved independently. Figure 8 shows an
example of BCE. In the figure, the graph is split into three
components a, b, and c. Vertex 3 is shared by components a
and b; vertex 4 is shared by components b and c. These com-
ponents can be colored independently and reunited later.

Table 4 Comparison on number of nonintegers for odd cycle constraints in TPL.

Circuit

w. OCC w.o. OCC

LP1NI LP1HI LP2NI LP2HI LPENI LPEHI LP2NI LP2HI LPENI LPEHI

C432 18 18 18 18 18 18 18 18 18 18

C499 12 12 18 18 18 18 12 12 12 12

C880 28 28 28 28 28 28 28 28 28 28

C1355 18 18 16 16 16 16 18 18 18 18

C1908 12 12 12 12 12 12 12 12 12 12

C2670 42 42 42 42 42 42 42 42 42 42

C3540 58 58 48 48 48 48 58 58 58 58

C5315 60 60 60 60 60 60 60 60 60 60

C6288 860 860 858 792 858 792 860 860 860 860

C7552 142 142 120 114 120 114 142 142 142 142

S1488 32 32 10 10 10 10 32 32 32 32

S38417 2730 2730 1510 1482 1510 1482 2730 2730 2730 2730

S35932 8330 8330 4339 4256 4339 4256 8330 8330 8330 8330

S38584 8073 8069 4281 4221 4281 4221 8075 8067 8075 8067

S15850 6918 6918 3756 3708 3756 3708 6918 6918 6918 6918

Average 1822 1822 1008 988 1008 988 1822 1822 1822 1822

Ratio 1.000 1.000 0.553 0.542 0.553 0.542 1.000 1.000 1.000 1.000

J. Micro/Nanolith. MEMS MOEMS 023507-8 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

Since each component is processed independently, it is
likely to result in the condition that the colors of shared ver-
tices in different components are different like vertex 3 in
components a and b. Therefore, color rotation is necessary
during the process of recovery. The color assignments of
component b should be rotated in such a way that vertex 3′
in component b has identical color to vertex 3 in component
a. As the coloring solution of component b is changed, ver-
tex 4 and vertex 4′ no longer remain the same color, so com-
ponent c should follow component b and rotate its coloring
solution as well.

For a more general procedure of color rotation during the
recovery, we can construct an undirected acyclic graph
(UAG) in which each biconnected component is a vertex and
two vertices are connected if the corresponding components
share a vertex in the original graph. The color rotation for
biconnected components can be solved by applying depth
first search to the UAG.

4 Experimental Results
Our algorithms were implemented in C++ and tested on an
8-Core 3.40 GHz Linux server with 32 GB RAM. The same
benchmarks from Ref. 3 are used. Gurobi22 is used as the ILP

and LP solver. The minimum coloring distance for TPL is set
to 120 nm and that for QPL is set to 160 nm. We compare our
algorithm with the state-of-the-art ILP and SDP algorithms
from Yu et al.3 in Table 1. We also implemented the maxi-
mum independent set (MIS) based algorithm from Fang
et al.5 to compare with our results, as the original implemen-
tation from Fang et al.5 focuses on stitch insertion. The basic
idea of the MIS-based algorithm searches for best indepen-
dent set that minimizes the total edge weights in the residual
graph (the graph after removing the independent set) for each
color. Once all the three or four colors are assigned, the rest
of the vertices are greedily assigned colors for minimum
conflicts.

In Tables 1 and 2, our algorithm is shown as LPIR.
Conflict number is denoted by “cn#” and runtime is denoted
by “CPU” in seconds. As stitch insertion is not allowed, the
stitch number is always zero and thus not shown in the table.
We can see that the LPIR algorithm is able to achieve mini-
mum conflicts for almost all benchmarks in TPL with 46×
speedup to ILP and 3.3× speedup to SDP. In QPL, the
speedup from LPIR is even more impressive, which achieves
1000× speedup to ILP and 4.7× speedup to SDP, while it
only produces around 0.7% more conflicts than SDP. The

Table 5 Comparison on number of nonintegers for odd cycle constraints in QPL.

Circuit

w. OCC w.o. OCC

LP1NI LP1HI LP2NI LP2HI LPENI LPEHI LP2NI LP2HI LPENI LPEHI

C432 24 16 20 8 20 8 24 16 24 16

C499 20 20 20 10 20 10 20 20 20 20

C880 6 6 7 0 7 0 6 6 6 6

C1355 16 16 16 8 16 8 16 16 16 16

C1908 26 26 25 19 25 19 26 26 26 26

C2670 24 24 24 12 24 12 24 24 24 24

C3540 14 14 14 10 14 10 14 14 14 14

C5315 62 62 62 36 62 36 62 62 62 62

C6288 46 46 45 22 45 22 46 46 46 46

C7552 62 62 60 32 60 32 62 62 62 62

S1488 24 24 24 12 24 12 24 24 24 24

S38417 2707 2469 2616 1370 2614 1370 2677 2465 2677 2465

S35932 9747 8449 9253 4900 9264 4901 9493 8283 9491 8281

S38584 8400 7578 8096 4273 8099 4276 8283 7459 8283 7459

S15850 7261 6575 7033 3689 7033 3670 7160 6502 7160 6502

Average 1896 1692 1821 960 1822 959 1862 1668 1862 1668

Ratio 1.000 1.000 0.960 0.567 0.961 0.567 0.982 0.986 0.982 0.986

J. Micro/Nanolith. MEMS MOEMS 023507-9 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

small degradation in conflicts is reasonable because design-
ers need to manually fix conflicts by modifying the layout
anyway. Compared with MIS-based approach,5 we have
slightly smaller conflicts for TPL and slightly more conflicts
for QPL. The speedup is around 50% for TPL and 25%
for QPL.

We also study the density balancing of the experimental
results, which is handled during the vertex recovery of IVR
in Sec. 3.5.1. We adopt the metric of density variation in
Ref. 12 to evaluate our density uniformity as in the following
equation:

EQ-TARGET;temp:intralink-;e017;63;212σ ¼ dmax

dmin

− 1; (17)

where dmax is the maximum color density of all colors and
dmin is the minimum color density. In an ideal case, σ should
approach zero; i.e., dmax is equal to dmin. Table 3 shows the
density variation of LPIR for TPL and QPL. We can see that
in TPL, the average density variation is only 0.4% and most
benchmarks have a variation approaching zero. For QPL, the
average density variation is 2.5%, which is acceptable.

4.1 Effectiveness of Odd Cycle Constraints

We discuss the empirical results of noninteger removal from
odd cycle constraints here. We compare the number of non-
integers and half-integers for odd cycle constraints in
Tables 4 and 5. The columns “LP1NI” and “LP1HI” denote
the number of nonintegers and half-integers, respectively,
after first iteration of LP without any odd cycle constraint
or objective biasing. The columns “LP2NI” and “LP2HI”
denote the number of nonintegers and half-integers, respec-
tively, after second iteration of LP. The columns “LPENI”
and “LPEHI” denote the number of nonintegers and half-
integers, respectively, after last iteration of LP. The column
“w. OCC” denotes that odd cycle constraints are applied,
whereas the column “w.o. OCC” denotes that odd cycle con-
straints are not applied. As each design will be decomposed
to components after graph simplification, we sum up all the
number of nonintegers and half-integers for all components.
For TPL, odd cycle constraints in general remove more than
40% nonintegers on average compared with both the results
from first iteration of LP and that without odd cycle con-
straints. For QPL, it achieves around 2% fewer nonintegers
and more than 40% fewer half-integers, though in some cor-
ner cases, it ends up with slightly more nonintegers like that
in benchmark C880 for QPL. We also observe that the LPIR
generally finishes in two to three iterations for each compo-
nent, so the numbers of nonintegers and half-integers in the
end of LPIR are very close to that of the second iteration.

4.2 Effectiveness of Anchoring Highest Degree
Vertex

Anchoring highest degree vertex in Sec. 3.4.4 can reduce the
solution space during LP solving; the empirical results in
Table 6 also show that it can achieve slightly fewer number
of conflicts. Considering that the solution space of LP gen-
erally contains many more noninteger feasible solutions than
integer feasible solutions, when we prune the solution space
by anchoring a vertex, more noninteger solutions are likely
to be removed than integer solutions, which ends up with
higher probability of achieving better solution quality.

5 Discussion
In this section, we show a potential way to extend the
framework to handle stitch insertion and discuss whether
it is suitable to such an application, since in applications
like metal layers, stitch insertion is allowed to resolve
conflicts.

Inspired by Ref. 23, we try to integrate constraints and
objective for stitch edges into the ILP formulation in Eq. (1).
Suppose the conflict graph is constructed with both conflict
edges and stitch edges and let Es denote the set of stitch
edges. We introduce stitch variable sij for each stitch edge
and adjust the ILP formulation in Eq. (1) as follows:

EQ-TARGET;temp:intralink-;e018;326;171 min objþ ws

X
eij∈Es

sij; (18)

such that Eqs. (2) to (9),

EQ-TARGET;temp:intralink-;e019;326;115xi1 − xj1 ≤ sij; ∀ eij ∈ Es; (19)

EQ-TARGET;temp:intralink-;e020;326;72xj1 − xi1 ≤ sij; ∀ eij ∈ Es; (20)

Table 6 Comparison of conflicts on anchoring highest degree vertex.

Circuit

cn# for TPL cn# for QPL

w.
Anchoring

w.o.
Anchoring

w.
Anchoring

w.o.
Anchoring

C432 4 4 2 2

C499 0 0 5 5

C880 7 7 1 1

C1355 3 3 4 4

C1908 1 1 4 4

C2670 6 6 6 6

C3540 9 9 3 3

C5315 9 9 14 14

C6288 205 205 9 9

C7552 22 22 15 15

S1488 2 2 6 6

S38417 95 95 569 569

S35932 157 157 1810 1817

S38584 231 230 1707 1711

S15850 212 212 1505 1509

Average 64 64 377 378

J. Micro/Nanolith. MEMS MOEMS 023507-10 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

EQ-TARGET;temp:intralink-;e021;63;741xi2 − xj2 ≤ sij; ∀ eij ∈ Es; (21)

EQ-TARGET;temp:intralink-;e022;63;728xj2 − xi2 ≤ sij; ∀ eij ∈ Es; (22)

where ws denotes the weight for stitch edges, which is set to
0.1 in the experiment and the term “obj” still denotes the
changeable objective in Eq. (1). Constraint Eqs. (19)–(22)
guarantee that if either ðxi1; xj1Þ are the same or ðxi2; xj2Þ are
the same, sij has to be no smaller than 1. Together with the
additional summation of sij in the objective, stitches are
minimized in Eq. (6). In the LPIR scheme, techniques like
odd cycle constraints (Sec. 3.4.1) and objective function
biasing (Sec. 3.4.2) are adjusted to work on conflict edges
only, whereas other techniques like binding constraints
analysis (Sec. 3.4.3) are compatible to all edges.

Table 7 shows the comparison of stitches and conflicts
when allowing stitch insertion. Column “sn#” denotes the
number of stitches and column “cn#” denotes the number
of conflicts. We observe that LPIR results in more conflicts
than both SDP and ILP, even though the average amount of
stitches is smaller than that of SDP. Actually, the observation
also indicates that LPIR fails to differentiate the importance
of conflicts from that of stitches, while taking them as equal
importance instead, especially in benchmarks, such as
“C6288,” “S38417,” etc. As a consequence, it often trades

number of conflicts for number of stitches and produces sol-
utions with poor quality. Although the weight ws for stitches
is adjustable, the solution quality does not improve too much
by adjusting it. In addition, our study shows that the addi-
tional constraints for stitches [Eqs. (19)–(22)] result in
many more nonintegers, especially half-integers, in the LP
solutions, which deteriorates the number of conflicts after
IR. The reason probably lies in the fact that the polyhedron
space is changed to contain more nonintegers at the bounda-
ries when the additional constraints for stitches are incorpo-
rated. Therefore, LPIR scheme is suitable to the situation
without stitch insertion while it fails to address the impor-
tance of conflicts when stitching is allowed. The application
of this scheme is focused on vias and contacts where stitch-
ing is disabled.

6 Conclusion
In this paper, we propose a new and effective algorithm for a
layout decomposition problem for TPL and QPL. By utiliz-
ing the features in the polyhedron space of the feasible set,
we approximate the ILP formulation with IR to the LP relax-
ation. Several techniques are proposed to shrink the polyhe-
dron space without losing the feasibility, such as odd cycle
constraints, binding constraint analysis, and vertex anchor-
ing. Experiment results show the effectiveness and efficiency

Table 7 Comparison on performance with stitch insertion.

Circuit

ILP for TPL3 SDP for TPL3 LPIR for TPL ILP for QPL9 SDP for QPL9 LPIR for QPL

sn# cn# sn# cn# sn# cn# cn# cn# sn# cn# sn# cn#

C432 4 0 4 0 8 0 0 2 0 2 0 2

C499 0 0 0 0 0 0 3 1 4 1 4 1

C880 3 0 7 0 5 0 0 1 0 1 1 2

C1355 2 0 3 0 2 0 1 0 4 0 1 0

C1908 0 0 1 0 0 0 2 2 3 2 2 2

C2670 2 0 6 0 4 0 2 0 6 0 3 0

C3540 4 1 9 1 4 1 1 1 3 1 1 1

C5315 5 0 9 0 5 0 6 1 13 1 7 2

C6288 111 0 213 1 139 19 0 9 0 9 3 9

C7552 10 0 26 0 9 1 9 2 13 2 6 12

S1488 1 0 3 0 1 0 0 0 6 0 0 0

S38417 20 27 57 20 28 35 66 20 551 20 50 66

S35932 42 77 60 46 86 102 257 46 1745 50 259 261

S38584 45 81 131 36 78 99 N/A N/A 1653 41 173 183

S15850 57 57 119 34 75 73 N/A N/A 1462 42 185 148

Average 20 16 43 9 30 22 27 7 364 11 46 46

J. Micro/Nanolith. MEMS MOEMS 023507-11 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

of the algorithm compared with ILP-, SDP-, and MIS-based
approaches.

Acknowledgments
This work is supported in part by National Science Founda-
tion (NSF), Semiconductor Research Corporation (SRC),
and Chinese University of Hong Kong (CUHK) Direct Grant
for Research.

References

1. D. Z. Pan, B. Yu, and J.-R. Gao, “Design for manufacturing with emerg-
ing nanolithography,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 32(10), 1453–1472 (2013).

2. R. M. Karp, “Reducibility Among Combinatorial Problems,” in
Complexity of computer computations, pp. 85–103, Springer US (1972).

3. B. Yu et al., “Layout decomposition for triple patterning lithography,”
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 433–446
(2015).

4. R. S. Ghaida et al., “A novel methodology for triple/multiple-patterning
layout decomposition,” Proc. SPIE 8327, 83270M (2012).

5. S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decompo-
sition algorithm for triple patterning lithography,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 33, 397–408 (2014).

6. K. Lucas et al., “Implications of triple patterning for 14 nm node design
and patterning,” Proc. SPIE 8327, 832703 (2012).

7. J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in ACM/IEEE Design Automation
Conf. (DAC), pp. 1–6 (2013).

8. Y. Zhang et al., “Layout decomposition with pairwise coloring for
multiple patterning lithography,” in IEEE/ACM Int. Conf. on Compu-
ter-Aided Design (ICCAD), pp. 170–177 (2013).

9. B. Yu and D. Z. Pan, “Layout decomposition for quadruple patterning
lithography and beyond,” in ACM/IEEE Design Automation Conf.
(DAC), Vol. 53, pp. 1–6 (2014).

10. B. Yu et al., “Design for manufacturability and reliability in extreme-
scaling VLSI,” Sci. China Inf. Sci. 59, 061406 (2016).

11. Z. Chen, H. Yao, and Y. Cai, “SUALD: spacing uniformity-aware layout
decomposition in triple patterning lithography,” in IEEE Int. Symp. on
Quality Electronic Design (ISQED), pp. 566–571 (2013).

12. B. Yu et al., “A high-performance triple patterning layout decomposer
with balanced density,” in IEEE/ACM Int. Conf. on Computer-Aided
Design (ICCAD), pp. 163–169 (2013).

13. X. Li, Z. Zhu, and W. Zhu, “Discrete relaxation based layout decom-
position for triple patterning lithography,” IEEE Trans. Comput. 66(2),
1 (2016).

14. I. H.-R. Jiang and H.-Y. Chang, “Multiple patterning layout decompo-
sition considering complex coloring rules and density balancing,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. PP(99), 1 (2017).

15. H. Tian et al., “A polynomial time triple patterning algorithm for cell
based row-structure layout,” in IEEE/ACM Int. Conf. on Computer-
Aided Design (ICCAD), pp. 57–64 (2012).

16. H. Tian et al., “Constrained pattern assignment for standard cell based
triple patterning lithography,” in IEEE/ACM Int. Conf. on Computer-
Aided Design (ICCAD), pp. 178–185 (2013).

17. H. Tian et al., “An efficient linear time triple patterning solver,” in IEEE/
ACM Asia and South Pacific Design Automation Conf. (ASPDAC),
pp. 208–213 (2015).

18. H.-A. Chien et al., “A cell-based row-structure layout decomposer for
triple patterning lithography,” in ACM Int. Symp. on Physical Design
(ISPD), pp. 67–74 (2015).

19. B. Yu et al., “Methodology for standard cell compliance and detailed
placement for triple patterning lithography,” IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 34, 726–739 (2015).

20. B. Yu, G. Garreton, and D. Z. Pan, “Layout compliance for triple pat-
terning lithography: an iterative approach,” Proc. SPIE 9235, 923504
(2014).

21. D. Guo et al., “Model-based multiple patterning layout decomposition,”
Proc. SPIE 9635, 963522 (2015).

22. Gurobi Optimization Inc., “Gurobi optimizer reference manual,”Gurobi
Optimizer, http://www.gurobi.com (2014).

23. B. Yu et al., “Layout decomposition for triple patterning lithography,” in
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), pp. 1–8
(2011).

Yibo Lin received his BS degree in microelectronics from Shanghai
Jiaotong University, Shanghai, China, in 2013. He is currently pursu-
ing his PhD at the Department of Electrical and Computer
Engineering, University of Texas at Austin. His research interests
include physical design and design for manufacturability. He has
received Franco Cerrina Memorial Best Student Paper Award at
SPIE Advanced Lithography Conference 2016. He has interned at
IMEC, Cadence, and Oracle.

Xiaoqing Xu is currently a senior research engineer at the ARM
Research Group, Austin, Texas. His research interests include robust
standard cell design, design for manufacturability and physical
design. His research has been recognized with numerous awards
including Golden Medal at ACM Student Research Competition at
ICCAD 2016, SPIE BACUS fellowship in 2016, Best in Session
Award at SRC TECHCON 2015, William J. McCalla Best Paper
Award at ICCAD 2013.

Bei Yu is currently an assistant professor in the Department of
Computer Science and Engineering, The Chinese University of
Hong Kong. He has served in the editorial boards of integration,
the VLSI Journal, and IET Cyber-Physical Systems: Theory and
Applications. He has received four Best Paper Awards at ISPD
2017, SPIE Advanced Lithography Conference 2016, ICCAD 2013,
ASPDAC 2012, EDAA Outstanding Dissertation Award in 2014,
and SPIE Scholarship in 2013.

Ross Baldick received his BSc and BE degrees in electrical engi-
neering from the University of Sydney, Australia, in 1983 and 1985
and his MS and PhD degrees from the University of California,
Berkeley, in 1988 and 1990, respectively. He is a professor and leland
barclay fellow in the Department of Electrical and Computer
Engineering at the University of Texas at Austin. He is a fellow of
the IEEE and the recipient of the 2015 IEEE PES Outstanding
Power Engineering Educator Award.

David Z. Pan is Engineering Foundation Professor at ECE
Department, The University of Texas at Austin. His research interests
include cross-layer design for manufacturability, reliability, security,
and CAD for emerging technologies. He has published over 280 tech-
nical papers, and graduated over 20 PhDs. He has received numer-
ous awards, including SRC Technical Excellence Award and many
Best Paper Awards at premier venues. He is a fellow of IEEE and
SPIE.

J. Micro/Nanolith. MEMS MOEMS 023507-12 Apr–Jun 2017 • Vol. 16(2)

Lin et al.: Triple/quadruple patterning layout decomposition via linear programming. . .

Downloaded From: http://nanolithography.spiedigitallibrary.org/ on 07/31/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1109/TCAD.2013.2276751
http://dx.doi.org/10.1109/TCAD.2013.2276751
http://dx.doi.org/10.1109/TCAD.2014.2387840
http://dx.doi.org/10.1117/12.916636
http://dx.doi.org/10.1109/TCAD.2013.2288678
http://dx.doi.org/10.1109/TCAD.2013.2288678
http://dx.doi.org/10.1117/12.920028
http://dx.doi.org/10.1109/ICCAD.2013.6691115
http://dx.doi.org/10.1109/ICCAD.2013.6691115
http://dx.doi.org/10.1145/2593069.2593152
http://dx.doi.org/10.1145/2593069.2593152
http://dx.doi.org/10.1007/s11432-016-5560-6
http://dx.doi.org/10.1109/ISQED.2013.6523667
http://dx.doi.org/10.1109/ISQED.2013.6523667
http://dx.doi.org/10.1109/ICCAD.2013.6691114
http://dx.doi.org/10.1109/ICCAD.2013.6691114
http://dx.doi.org/10.1109/TC.2016.2582154
http://dx.doi.org/10.1109/TCAD.2017.2681068
http://dx.doi.org/10.1109/TCAD.2017.2681068
http://dx.doi.org/10.1109/ICCAD.2013.6691116
http://dx.doi.org/10.1109/ICCAD.2013.6691116
http://dx.doi.org/10.1109/ASPDAC.2015.7059006
http://dx.doi.org/10.1109/ASPDAC.2015.7059006
http://dx.doi.org/10.1109/TCAD.2015.2401571
http://dx.doi.org/10.1109/TCAD.2015.2401571
http://dx.doi.org/10.1117/12.2066034
http://dx.doi.org/10.1117/12.2197852
http://www.gurobi.com
http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.1109/ICCAD.2011.6105297

