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Abstract—Dummy filling is widely applied to significantly
improve the planarity of topographic patterns for the chemical
mechanical polishing (CMP) process in VLSI manufacturing. In
the dummy filling flow, dummy synthesis works as the key step
to adjust the post-CMP profile height. However, existing dummy
synthesis optimization approaches usually fail to balance the
filling quality and efficiency. This article proposes a novel model-
based dummy filling synthesis framework NeurFill, integrated
with multiple starting points-sequential quadratic programming
(MSP-SQP) optimization solver. Inside this framework, a full-
chip CMP simulator is first migrated to the neural network,
achieving 8134× speedup on gradient calculation by backward
propagation. Entrenched in the CMP neural network models, we
further implement an improved version of NeurFill (pNeurFill)
to alleviate the post-CMP height variation caused by dummy
perimeter. After each iteration of dummy density optimization,
an additional perimeter adjustment based on a given candidate
dummy pattern set is applied to search for the optimal perime-
ter fill amount. The experimental results show that the proposed
NeurFill outperforms existing rule- and model-based methods.
The extra perimeter adjustment strategy in pNeurFill can achieve
an average 66.97 Å decreasing in height variation and 8.92%
quality improvement compared to NeurFill. This will provide
guidance for DFM so as to increase IC chip yield.
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I. INTRODUCTION

CHEMICAL mechanical polishing (CMP) has been an
indispensable operation in the modern semiconductor

industry for oxide dielectric and metal layer planarization.
Typically, the post-CMP profile heights depend on the dis-
tribution of metal patterns in polishing windows and vary
largely within one layer of the polished layout. This vary-
ing effect can accumulate through layers and cause a yield
decrease in IC manufacturing, especially in the very deep-
submicrometer and very large-scale multilayer interconnection
process. To mitigate the problem, dummies are inserted into
the layout to control post-CMP topography. These dummies
do not directly influence the functionality of the circuit [1],
but will inevitably induce extra parasitic capacitance result-
ing in undesirable circuit performance degradation, such as
timing degradation [2], [3]. Thus, dummy filling algorithms
are supposed to increase chip yield while trying to maintain
acceptable circuit performance.

Dummy filling flow classically includes two stages, namely,
dummy synthesis and dummy insertion [4]. Dummy syn-
thesis optimizes the fill amount in each filling window to
improve metrics of layout planarity and circuit performance
degradation. Dummy insertion determines the dummy loca-
tion in each filling window to satisfy design rules and
minimize induced parasitic capacitance. Estimating parasitic
capacitance of critical nets to promote post-CMP circuit
performance during dummy insertion has been widely investi-
gated [5], [6], [7], [8], [9]. In this article, we focus on dummy
synthesis optimization, which dominates the planarity of the
polished layout.

The methods of dummy synthesis are categorized as rule-
based and model-based. Rule-based methods adopt empirical
knowledge of the CMP process to guide optimization, which is
normally based on rules of density variance, density gradient,
etc. Kahng et al. [10] presented a practical rule-based formula-
tion with which linear programming (LP) was manipulated to
solve the filling problem of a fixed r-dissection layout. Then,
an improved variant with an increased number of adjacent
density calculation windows was proposed by Chen et al. [11].
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Fig. 1. Flow of model-based dummy filling synthesis and the motivation of
leveraging neural network-based CMP simulators.

However, these two methods only considered the relationship
between interlayer-dielectric (ILD) thickness and local metal
density. To achieve better quality, multiple metrics, such as
overlay, line deviation, and outliers, were introduced to com-
prehensively evaluate the filling result [12], [13], [14], [15].
With the advancement of technology nodes, the intrinsic
incompleteness of empirical rules limits the rule-based filling
quality [16].

Model-based methods leverage analytical expressions to
describe the phenomena like physical abrasion and chemical
erosion in the CMP process. Tian et al. [17] proposed a two-
step model-based filling algorithm, in which an LP problem
was constructed for global density assignment that is fol-
lowed by a local dummy feature adjustment. The approach
generated more uniform post-CMP topographies than the
results of rule-based methods. A novel electro-chemical plat-
ing (ECP) model-based dummy filling algorithm proposed by
Sinha et al. [18] significantly reduced the post-CMP height
variation and the amount of inserted dummies. A dummy
synthesis model proposed by [19] enables implementation of
complex design guidelines, and is also suitable for standard fill
patterns in the insertion stage. However, model-based methods
usually simplify those complicated models for efficiency. As
a result, the filling quality is influenced by the accuracy of
adopted models.

Recently, Cai et al. [16] found that it was unnecessary to
be limited to semi-empirical or analytical ECP/CMP models.
Instead, they implemented a dummy filling framework inte-
grating a calibrated full-chip CMP simulator, and a sequential
quadratic programming (SQP) algorithm was engaged to
optimize the quality score computed via the simulation result.
Full-chip CMP simulators have become mature sign-off tools
in manufacture under 45 nm so that accuracy is guaranteed.
Therefore, this simulator model-based approach gained better-
post-CMP layout planarity than other model-based methods.

Fig. 1 illustrates the basic flow of full-chip CMP model-
based dummy filling synthesis. The target layout is divided
into thousands of uniform windows, so the optimization
problem is extremely high dimensional. Inside the optimizer,
the post-CMP height profile is generated by a full-chip CMP
simulator and evaluated by the metrics. Numerical gradients
of the model-based metrics are used to guide the optimization,
which is time-consuming. Huge invocations of CMP sim-
ulators on numerical gradient calculation have become the
bottleneck of model-based filling synthesis. Besides, CMP is

Fig. 2. Different fill modes, i.e., fill size, buffer space distance, fill arrange-
ment, and fill pattern, can change surface topography and coupling capacitance
after the CMP process [22].

necessary for sub-65-nm process, and calibration of model
parameters can be laborious.

In fact, massive simulator invocations can be easily
observed in other model-based optimization problems, e.g.,
the optical proximity correction (OPC) problem. Recently,
Jiang et al. [20] proposed Neural-ILT for model-based OPC
problem, leveraging neural network-based simulation for
acceleration. Motivated by their work, we develop NeurFill to
solve the efficiency bottleneck of model-based dummy filling
synthesis. Because of the similarity to the image segmentation
problem and the local effect of the CMP process, the full-chip
CMP simulator is migrated to a pretrained neural network as
Fig. 1, where gradient calculation can be efficiently performed
by backward propagation. A preliminary version of NeurFill
was published in [21].

However, only considering dummy density is not enough for
the post-CMP chip planarity. As illustrated in Fig. 2, different
fill modes, i.e., fill size, buffer space distance, fill arrange-
ment, and fill pattern, have been verified to change surface
topography and coupling capacitance after CMP process [22],
[23], [24], [25]. For example, the dummies in the first and sec-
ond columns have different fill size and buffer space distance.
The last column has different patterns. The second and third
columns have the same size but with different fill arrangement.
Among these fill modes, fill size and fill pattern fundamen-
tally reflect the ratio of area and perimeter of dummies. Thus,
dummy perimeter should be seriously taken into considera-
tion in dummy synthesis. Other factors, buffer space and fill
arrangement not included in this article, should be considered
in the phase of dummy insertion.

In this article, we further propose pNeurFill, an enhanced
version of NeurFill, to take dummy perimeter along with dif-
ferent fill patterns into consideration. To obtain high-prediction
accuracy in the new scenario, the neural network is trained by
a dataset that concerning extra perimeter variation. We extend
the original optimization problem formulation with expanded
perimeter space and additional density and perimeter bounded
constraints. To solve this extended optimization problem with
both density and perimeter, we insert a perimeter adjust-
ment step after the density optimization step in the original
optimization loop. Based on the optimization result in each
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filling window, we propose a heuristic dummy pattern allo-
cation algorithm to determine the amount of each fill pattern
from the given candidate pattern set (CPS).

Our main contributions are summarized as follows.
1) We propose NeurFill, a model-based dummy filling

synthesis framework based on a neural network. After
migrating the conventional full-chip CMP simulator into
a GPU-based neural network, we can achieve 188×
speedup on objective evaluation and 8134× speedup on
gradient calculation.

2) Prior knowledge-based starting point is leveraged for
fast dummy filling synthesis. SQP optimizer is applied
to obtain better-filling quality due to the speedup in
gradient calculation.

3) To further improve the filling quality, the orig-
inal optimization problem is extended with extra
optimization dimension of the perimeter, and pNeurFill
framework is proposed to add a perimeter adjustment
step in the NeurFill flow.

4) Experimental results show that the proposed NeurFill
can achieve significant improvement in filling quality
and overall score over traditional rule-based and model-
based methods. Compared to the state-of-the-art simula-
tor model-based method [16], NeurFill obtains average
137× speedup with comparable quality score. Besides,
the refined pNeurFill achieves remarkable advancements
in the post-CMP planarization of chips, i.e., decreas-
ing average 66.97 Å in height variation from 109.0 Å
and increasing average 8.92 % in quality score versus
NeurFill.

The remainder of this article is organized as follows.
Section II introduces the background of CMP dummy fill-
ing. Section III elaborates our motivation. Sections IV and V
presents our neural network model-based dummy synthe-
sis frameworks and the perimeter adjustment strategy. In
Section VI, we provide experimental results and analytically
compare the proposed frameworks with the state-of-the-art
algorithms. Finally, Section VII draws the conclusion.

II. PRELIMINARIES

In this section, we introduce some background knowledge
of the ECP and CMP process in Section II-A, which explains
the reason why dummy filling is indispensable in IC manufac-
ture. Section II-B briefly interprets the mechanism of full-chip
CMP simulators. In Section II-C, we enumerate several metrics
adopted to measure the filling results.

A. ECP and CMP Process

From the back end of sub-130-nm technology node, the
ECP process is applied to deposit metal onto the wafer filling
up etched trenches and forming interconnect wires and vias.
The metal and oxide thickness after ECP is not uniform across
the whole chip. Normally, systematic thickness variations are
found to be layout dependent [26].

Then, the nonuniformity should be reduced by the CMP
process. The wafer is held on a carrier with the surface to
be polished facing down toward a polishing pad on a platen.

Fig. 3. Post-CMP topography of different layout patterns. The field oxide is
polished, which causes thickness loss within the whole surface. Erosion and
dishing describe excessive thickness loss of metal wire and of local oxide
region.

Typically, both the wafer carrier and the platen are rotated in
the same direction, as the carrier also has a lapping motion
across the pad, and slurry composed of suspended particles in
a chemical solution is delivered to the polishing platform. The
whole procedure starts with homogeneous polishing, where the
metal removal rate on different parts of a die is influenced by
the as-plated initial topography created by layout patterns and
plating characteristics. Later, the barrier layer is removed, and
overpolish occurs. Ideally, the wafer can be perfectly flat after
polishing. But an important degradation is that metal lines
suffer from dishing and erosion problems, as shown in Fig. 3,
which results in post-CMP thickness variations.

B. Full-Chip CMP Simulator

After 45-nm technology node, full-chip CMP simulators
have become sign-off tools to help designers and manufac-
turers to overcome DFM problems from reference flow in
foundries. Generally, the simulation procedure consists of four
steps, as illustrated in Fig. 4.

Step 1: Grid the whole chip into multiple equally dis-
sected windows, build equivalent pitch array structures based
on metal density and perimeter in each window, and compute
envelope heights of these windows [23].

Step 2: Solve contact mechanics and fluid mechanics equa-
tions to evaluate the pressure in each window [27].

Step 3: Compute the removal rates with the envelop pres-
sure in local up and down areas using the density-step-height
(DSH) model, where the critical step height Hex, calibrated
by experimental data, includes the information of perimeter
input [28].

Step 4: Obtain the removed amount within a unit polishing
time of δt by the Preston equation [29].

The last three steps will repeat until the preset total polishing
time is reached. More details about full-chip CMP simulators
can be found in [23] and [27].

C. Evaluation Metrics

In ICCAD 2014 dummy filling contest [12], many model-
based metrics were introduced to evaluate layout planarity
and circuit performance degradation after dummy filling
optimization. Given an L-layer layout, each layer is divided
into N ×M windows according to the window size in a CMP
simulator. Three objectives related to the layout planarity are
height variation σ , line deviation σ ∗, and outliers ol. Height
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Fig. 4. Simulation flow of a full-chip CMP simulator. The layout is dissected
into uniform windows and the surface height in each window is iteratively
calculated within a preset simulation time.

variation is the standard deviation of profile heights in all win-
dows of the layout, which aims at presenting uniformity at the
layout level. Line deviation is the summation of column-based
profile height variation. Outlier describes those profile heights
outside the 3σ range. The three metrics are defined as

σ =
L∑

l=1

σl =
L∑

l=1

√√√√ 1

N ×M

N∑

i=1

M∑

j=1

(
Hl,i,j − H̄l

)2 (1)

σ ∗ =
L∑

l=1

N∑

i=1

M∑

j=1

∣∣Hl,i,j − H̄l,j
∣∣ (2)

ol =
L∑

l=1

N∑

i=1

M∑

j=1

max
(
0,

∣∣Hl,i,j − H̄l
∣∣− 3σl

)
(3)

where σl is the profile height variation in layer l.
Hl,i,j is the profile height of window Wl,i,j. H̄l =
(1/N ×M)

∑N
i=1

∑M
j=1 Hl,i,j and H̄l,j = (1/N)

∑N
i=1 Hl,i,j are

the average profile height of layer l and of column j in layer
l, respectively. Besides, total fill amount fa and overlay area
ov are objectives concerning circuit performance degradation.
The total fill amount is defined as

fa =
L∑

l=1

N∑

i=1

M∑

j=1

xl,i,j (4)

where xl,i,j is the fill amount in window Wl,i,j. Overlay area is
calculated by four overlay types about inserted slack regions
during dummy synthesis.

III. MOTIVATION

In the CMP process, both mechanical and chemical meth-
ods are applied. Due to its complexity, the CMP simulators
are regarded as nonlinear black boxes in existing model-based
algorithms. Therefore, analytical gradient of the CMP model
cannot be easily derived. As alternatives, numerical gradients
are leveraged to drive the SQP optimization, which takes the
form as

∇feval = feval(x+�x)− feval(x)

�x
(5)

Fig. 5. Forward and backward propagation on neural networks.

where function feval(·) refers to an evaluation of quality score
by CMP simulation. It is shown that both the case of current
window fill amount feval(x) and the case when a small dummy
amount changed in each window feval(x+�x) need to be sim-
ulated. Furthermore, each simulation will go through plenty of
iteration steps. Huge invocations of CMP simulators are unac-
ceptable because of the rigorous time-to-market requirement
in chip design.

A. Acceleration With Neural Network

Fig. 5 illustrates the basic idea of forward and backward
propagation on neural networks. In forward propagation, the
activations of neurons in the nth layer an are linked with the
activations of neurons in the (n− 1)th layer an−1 by equation

an = fact

(
wnan−1 + bn

)
(6)

where wn and bn are the weight matrix and bias vector in
the nth layer. fact is the activation function. In backward prop-
agation, the gradients of the nth layer δn are related to the
gradients of the (n+ 1)th layer δn+1 by equation

δn =
(

wn+1
)T

δn+1 � f ′act

(
zn) (7)

where � is the Hadamard product. f ′act is the gradient of acti-
vation function to zn and zn = wnan−1 + bn. One significant
benefit neural networks bring is that the backward propagation
algorithm works far faster versus finite differential gradient
approaches, which can accelerate the optimization.

B. Similarity Between CMP Model and Image Segmentation

Once the behavior of CMP simulators is learned by neu-
ral networks, the black box is opened to some extent and
information required by optimization is also available.

Fortunately, we observe the underlying similarity between
the CMP model and the image segmentation problem. In the
image segmentation problem, the input is an image with pix-
els, which contains the information of RGB colors, and the
output is a grayscale image indicating the areas of each seg-
ment. On the other hand, the input of the CMP model is an
extracted grid layout, where each window contains parameters,
such as pressure, trench height and density, perimeter of cop-
pers, etc. The output of the CMP model is a post-CMP height
profile, providing a positive height of each window. Besides,
due to the contact mechanics of rough polishing pads in the
CMP process, the character length in the CMP model is ranged
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Fig. 6. Post-CMP topographies of a test layout during a iterative density
and perimeter optimization.

from 20 to 100 μm [27], which limits the number of correla-
tion windows. The local effect in the CMP model is similar
to the convolutional kernels of neural networks. The intrinsic
similarity between two problems, the local effect in the CMP
model, and the potential acceleration motivate us to leverage
pretrained neural networks replacing the conventional CMP
simulator.

C. Improvement From Perimeter Adjustment

Full-chip CMP simulators use an accurate process model to
predict the roughness of the chip surface. Besides the input
layout topography, simulators also take inputs of process-
related parameters, including the applied nominal pressure, the
simulation time, and the material-removal rate, as well as the
polishing pad parameters consisting of the equivalent Young’s
modulus, the height distribution function, auto-correlation
function [27], etc. Actually, the process-related parameters
and the polishing pad parameters are usually fixed by the
incorporated processes and foundries. Designers can only ease
the roughness degradation of post-CMP chip topographies by
adjusting the dummy distribution in the layout.

Although a large number of research concentrates on the
impact of dummy density, dummy perimeter influences the
line width of the equivalent pitch array structures in the CMP
simulation, which can sway the surface planarity of the pol-
ished wafers. To verify that the variation of metal perimeter
has a significant effect on post-CMP planarity, we succes-
sively optimize dummy density and perimeter, respectively,
in a test layout and observe improvements of the planarity
in post-CMP topographies. As shown in Fig. 6, horizon-
tal and vertical axes are iterations of density and perimeter
optimization, respectively. For example, if only optimizing
density, the planarity can be improved from (1, 1) to (3, 1).
If only optimizing perimeter, it is from (1, 1) to (1, 3). If
optimizing both density and perimeter, it is from (1, 1) to
(3, 3). The experimental results show that optimizing den-
sity and perimeter simultaneously can obtain better-post-CMP
planarity.

IV. NEURFILL FRAMEWORK

In this section, we first give the formulation of dummy
synthesis problem in Section IV-A. The detailed architecture of
the CMP neural network is demonstrated in Section IV-B. The
numerical analyses of planarity score and performance degra-
dation score are delivered in Section IV-C. As SQP algorithm
is the essence of our iterative optimization, the way to find
the starting point is interpreted in Section IV-D. Section IV-E
shows the whole framework of NeurFill. Section IV-F
explains the strategy of training the CMP neural network
model.

A. Problem Formulation

The objective of dummy filling synthesis is to maximize the
filling quality score Squal, which can be formulated as

max
x

Squal = Splan + Sdeg (8a)

Splan = ασ fσ (σ (H))+ ασ ∗ fσ ∗
(
σ ∗(H)

)

+ αolfol(ol(H)) (8b)

Sdeg = αfaffa(fa(x))+ αovfov(ov(x)) (8c)

s.t. xl,i,j ∈
[
0, sl,i,j

]
(8d)

where Splan and Sdeg indicate layout planarity score and
circuit performance degradation score. x and H are vec-
tors, including xl,i,j and Hl,i,j in all windows, respectively.
sl,i,j is the slack area in window Wl,i,j. ασ , ασ ∗ , αol, αfa,
and αov are weight factors provided by the CAD contest
benchmark. As it is expected to decrease all aforementioned
metrics, fσ , fσ ∗ , fol, ffa, and fov are monotonic nonincreasing
score functions about height variation, line deviation, outliers,
fill amount and overlay area, which belong to the function
set as

{
f (t) = max

(
0, 1− t

β

)∣∣∣∣β ∈ R
+
}

(9)

where β of fσ , fσ ∗ , fol, ffa, and fov are benchmark-related
parameters.

B. CMP Neural Network

As shown in Fig. 7, we choose UNet [30], a powerful
convolutional neural network, to replace the full-chip CMP
simulator. The input layout size is fixed to be 100× 100 win-
dows, and smaller layouts will be duplicated several times to fit
it. The rest of our CMP neural network includes an extraction
layer, in which pattern-related and process-related parameters
are extracted into a layout parameter tensor L, and an objective
layer, in which planarity score Splan is calculated according to
the predicted result of profile height Hn from UNet. Since
process-related parameters can be learned by network hyper-
parameters in the training stage, L is a 2× 100× 100 tensor,
where Li,j = (D, P)i,j is metal density D and perimeter P of
the window Wi,j after filling xi,j dummy amount, where i and
j are row and column indexes, respectively. The output Hn is
a 100×100 matrix estimating the average height of each win-
dow after polishing. Robust computation functions are called
to calculate height variation σ , line deviation σ ∗, and outliers
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Fig. 7. Overview of CMP neural network.

ol in (1)–(3), which can be expressed as

σ = SQRT(VAR(Hn)) (10a)

σ ∗ = SUM(ABS(Hn −MEAN(Hn, 1))) (10b)

ol = SUM(SIGMOID(η(ABS(Hn

−MEAN(Hn))− 3 · SQRT(VAR(Hn))))) (10c)

where SQRT, VAR, SUM, ABS, MEAN, and SIGMOID are
PyTorch functions, and η is a hyperparameter. The differen-
tiable sigmoid function is adopted to smooth the piecewise
formulation in (3).

C. Quality Estimation

The quality score Squal in (8a) is the combination of pla-
narity score Splan and circuit performance degradation score
Sdeg. According to (8b), Splan consists of three terms that are
separately calculated in the objective layer of the CMP neural
network. Its gradient can be obtained by backward propagation
through the chain rule as

∇Splan = ∂Splan

∂σ

∂σ

∂Hn

∂Hn

∂L
∂L
∂x
+ ∂Splan

∂σ ∗
∂σ ∗

∂Hn

∂Hn

∂L
∂L
∂x

+ ∂Splan

∂ol

∂ol

∂Hn

∂Hn

∂L
∂L
∂x

. (11)

Gradient calculation is performed for (∂Splan/∂σ),
(∂Splan/∂σ ∗), and (∂Splan/∂ol) according to (8b), and
for (∂σ/∂Hn), (∂σ ∗/∂Hn), and (∂ol/∂Hn) according to
(10a)–(10c) in the objective layer. The backward propagation
in UNet will compute (∂Hn/∂L), and (∂L/∂x) is resolved in
the extraction layer.

In dummy synthesis, there are two methods to intuitively
decrease induced parasitic capacitance. One is simply mini-
mizing the fill amount, and the other is trying to plan the places
of dummies into better-slack regions. The two considera-
tions form the performance degradation score as demonstrated
in (8c). Because the estimation of fill amount and overlay is
not associated with CMP process, analytical gradients are able
to be derived. The analytical gradient of total fill amount is
calculated as

∇fa = JL,N,M (12)

where JL,N,M is the all-ones vector.
The overlay area remains unknown until the locations of

dummies are determined. According to the wire locations in
up and down metal layers, the slack regions of layer l can be

Fig. 8. Four types of fillable slack regions.

Fig. 9. Dummy-to-dummy overlay (black arrow) is the interacted area of
dummies in neighboring layers. Dummy-to-wire overlay (red arrow) is the
overlapped area between dummies and metal wires.

divided into four types, as illustrated in Fig. 8. Type1 refers
to no metal wire in vertical regions of layer l + 1 and layer
l− 1. Type2 and Type3 refer to metal wire appearing only in
layer l + 1 and only in layer l − 1, respectively. Type4 refer
to regions of both up and down layers are paved with metal
wire. Apparently, filling in Type1 region may induce the least
parasitic capacitance, and in Type4 region is more likely to
cause large parasitic capacitance. Within window Wl,i,j, fill
amount in the four slack regions are written as xT1–T4

l,i,j .
The overlay estimation analyzes dummy filled in the vertical

direction of two neighboring metal layers. Fig. 9 displays all
possible overlay types, which can be categorized as dummy-
to-dummy overlay ovd–d and dummy-to-wire overlay ovd–w.
The overlay area in layer l can be calculated as

ovd–d
l,i,j = max

(
0, xT1,T3

l,i,j + xT1,T2
l+1,i,j − s∗l,i,j

)
(13)

ovd–w
l,i,j = xT2,T3

l,i,j + 2xT4
l,i,j (14)

where s∗l,i,j indicates the area of nonoverlap slacks between
Wl,i,j and Wl+1,i,j. The total overlay in all windows can be
calculated as

ov =
L−1∑

l=1

N∑

i=1

M∑

j=1

ovd–d
l,i,j +

L∑

l=1

N∑

i=1

M∑

j=1

ovd–w
l,i,j . (15)
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The analytical gradient of overlay can be derived as

∇ovl,i,j =

⎧
⎪⎨

⎪⎩

0, xT1,T3
l,i,j + xT1,T2

l+1,i,j < s∗l,i,j
2, xT4

l,i,j > 0
1, otherwise.

(16)

Therefore, analytical gradient of performance degradation
score is

∇Sdeg = −αfa

βfa
∇fa− αov

βov
∇ov (17)

where αfa and βfa are benchmark-related constants about total
fill amount, and αov and βov are constants about overlay.

D. Prior Knowledge-Based Starting Point Generation

A prior knowledge-based starting point generation strat-
egy is used here. Intuitively, the post-CMP planarity is better
when metal densities of all windows in a layer are consistent.
Therefore, we assign a target density tl for each layer, which
represents the expected density in windows of layer l after
dummy filling. Next, we set the initial fill amount of Wl,i,j to
make the metal density as close to tl as possible, which can
be expressed as

xl,i,j =
⎧
⎨

⎩

0, tl < ml,i,j

sl,i,j, tl > ml,i,j + sl,i,j

tl − ml,i,j, otherwise
(18)

where ml,i,j and sl,i,j are the original metal density and the
slack area density of window Wl,i,j. The optimal target density
is determined by an exhausted linear search method that selects
the value with the best-quality score, and the corresponding
initial fill amount is the starting point.

E. Framework of NeurFill

The gray shadowed parts in Fig. 10 present the framework
of our proposed NeurFill. In the beginning, the input layout is
uniformly dissected with 100 μm× 100 μm window size, and
the starting point is generated by the prior knowledge-based
method. Then, SQP optimization is applied to the updated
layout in every iteration. If the step size in SQP exceeds a
threshold, the dummy amounts in all windows are adjusted,
and the next iteration starts. Otherwise, the flow will termi-
nate and output the optimized layout. As hyperparameters in
the CMP neural network have been fixed after training, pla-
narity score can be calculated in forward propagation and the
gradient of planarity score to the input dummy fill amount
can be obtained in the input layer through backward propa-
gation. Performance degradation score and its gradient can be
directly computed by performance analysis. The two kinds of
scores and gradients are merged to form the quality score and
gradient in SQP optimization.

F. Pretraining of UNet Model

As depicted in Fig. 7, the UNet architecture consists of a
down-sampling path to capture features and an up-sampling
path to generate the post-CMP height profile. Given a set
of extracted layout parameter matrix L = {L1, L2, . . . , Ln}
and the corresponding post-CMP height profile set Hs =

Fig. 10. NeurFill framework (gray shadowed) leverages the gradient of
quality score to optimize the density fill amount of single dummy pattern
in filling windows by SQP algorithm. pNeurFill framework (orange color)
separates the optimization about dummy density and perimeter apart to realize
perimeter adjustment and multipattern dummy filling synthesis.

Fig. 11. Two-step random procedure of training data generation.

{Hs1, Hs2, . . . , Hsn} generated by the full-chip CMP simulator,
the training procedure of UNet is to minimize the following
objective:

w̃ = arg min
w

λ‖Hn(L, w)−Hs‖22 (19)

where Hn(·, w) is the network output with respect to weights
w and λ is a configurable hyperparameter.

The input and output dimensions are fixed for neural
networks. Since it is hard to find enough actual layouts for
UNet training, a two-step random procedure is applied in this
article to generate training data, as depicted in Fig. 11. First,
layouts are divided into uniform windows. These windows are
randomly assembled to generate 200 layouts of 100×100 win-
dows. Second, random amounts of fixed 1 μm× 1 μm square
dummies are inserted into each window of the assembled lay-
outs with no design rule violation, and then metal density and
perimeter are calculated in each window for the CMP simu-
lation. Finally, 20 000 layouts are generated by the two-step
random procedure and simulated by the full-chip CMP simu-
lator as the training set. The two-step random procedure aims
to produce training instances that are close to the layouts neu-
ral networks may process in the filling optimization. Besides,
the extension ability of the pretrained UNet model is veri-
fied by a testing set, which is generated by another layout not
participating in the generation of the training set.
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V. PNEURFILL FRAMEWORK WITH PERIMETER

ADJUSTMENT

In this section, we introduce our refined pNeurFill frame-
work and the perimeter adjustment strategy. To conduct multi-
pattern dummy synthesis and perimeter adjustment, we modify
the original problem formulation in Section V-A. The calcu-
lation of the gradient of planarity score in the new scenario
is detailed in Section V-B. Section V-C illustrates the archi-
tecture of adopted CMP neural network and affiliated training
flow. In Section V-D, we propose a heuristic dummy pattern
allocation algorithm to handle the multipattern dummy syn-
thesis problem. Finally, the framework of pNeurFill and its
differences from NeurFill are explained in Section V-E.

A. Perimeter Related Problem Formulation

Dummy perimeter is able to affect post-CMP topography
and is meanwhile an important characterization extracted by
CMP simulators. Therefore, dummy perimeter and different
dummy patterns are natural to be considered in dummy filling
synthesis.

1) Dummy Patterns: The choice of dummy patterns can
influence the CMP uniformity and induced parasitic capac-
itance. For example, irregularly shaped fill patterns were
adopted in [31] to reduce intralayer capacitive impact. But
without loss of generality and for clarity, rectangular dum-
mies are sufficient to implement density- and perimeter-based
optimization in our dummy synthesis paradigm. Table I lists
four types of rectangular dummies used in this article, where
lk and wk are the length and width of type-k rectangular pat-
tern. The key factor rk of a dummy pattern is defined as the
ratio of its perimeter pk to its area ak. All available patterns
forming a CPS are fed into the optimization framework. The
patterns in CPS can be replaced according to realistic process
requirements.

2) Filling Constraints: The constraint in (8d) can be more
accurate. Dummies are impossible to cover the whole slack
area in a window as design rules require enough spacing
between any two separate patterns. Moreover, the layout
density satisfies allowed lower-bound and upper-bound con-
straints [32] as

dl,i,j ∈
[
Dmin − ml,i,j, Dmax − ml,i,j

]
(20)

where dl,i,j is the density fill amount in window Wl,i,j. Dmin
and Dmax stand for minimum and maximum metal density
allowed in each window, and ml,i,j is the original metal density
in window Wl,i,j.

To avoid impractical solutions based on the dummy patterns
in CPS, filling perimeter and density should satisfy

rl,i,j = pl,i,j

zdl,i,j
∈

[
min

k∈CPS
rk, max

k∈CPS
rk

]
(21)

where pl,i,j and rl,i,j are the perimeter fill amount and the filling
ratio in window Wl,i,j, respectively. z is the area of a window.

3) Filling Objectives: Now that the filling perimeter is sep-
arated from filling density, H in (8b) can be specifically
denoted as H(d, p). In this way, the formulation of the dummy

TABLE I
DUMMY PATTERNS USED IN OUR EXPERIMENT

synthesis problem is described as

max
d,p

Squal(d, p) = Splan(d, p)+ Sdeg(d) (22a)

Splan(d, p) = ασ fσ (σ (H(d, p)))

+ ασ ∗ fσ ∗
(
σ ∗(H(d, p))

)

+ αolfol(ol(H(d, p))) (22b)

Sdeg(d) = αfaffa(fa(d))+ αovfov(ov(d)) (22c)

s.t. dl,i,j ∈
[
Dmin − ml,i,j, Dmax − ml,i,j

]
(22d)

rl,i,j ∈
[

min
k∈CPS

rk, max
k∈CPS

rk

]
(22e)

where H(d, p), d and p are vectors, including Hl,i,j, dl,i,j, and
pl,i,j in all windows, respectively.

The constrained problem can be converted into a noncon-
strained form by applying the Lagrangian approach, which is
formulated as

min
d,p,V

L(d, p, V) = −Squal(d, p)

+ vT
1 · (Dmin −m− d)

+ vT
2 · (d− Dmax +m)

+ vT
3 · (rmin − r)

+ vT
4 · (r− rmax) (23)

where V = (vT
1 , vT

2 , vT
3 , vT

4 )T are Lagrangian multipliers for
constraint merging. If the values of d, p, and their next steps
δd, δp are determined after the tth iteration of SQP, the
Lagrangian multipliers in the (t + 1)th iteration V(t+1) can
be updated by solving

(I,−I, Jr,−Jr) · V(t+1) =H ·
(
δT

d , δT
p

)T + ∇Squal (24)

where I is the unit matrix, Jr is the Jacobian matrix of
r(d(t), p(t)), and H is the Hessian matrix of L(d(t), p(t), V(t)).
More details about SQP can be found in [33].

B. Planarity Estimation

The planarity score in (8b) is related to the perimeter fill
amount when taking account of the dummy perimeter. In this
case, we break the gradient into two parts that are separately
about density and perimeter as

∇Splan = ∇dSplan · d̂+ ∇pSplan · p̂ (25a)

∇d =
(

∂

∂σ

∂σ

∂Hn
+ ∂

∂σ ∗
∂σ ∗

∂Hn
+ ∂

∂ol

∂ol

∂Hn

)
∂Hn

∂L
∂L
∂d

(25b)

∇p =
(

∂

∂σ

∂σ

∂Hn
+ ∂

∂σ ∗
∂σ ∗

∂Hn
+ ∂

∂ol

∂ol

∂Hn

)
∂Hn

∂L
∂L
∂p

(25c)
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Fig. 12. Differences between NeurFill and pNeurFill in the extraction layer.

where ∇d and ∇p are gradients about density and perimeter,
respectively. d̂ and p̂ are unit vectors in the parameter space.

C. Training of the Neural Network With Density and
Perimeter

The structure of UNet is suitable to be employed for perime-
ter adjustment. Fig. 12 highlights the differences between
NeurFill and pNeurFill in the extraction layer of the CMP
neural network. Compared to NeurFill, pNeurFill inputs the
additional perimeter fill amount p to the neural network, and
its gradient ∇pSplan can also be calculated via backward prop-
agation. Therefore, gradients about density and perimeter can
be separately used to optimize dummy density and to adjust
dummy perimeter in each filling window.

Data augmentation is also applied to produce abundant
pseudo data for neural network training. To catch the fea-
ture of perimeter variation, we create another dataset differing
from the one in NeurFill as shown in Fig. 13. First, we choose
certain real circuit layouts as seeds. In each window of a seed
layout, random density fill amount drand, sampled from a uni-
form distribution in the range of [Dmin −ml,i,j, Dmax −ml,i,j],
is filled in. Then all filled windows are randomly permuted
to generate a sample layout. Second, in each sample layout,
a random metal perimeter amount, sampled from a uniform
distribution in [pmin, pmax], is filled into each window to gen-
erate a pseudo layout, where pmin = z · drand · mink∈CPS rk

and pmax = z · drand ·maxk∈CPS rk. This perimeter range guar-
antees that the layout can be generated using the dummy
patterns in the CPS. In this way, pseudo layouts from the
same sample layout have an identical density distribution but

Fig. 13. Generation of training data. The data set contains 2000 batches
of pseudo layouts and their simulation results. The layouts in a batch
share the same metal density distribution but have different metal perimeter
distributions. All data are split into a training set and a validation set.

different perimeter distributions. We repeat the first step of
density randomness to create 2000 different sample layouts
and repeat the second step of perimeter randomness in each of
these sample layouts to generate five pseudo layouts. Finally,
the 10000 (2000×5) pseudo layouts are fed into the full-chip
CMP simulator to get corresponding post-CMP topographies.
All training data is divided into a training set containing
9000 data and a validation set containing 1000 data. Besides,
another layout is dedicated to generate a testing set contain-
ing 1000 data for ensuring the extension ability of the neural
network.

D. Dummy Pattern Allocation

After dummy filling synthesis optimization in pNeurFill, the
optimal density and perimeter fill amount is resolved in each
window. However, inserting dummy patterns in the CPS one
by one into each window will lead to a discrete variation of
fill amount. Therefore, we propose a heuristic dummy pattern
allocation algorithm, which determines the number of dummy
patterns to fit the optimization result.

Details of the allocation are explained in Algorithm 1, where
|CPS| refers to the cardinal number of the CPS, and n(k)

l,i,j
refers to the amount of type-k pattern in window Wl,i,j. The
patterns in the CPS are sorted in descending order based on
their key factors rk. The objective of dummy allocation is to
find a feasible solution that coincides with the optimized den-
sity and perimeter from dummy synthesis. The algorithm will
iteratively allocate different dummy patterns in each window
Wl,i,j (line 3) when the remaining density fill amount d > 0
(line 5).

In each iteration, a random and feasible fill amount x is
given to the type-k dummy pattern. The random means uni-
formly sampling from (0, d] (line 7), which is to remove
the implied priority among patterns given by the rotational
order of patterns in each iteration. The feasible means satis-
fying the constraint dz ≥ xak to guarantee that there is no
overfilling, and satisfying (p− xpk/dz− xak) ∈ [rmin, rmax] to
guarantee that the optimal density and perimeter fill amounts
found by the dummy synthesis are still achievable by com-
bined patterns in the CPS in the following allocation iterations
(line 8).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 21,2024 at 01:39:21 UTC from IEEE Xplore.  Restrictions apply. 



676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

Algorithm 1 Dummy Pattern Allocation

Input: CPS; optimal density fill amount d̃l,i,j; optimal perime-
ter fill amount p̃l,i,j; window size z
Output: amount of patterns filled in each window n(k)

l,i,j
1: sort patterns in CPS depends on rk

2: rmin := mink∈CPS rk, rmax := maxk∈CPS rk

3: for each Wl,i,j do
4: n(k)

l,i,j := 0, d := d̃l,i,j, p := p̃l,i,j

5: while d > 0 do
6: for k := 1 to |CPS| do
7: sample d0 ∈ (0, d] randomly, x := 
 d0z

ak
�

8: while dz < xak or p−xpk
dz−xak

/∈ [rmin, rmax] do
9: x← 
 x

2�
10: end while
11: n(k)

l,i,j ← n(k)
l,i,j + x

12: d← d − xak
z

13: p← p− xpk

14: end for
15: end while
16: end for
17: return n(k)

l,i,j

E. Framework of pNeurFill With Perimeter Adjustment

The orange color in Fig. 10 demonstrates the additional
steps of pNeurFill framework with perimeter adjustment. The
improvements based on NeurFill mainly rest in the following
aspects.

1) Besides the initial dissected layout, a CPS is also pro-
vided to constrain the range of optimized perimeter fill
amount in perimeter adjustment.

2) A perimeter adjustment step is added after the density
optimization to decouple the influence of density and
perimeter fill amount. Thereby, the density and perimeter
gradients from the CMP neural network are individually
applied to different steps.

3) Finally, when iterations of SQP optimization complete, a
dummy pattern allocation algorithm will convert density
and perimeter fill amount into the quantities of patterns
in CPS in all windows.

VI. EXPERIMENTAL RESULTS

The NeurFill and pNeurFill frameworks are implemented
using Python language with PyTorch toolkit. All exper-
iments are performed on a Linux server with 48 CPU
cores working at 2.6 GHz and an Nvidia Tesla K80 GPU
(4992 Nvidia CUDA cores, 8.74 TFLOPS). The full-chip
CMP simulator modeled by our neural network is cal-
ibrated under a 45-nm process of a foundry, and the
accuracy is matched with the CMP Predictor [34], a
commercial full-chip CMP simulator by Cadence. The
window size of the full-chip CMP simulator and the
dummy filling synthesis are both 100 μm × 100 μm.
Dummy patterns used in pNeurFill are listed in Table I.
Therefore, we have rl,i,j ∈ [2.25 μm−1, 4 μm−1] in our
experiment.

Fig. 14. Relative error distribution of the CMP neural network prediction.

TABLE II
RUNTIME COMPARISONS FOR OBJECTIVE EVALUATION

AND GRADIENT CALCULATION

A. Accuracy of Pretrained Model

For NeurFill, 20 000 layout instances in the training set are
generated by the two-step random procedure based on three
available layouts. UNet is pretrained for 20 epochs on the GPU
for 32 h. The average relative error is 0.28 % in the training
set and 0.49 % in the validation set. Besides, the accuracy of
the pretrained UNet model is evaluated by a testing set of
1000 layout instances. For windows in all testing set layouts,
the relative prediction error of envelope height is measured.
The mean and the standard deviation of relative errors are
0.60 % and 0.45 %, respectively. The maximum relative error
of height is 1.77 %.

For pNeurFill, the training set are generated by the improved
data augmentation method concerning perimeter variation. The
average relative error is 0.43 % in the training set and 0.59 % in
the validation set. In the testing set, the mean and the standard
deviation of relative errors are 0.49 % and 0.70 %, respectively.
The maximum relative error of height is 3.92 %. As shown in
Fig. 14, the relative error of height is below 1.30 % in more
than 90 % of the windows.

Since the dimensions of training spaces of NeurFill
and pNeurFill are 10k and 20k, respectively, the worse-
maximum relative error in pNeurFill is somewhat reasonable.
Considering that the average relative error in pNeurFill is
similar to NeurFill, which verifies that pNeurFill is also well-
trained, therefore we did not increase the amount of training
set in pNeurFill.

B. Acceleration of CMP Neural Network

Table II shows the runtime comparisons for objective eval-
uation and gradient calculation between the full-chip CMP
simulator and the proposed CMP neural network. For single-
precision performance, GPU’s computation capability is up to
8.74 TFLOPS, while 64-core CPU is up to 8.12 TFLOPS.
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TABLE III
OPTIMIZATION RESULTS ON THREE LAYOUT DESIGNS

The computation capabilities of two platforms are considered
equivalent.

On a layout design of 100×100 windows, CMP neural
network performs objective evaluation in 0.025 s by forward
propagation, which achieves 188× speedup. For gradient cal-
culation, the backward propagation of CMP neural network is
8134× faster than the numerical gradient calculation of the
64-core full-chip CMP simulator. The CMP neural network
transform the black-box model, i.e., the full-chip CMP sim-
ulator, into a gray-box model, and combines the forward
and backward propagation algorithms for acceleration. The
efficiency of CMP neural network enables SQP framework
for optimization.

C. Filling Quality Comparison

We compare our proposed NeurFill and pNeurFill with rule-
based algorithms, Lin et al. [14], Tao et al. [15], and the best-
existing model-based method, Cai et al. [16], as described in
Table III. The NeurFill and pNeurFill are both neural network
model-based dummy synthesis frameworks, and the pNeurFill
integrates perimeter adjustment. The five test layouts all have 3
layers. Design A is a CMP test design with chip size 5 cm×
5 cm. Design B is a field programmable gate array (FPGA)
design with chip size 6.7 cm× 6.3 cm. Design C, C2 and C3
are Metal 3–5 layers (M3–5), M1–3, and M2–4 of a RISC-V
CPU design with chip size 10 cm× 10 cm.

Considering the filling quality, neural network model-
based methods get better-quality scores than the other algo-
rithms. The quality score of NeurFill is 117.6 % better than
Lin et al. [14] on Design A, 10.9 % better than Tao et al. [15]
on Design B, and 3.3 % better than Cai et al. [16] on Design
C. Although NeurFill and simulator model-based method,
Cai et al. [16] have comparable filling quality, NeurFill is
137× faster than Cai et al. [16], which manifests the backward

propagation of the CMP neural network is extremely efficient
in contrast to the numerical gradient calculation with full-chip
CMP simulation results.

Besides, pNeurFill reaches the highest-overall score and the
best-post-CMP layout planarity with the least absolute height
difference �H among these methods. In particular, pNeurFill
decreases average 66.97 Å in height variation from 109.0 Å
and increases average 8.92 % in quality score compared to
NeurFill, which supports the validity of dummy perimeter
adjustment. The experimental results in Table III show that for
realistic circuit designs like FPGA and RISC-V CPU (B-C3),
the quality improvements are remarkable (9.94 %–12.56 %).
pNeurFill has little quality improvement (0.7967/0.7956 =
0.14%) over NeurFill on Design A, perhaps because it is
pitch array structures with different line widths and line spaces
rather than a realistic circuit design.

As density and perimeter fill amounts are optimized in dif-
ferent steps in pNeurFill, the dimension of parameter space is
grown compared to the only density optimization in NeurFill.
Thus, the runtime in pNeurFill is approximately twice of
NeurFill. To get more uniform layout planarity, which means
a better-chip yield, this overhead is acceptable.

Comparison of the updates of quality score, height variation,
line deviation, and outliers with iteration epoch on Design A
is depicted in Fig. 15. The iterations in NeurFill and pNeurFill
converge very fast and main performance improvements occur
in the first 30 epochs, which shows the effectiveness of the
SQP algorithm with a knowledge-based starting point.

Fig. 16 displays a detailed post-CMP height distribution in
a range, including 50×50 windows on Design C. Fig. 16(a) is
the height distribution of the original layout, Fig. 16(b) is that
of NeurFill optimized layout, and Fig. 16(c) is that of pNeur-
Fill optimized layout. Obviously, the whole layout surface
generated by pNeurFill is more uniform than NeurFill.
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(a) (b)

(c) (d)

Fig. 15. Comparison about the updates of (a) quality score, (b) height variation, (c) line deviation, and (d) outliers with iteration epoch on Design C2.

Fig. 16. Post-CMP height distributions of (a) original layout, (b) NeurFill optimized layout (w.o. perimeter adjustment), and (c) pNeurFill optimized layout
(w. perimeter adjustment) on Design C.

D. Effectiveness of Dummy Allocation

Table IV shows the simulation results of two stages in
pNeurFill, where “Opt” indicates the layout after dummy syn-
thesis and “Alloc” indicates that after dummy allocation. The
proposed dummy pattern allocation algorithm successfully fits
the optimization results in all test layouts with merely 0.028 %
quality loss on average. The loss is due to the conversion from
continuous space to discrete space, where the SQP algorithm
treats density and perimeter fill amount as continuous vari-
ables but the amount of dummy patterns in the allocation step
is actually discrete.

Fig. 17 shows the number of different patterns placed in
three test layouts. The Type-1 pattern is the square dummy
used in NeurFill but is not dominant in Design A and
C after optimization considering the perimeter fill amount.
The other three dummy patterns also account for some
proportion.

E. Rule-Based Dummy Insertion

After determining the number of different dummy patterns
in each window, dummy insertion only needs to optimize
the positions of dummies to decrease induced parasitic

TABLE IV
RESULTS OF PNEURFILL AFTER SQP OPTIMIZATION AND AFTER

DUMMY ALLOCATION ON THREE LAYOUT DESIGNS

capacitance. In Fig. 18, we put dummies into one layer of
Design A based on the dummy synthesis optimization result
and DRC rules to demonstrate a possible post-insertion view.
It also shows that different dummy patterns are inserted into
one local region of the layout.
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Fig. 17. Dummy amount of different patterns on test layouts.

Fig. 18. Possible Locations of inserted dummies on Design C2. Filling
windows are marked with black bold lines. Metal wires are colored green
and gray rectangles are filled dummies.

VII. CONCLUSION

In this article, we propose NeurFill to migrate full-chip CMP
simulators to neural networks for dummy synthesis. Considering
the height variation caused by the dummy perimeter, we further
refine the framework with perimeter adjustment and propose
pNeurFill to solve the related multipattern dummy synthesis
problem. With empirical starting point-based SQP optimization,
our methods reach better-layout planarity than rule-based meth-
ods and are much faster than the state-of-the-art model-based
method. This will provide guidance for DFM in IC manu-
facturing. Furthermore, we believe the methodology of neural
network modeling can be applied to deal with high-dimensional
optimization problems in other application scenarios.

REFERENCES

[1] A. B. Kahng and K. Samadi, “CMP fill synthesis: A survey of recent
studies,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 27, no. 1, pp. 3–19, Jan. 2008.

[2] B. E. Stine et al., “The physical and electrical effects of metal-
fill patterning practices for oxide chemical-mechanical polishing
processes,” IEEE Trans. Electron Devices, vol. 45, no. 3, pp. 665–679,
Mar. 1998.

[3] W.-S. Lee, K.-H. Lee, J.-K. Park, T.-K. Kim, Y.-K. Park, and J.-T. Kong,
“Investigation of the capacitance deviation due to metal-fills and the
effective interconnect geometry modeling,” in Proc. 4th Int. Symp. Qual.
Electron. Design, 2003, pp. 373–376.

[4] C. Feng, H. Zhou, C. Yan, J. Tao, and X. Zeng, “Efficient approximation
algorithms for chemical mechanical polishing dummy fill,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 3, pp. 402–415,
Mar. 2011.

[5] H. Xiang, L. Deng, R. Puri, K.-Y. Chao, and M. D. Wong, “Dummy
fill density analysis with coupling constraints,” in Proc. Int. Symp. Phys.
Design, 2007, pp. 3–10.

[6] A. B. Kahng and R. O. Topaloglu, “DOE-based extraction of CMP,
active and via fill impact on capacitances,” IEEE Trans. Semicond.
Manuf., vol. 21, no. 1, pp. 22–32, Feb. 2008.

[7] T. Hirano, K. Okada, J. Hirokawa, and M. Ando, “Evaluation of effective
permittivity and permeability for dummy metal fills in a CMOS chip
using capacitor and inductor model,” in Proc. Int. Symp. Electromagn.
Theory, 2013, pp. 695–697.

[8] B. Jiang et al., “Fit: Fill insertion considering timing,” in Proc. 56th
Annu. Design Autom. Conf., 2019, pp. 1–6.

[9] S.-J. Yu, C.-C. Kao, C.-H. Huang, and I. H.-R. Jiang, “Equivalent capac-
itance guided dummy fill insertion for timing and manufacturability,” in
Proc. 25th Asia–South Pacific Design Autom. Conf. (ASP-DAC), 2020,
pp. 133–138.

[10] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “Filling
algorithms and analyses for layout density control,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 4, pp. 445–462,
Apr. 1999.

[11] X. Chen, L. Xin, J. Zhang, and S. Li, “An improved rule-based dummy
metal fill method FOR 65 nm ASIC design,” J. Circuits, Syst. Comput.,
vol. 22, no. 4, 2013, Art. no. 1350021.

[12] R. O. Topaloglu, “ICCAD-2014 CAD contest in design for manufactura-
bility flow for advanced semiconductor nodes and benchmark suite,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2014,
pp. 367–368.

[13] C. Liu et al., “An effective chemical mechanical polishing filling
approach,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, 2015,
pp. 44–49.

[14] Y. Lin, B. Yu, and D. Z. Pan, “High performance dummy fill insertion
with coupling and uniformity constraints,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 36, no. 9, pp. 1532–1544, Sep. 2017.

[15] Y. Tao, C. Yan, Y. Lin, S.-G. Wang, D. Z. Pan, and X. Zeng,
“A novel unified dummy fill insertion framework with SQP-based
optimization method,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), 2016, pp. 1–8.

[16] J. Cai et al., “A novel and unified full-chip CMP model aware dummy fill
insertion framework with SQP-based optimization method,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 3, pp. 603–607,
Mar. 2021.

[17] R. Tian, D. F. Wong, and R. Boone, “Model-based dummy feature place-
ment for oxide chemical-mechanical polishing manufacturability,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 7,
pp. 902–910, Jul. 2001.

[18] S. Sinha, J. Luo, and C. Chiang, “Model based layout pattern dependent
metal filling algorithm for improved chip surface uniformity in the cop-
per process,” in Proc. Asia–South Pacific Design Autom. Conf., 2007,
pp. 1–6.

[19] R. O. Topaloglu, “Energy-minimization model for fill synthesis,” in
Proc. 8th Int. Symp. Qual. Electron. Design (ISQED), 2007,
pp. 444–451.

[20] B. Jiang, L. Liu, Y. Ma, H. Zhang, B. Yu, and E. F. Y. Young,
“Neural-ILT: Migrating ILT to neural networks for mask printability
and complexity co-optimization,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design (ICCAD), San Diego, CA, USA, 2020, pp. 1–9.

[21] J. Cai, C. Yan, Y. Ma, B. Yu, D. Zhou, and X. Zeng, “NeurFill: Migrating
full-chip CMP simulators to neural networks for model-based dummy
filling synthesis,” in Proc. 58th ACM/IEEE Design Autom. Conf. (DAC),
2021, pp. 187–192.

[22] T. Ma, L. Chen, and J. Fang, “Study of optimal dummy fill modes in
chemical–mechanical polishing process,” IEEE Trans. Compon., Packag.
Manuf. Technol., vol. 2, no. 6, pp. 1043–1047, Jun. 2012.

[23] T. E. Gbondo-Tugbawa, “Chip-scale modeling of pattern dependencies
in copper chemical mechanical polishing processes,” Ph.D. disserta-
tion, Dept. Electr. Eng. Comput. Sci., Massachusetts Inst. Technol.,
Cambridge, MA, USA, 2002.

[24] J. Luo, Q. Su, C. Chiang, and J. Kawa, “A layout dependent full-chip
copper electroplating topography model,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, 2005, pp. 133–140.

[25] D. Fukuda, T. Shibuya, N. Idani, and T. Karasawa, “Full-chip CMP sim-
ulation system,” in Proc. Int. Conf. Planarization/CMP Technol., 2007,
pp. 1–8.

[26] T. H. Park, “Characterization and modeling of pattern dependencies in
copper interconnects for integrated circuits,” Ph.D. dissertation, Dept.
Electr. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge,
MA, USA, 2002.

[27] C. Feng, C. Yan, J. Tao, X. Zeng, and W. Caia, “A contact-mechanics-
based model for general rough pads in chemical mechanical polishing
processes,” J. Electrochem. Soc., vol. 156, no. 7, pp. H601–H611, 2009.

[28] T. Tugbawa, T. Park, B. Lee, and D. Boning, “Modeling of pat-
tern dependencies for multi-level copper chemical-mechanical polishing
processes,” MRS Online Proc. Library, vol. 671, p. 43, Mar. 2011.

[29] L. M. Cook, “Chemical processes in glass polishing,” J. Non-Crystalline
Solids, vol. 120, nos. 1–3, pp. 152–171, 1990.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., 2015, pp. 234–241.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 21,2024 at 01:39:21 UTC from IEEE Xplore.  Restrictions apply. 



680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 2, FEBRUARY 2024

[31] M. Nelson, “Optimized pattern fill process for improved CMP
uniformity and interconnect capacitance,” in Proc. 15th Biennial
Univ./Government/Ind. Microelectron. Symp., 2003, pp. 374–375.

[32] X. Bai et al., “Timing-aware fill insertions with design-rule and density
constraints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 41, no. 10, pp. 3529–3542, Oct. 2022.

[33] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol. 4, pp. 1–51, Jan. 1995.

[34] “CMP predictor.” Accessed: Sep. 2023. [Online]. Available: https://
www.cadence.com/en_US/home/tools/digital-design-and-signoff/
silicon-signoff/cmp-predictor.html

Zhaoting Chen received the B.E. degree from the
Department of Electronic Science and Technology,
University of Science and Technology of China,
Langfang, China, in 2020. He is currently pursu-
ing the Ph.D. degree with the State Key Laboratory
of Integrated Chips and Systems, Microelectronics
Department, Fudan University, Shanghai, China.

His current research interests include design for
manufacturability, analog circuit design automation,
and optimization.

Junzhe Cai received the B.S. and M.S. degrees in
microelectronics from Fudan University, Shanghai,
China, in 2019 and 2022, respectively.

He is currently working with Tencent Inc.,
Shanghai, China.

Changhao Yan (Member, IEEE) received the B.E.
and M.E. degrees from the Huazhong University of
Science and Technology, Wuhan, China, in 1996 and
2002, respectively, and the Ph.D. degree in computer
science from Tsinghua University, Beijing, China, in
2006.

He is currently a Full Professor with the
Microelectronics Department, Fudan University,
Shanghai, China. His current research interests
include the parasitic parameter extraction of
interconnects, parallel algorithms for large scale

computation, design for manufacturability, the robust analysis of circuits, and
AI and machine learning in medicine.

Zhaori Bi (Member, IEEE) received the B.Eng.
degree in electronic information engineering from
the Wuhan University of Technology, Wuhan, China,
in 2011, and the M.S. and Ph.D. degrees in electri-
cal engineering and computer engineering from the
University of Texas at Dallas, Richardson, TX, USA,
in 2013 and 2017, respectively.

He is currently an Assistant Professor with the
Fudan University, Shanghai, China. His current
research interests include mixed-signal system-on-
a-chip design, circuit performance optimization, and

applications in medical AI.

Yuzhe Ma (Member, IEEE) received the B.E. degree
from the Department of Microelectronics, Sun
Yat-sen University, Guangzhou, China, in 2016, and
the Ph.D. degree from the Department of Computer
Science and Engineering, The Chinese University
of Hong Kong, Hong Kong, in 2020.

He is currently an Assistant Professor with
Microelectronics Thrust, The Hong Kong
University of Science and Technology (Guangzhou),
Guangzhou. His research interests include agile
VLSI design methodologies, machine learning-aided

VLSI design, and hardware-friendly machine learning.
Dr. Ma received the Best Paper Awards from ICCAD 2021, ASPDAC

2021, and ICTAI 2019, and the Best Paper Award Nomination from
ASPDAC 2019.

Bei Yu (Senior Member, IEEE) received the
Ph.D. degree from The University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong.

Dr. Yu received nine Best Paper Awards from
DATE 2022, ICCAD 2021 and 2013, ASPDAC
2021 and 2012, ICTAI 2019, Integration, the VLSI
Journal in 2018, the ISPD 2017, the SPIE Advanced
Lithography Conference 2016, and six ICCAD/ISPD

Contest Awards. He has served as the TPC Chair for ACM/IEEE Workshop
on Machine Learning for CAD and in many journal editorial boards and
conference committees. He is an Editor of IEEE TCCPS Newsletter.

Wenchuang Hu (Senior Member, IEEE) received
the B.S. degree from Peking University, Beijing,
China, in 1999, and the Ph.D. degree from the
University of Notre Dame, Notre Dame, IN, USA,
in 2004.

He spent a year as a Postdoctoral Research Fellow
with the Department of Electrical Engineering,
University of Michigan at Ann Arbor, Ann Arbor,
MI, USA. In 2005, he joined The University of
Texas at Dallas, Richardson, TX, USA, as a Faculty
Member and became a Full Professor with the

Department of Electrical Engineering in 2017. In 2021, he joined the West
China Hospital, Sichuan University, Sichuan, China, as a Distinguished
Professor and an Associate Director of the Center for Precision Medicine.
His research has been focused on biosensors and bio-chips, molecular diag-
nostics, nanofabrication, and nanomaterials.

Prof. Hu is a member of Sigma Xi, AVS, MRS, ACS, and SPIE.

Dian Zhou (Member, IEEE) received the B.S.
degree in physics and the M.S. degree in electri-
cal engineering from Fudan University, Shanghai,
China, in 1982 and 1985, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of Illinois at Urbana–Champaign,
Champaign, IL, USA, in 1990.

He joined the University of North Carolina at
Charlotte, Charlotte, NC, USA, as an Assistant
Professor in 1990, where he became an Associate
Professor in 1995. He joined The University of Texas

at Dallas, Richardson, TX, USA, as a Full Professor in 1999. His research
interests include high-speed VLSI systems, CAD tools, mixed-signal ICs, and
algorithms.

Xuan Zeng (Senior Member, IEEE) received the
B.S. and Ph.D. degrees in electrical engineering
from Fudan University, Shanghai, China, in 1991
and 1997, respectively.

She is currently a Full Professor with the
Microelectronics Department, Fudan University,
where she served as the Director of the State
Key Laboratory of Application Specific Integrated
Circuits and Systems from 2008 to 2012. She
was a Visiting Professor with the Department
of Electrical Engineering, Texas A&M University,

College Station, TX, USA, and the Microelectronics Department, Technische
Universiteit Delft, Delft, The Netherlands, in 2002 and 2003, respectively. Her
current research interests include analog circuit modeling and synthesis, design
for manufacturability, high-speed interconnect analysis and optimization, and
circuit simulation.

Prof. Zeng received the Changjiang Distinguished Professor with the
Ministry of Education Department of China in 2014, the Chinese National
Science Funds for Distinguished Young Scientists in 2011, the First-Class of
Natural Science Prize of Shanghai in 2012, the 10th For Women in Science
Award in China in 2013, and the Shanghai Municipal Natural Science Peony
Award in 2014. She received the Best Paper Award from the 8th IEEE Annual
Ubiquitous Computing, Electronics and Mobile Communication Conference
2017. She is an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART II: EXPRESS BRIEFS, IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, and
ACM Transactions on Design Automation of Electronic Systems.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 21,2024 at 01:39:21 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


