CAD Tool Design Space Exploration via Bayesian Optimization

Yuzhe Ma¹, Ziyang Yu², Bei Yu¹

¹Chinese University of Hong Kong ²University of Hong Kong

ADDARDAEDAED E OOO

Design Flow

- It's really a long journey;
- Each step is more complicated as the technology node advances;
- Huge effort is needed to achieve the desired design quality.

Case Study: Adder Design

Binary Adder

- Primary building blocks in the datapath logic of a microprocessor.
- A fundamental problem in VLSI industry for last several decades.

Anything else we can do?

Gaps Between Design Stages

- Logic synthesis v.s. physical synthesis
- Constraints mapping between two synthesis stages is difficult.

Design Space – Front-End

Parallel Prefix Adders

 \rightarrow Flexible delay-power trade-off

Regular Adders

 \rightarrow Sub-optimal

Custom Adders

 \rightarrow High TAT

Design Space – Back-End

Tool settings. Huge space for different options.

Table 2-4 set_route_options Command Options

Option	Valid values	Description
Global routing options (Global Routing tab in the GUI)		
-groute_skew_control ("Skew control" check box in the GUI)	true false	Enables (true) or disables (false) skew control during global routing. The default is false.
-groute_skew_weight ("Skew control Weight" box in the GUI)	int (must be between 1 and 10)	Specifies the weight associated with skew control. The default is 5.
-groute_timing_driven ("Timing driven" check box in the GUI)	true false	Enables (true) or disables (false) timing-driven global routing. The default is false.
-groute_timing_driven_weight ("Timing driven Weight" box in the GUI)	int (must be between 1 and 7)	Specifies the weight associated with timing-driven global routing. The default is 4.
-groute_congestion_weight ("Congestion weight" box in the GUI)	int (must be between 1 and 12)	Specifies the weight associated with congestion-driven global routing. The default is 4.
-groute_clock_routing ("Clock routing" radio buttons in the GUI)	normal comb balanced	Specifies the global-routing clock topology. The default is balanced.
-groute_incremental (Incremental check box in the GUI)	true false	Enables (true) or disables (false) incremental global routing. The default is false.

Track assignment options (Track Assign tab in the GUI) -track assign timing driven true | false Enables (true) or disables (false) timing-driven track assignment. ("Timing driven" check box in the GUI) The default is false. int Specifies the weight associated with -track assign timing driven weight timing-driven track assignment. (must be between 1 ("Timing driven" Weight box in the and 10) The default is 1 GUN Detail routing options (Detail Routing tab in the GUI) Enables (true) or disables (false) -droute_connect_tie_off true | false connection of tie-off nets during detail ("Connect tie off" check hox in the routing GUD The default is true. -droute connect open nets true | false Enables (true) or disables (false) connection of open nets during detail ("Connect open nets" check box in the routing. GUIN The default is true. -droute reroute user wires true | false Specifies whether the router can reroute user-created wires. ("Beroute user wires" check box in the GUI The default is false. -droute CTS nets normal | Specifies whether only minor changes minor change can be made to clock nets. ("Change CTS nets" radio buttons in only the GUI) The default is minor change only. -droute single row column via center | optimize Specifies how to handle via arrays that consist of a single row and single array column ("Single row column via array" radio

Valid values

Description

The default is center.

Option

buttons in the GUI)

Source: ICC documentation

MLCAD

6/18

Design Space Exploration

- Search for the Pareto-optimal designs;
- None of the objective metrics, such as area, power or delay, can be improved without worsening at least one of the others.

Bayesian Optimization

Good candidate to optimize functions that take a long time to evaluate.

Can tolerate stochastic noise in function evaluations.

 Acquisition function serves as a utility measurement to select the next point for evaluation;

Surrogate model is adaptively refined to approximate the latent function.

Gaussian Process Regression

Gaussian process regression is a Bayesian statistical approach for modeling unknown functions.

Prior:
$$f \sim GP(0, k(\cdot, \cdot))$$

Posterior:

$$\begin{cases} m(\mathbf{x}) = k(\mathbf{x}, \mathbf{X})^{\top} (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} \mathbf{Y}, \\ \sigma^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathbf{X})^{\top} (k(\mathbf{X}, \mathbf{X}) + \sigma^2 \mathbf{I})^{-1} k(\mathbf{x}, \mathbf{X}), \end{cases}$$

N 4 E

Acquisition Function

Lower Confidence Bound (LCB)

- $\blacktriangleright \text{ LCB}(\boldsymbol{x}) = m(\boldsymbol{x}) \beta \sigma(\boldsymbol{x});$
- *m*(*x*) indicates the "exploitation" and *σ*(*x*) indicates the "exploration";
- \triangleright β is a parameter that balances the exploitation and exploration.

Expected Improvement (EI)

- ► EI(\mathbf{x}) = $\sigma(\mathbf{x})(\lambda\Phi(\lambda) + \phi(\lambda))$, where $\lambda = \frac{\tau \xi \mu(\mathbf{x})}{\sigma(\mathbf{x})}$
- The expected improvement function favors the optimal region with high probability and the promising area with high uncertainty estimation.

Overall Flow

Surrogate Model

Experimental Configurations

Design:

- DesignWare library,
- Regular: Sklansky, Kogge-Stone,
- Synthesized prefix adder [Ma+, TCAD'2019].

Flow:

- Cell library: 32nm SAED;
- Tools: DC 2014 & ICC 2017.
- Design space:
 - Parameters in timing constraints, placement utilization, power options, etc.

BO vs. Industrial Setting

- DSE with single objective
- Baseline: a set of complete scripts for adder synthesis from industrial.

BO vs. Industrial Setting

DSE with multiple objectives using scalarization

BO vs. Heuristic Search

- Evolutionary algorithms are widely applied in black-box function optimization;
- Genetic algorithm (GA) is not as stable as Bayesian optimization.

Scaling Trick

イロン イロン イヨン イヨ

ъ

Discussion & Conclusion

Conclusion

- A machine learning approach for better design;
- Adapt BO for multi-objective optimization to simultaneously minimize PPA values;

BO substantially outperforms typical evolutionary algorithms.

Discussion & Conclusion

Conclusion

- A machine learning approach for better design;
- Adapt BO for multi-objective optimization to simultaneously minimize PPA values;
- BO substantially outperforms typical evolutionary algorithms.

Further Improvement

- A unified design space for exploration.
 - © Currently the design spaces of front-end and back-end are separated.

A D A A A A A A A A A A

- A more elegant way to handle multi-objective optimization.
 - ③ Scalarization requires tuning effort and data processing tricks.

Thank You

