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I It’s really a long journey;
I Each step is more complicated as

the technology node advances;
I Huge effort is needed to achieve the

desired design quality.
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Case Study: Adder Design

Binary Adder

I Primary building blocks in the datapath logic of a microprocessor.
I A fundamental problem in VLSI industry for last several decades.

Anything else we can do?
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Gaps Between Design Stages
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I Logic synthesis v.s. physical synthesis
I Constraints mapping between two synthesis stages is difficult.
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Design Space – Front-End

Parallel Prefix Adders
→ Flexible delay-power trade-off

Regular Adders

→ Sub-optimal

Custom Adders
→ High TAT
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Design Space – Back-End
I Tool settings. Huge space for different options.

Source: ICC documentation
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Design Space Exploration
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I Search for the Pareto-optimal
designs;

I None of the objective metrics, such
as area, power or delay, can be
improved without worsening at least
one of the others.
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Bayesian Optimization

I Good candidate to optimize functions that take a long time to evaluate.
I Can tolerate stochastic noise in function evaluations.
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I Acquisition function serves as a utility measurement to select the next point for
evaluation;

I Surrogate model is adaptively refined to approximate the latent function.
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Gaussian Process Regression

I Gaussian process regression is a Bayesian statistical approach for modeling unknown
functions.

I Prior: f ∼ GP(0, k(·, ·))
I Posterior:{

m(x) = k(x,X)>(k(X,X) + σ2I)−1Y,
σ2(x) = k(x, x)− k(x,X)>(k(X,X) + σ2I)−1k(x,X),

0 2 4 6 8 10
x

10

5

0

5

10

15

20

f(x
)

Prediction
95% confidence interval

9 / 18



Acquisition Function

Lower Confidence Bound (LCB)
I LCB(x) = m(x)− βσ(x);
I m(x) indicates the “exploitation” and
σ(x) indicates the “exploration”;

I β is a parameter that balances the
exploitation and exploration.

Expected Improvement (EI)
I EI(x) = σ(x)(λΦ(λ) + φ(λ)), where
λ = τ−ξ−µ(x)

σ(x)
I The expected improvement function

favors the optimal region with high
probability and the promising area with
high uncertainty estimation.
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Overall Flow

Acquisition 
Function EDA tools GP Regression

S1:
Sample 

S2:
Evaluate 

S3:
Model update 

Area, Power, DelayConfiguration

Surrogate Model
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Experimental Configurations

I Design:
- DesignWare library,
- Regular: Sklansky, Kogge-Stone,
- Synthesized prefix adder [Ma+, TCAD’2019].

I Flow:
- Cell library: 32nm SAED;
- Tools: DC 2014 & ICC 2017.

I Design space:
- Parameters in timing constraints, placement utilization, power options, etc.
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BO vs. Industrial Setting
I DSE with single objective
I Baseline: a set of complete scripts for adder synthesis from industrial.
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BO vs. Industrial Setting
I DSE with multiple objectives using scalarization
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BO vs. Heuristic Search
I Evolutionary algorithms are widely applied in black-box function optimization;
I Genetic algorithm (GA) is not as stable as Bayesian optimization.
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Scaling Trick
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Discussion & Conclusion

Conclusion

I A machine learning approach for better design;
I Adapt BO for multi-objective optimization to simultaneously minimize PPA values;
I BO substantially outperforms typical evolutionary algorithms.

Further Improvement

I A unified design space for exploration.
- / Currently the design spaces of front-end and back-end are separated.

I A more elegant way to handle multi-objective optimization.
- / Scalarization requires tuning effort and data processing tricks.
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Thank You
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