High Performance Graph Convolutional Networks with Applications in Testability Analysis

Yuzhe Ma¹, Haoxing Ren², Brucek Khailany ², Harbinder Sikka², Lijuan Luo², Karthikeyan Natarajan², Bei Yu¹

¹The Chinese University of Hong Kong ²NVIDIA

Learning for EDA

Verification [Yang et.al TCAD'2018]

Mask optimization [Yang et.al DAC'2018]

Learning for EDA

Verification [Yang et.al TCAD'2018]

Mask optimization [Yang et.al DAC'2018]

More Considerations

- Existing attempts still rely on regular format of data, like images;
- Netlists and layouts are naturally represented as graphs;
- Few DL solutions for graph-based problems in EDA.

Test Points Insertion

- Fig. (a): Original circuit with bad testability. Module 1 is unobservable. Module 2 is uncontrollable;
- Fig. (b): Insert test points to the circuit;
- ► (CP1, CP2) = (0, 1) → line I = 0; (CP1, CP2) = (1, 1) → line I = 1;
- ► CP2 = $0 \rightarrow$ normal operation mode.

Problem Overview

Problem

Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
- * (Focus on observation points insertion in this work.)

Problem Overview

Problem

Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
- * (Focus on observation points insertion in this work.)
- It is a binary classification problem from the perspective of DL model;
- A classifier can be trained from the historical data.
- Need to handle graph-structured data.
- Strong scalability is required for realistic designs.

Node Classification

- Represent a netlist as a directed graph. Each node represents a gate.
- ▶ Initial node attributes: SCOAP values [Goldstein et. al, DAC'1980].
- Graph convolutional networks: compute node embeddings first, then perform classification.

Node Classification

Node embedding: two-step operation:

▶ Neighborhood feature aggregation: weighted sum of the neighborhood features.

$$\boldsymbol{g}_{d}^{(v)} = \boldsymbol{e}_{d-1}^{(v)} + w_{pr} \times \sum_{u \in PR(v)} \boldsymbol{e}_{d-1}^{(u)} + w_{su} \times \sum_{u \in SU(v)} \boldsymbol{e}_{d-1}^{(u)}$$

Projection: a non-linear transformation to higher dimension.

$$\boldsymbol{e}_d = \sigma(\boldsymbol{g}_d \cdot \boldsymbol{W}_d)$$

Classification: A series of fully-connected layers.

Imbalance Issue

- High imbalance ratio: much more negative nodes than positive nodes in a design;
- Poor performance: bias towards majority class;

Solution: multi-stage classification.

- Impose a large weight on positive points.
- Only filter out negative points with high confidence in each stage.

- Positive point
- Negative point
- Decision boundary

Efficient Inference

- ightharpoonup Neighborhood overlap leads to duplicated computation ightarrow poor scalability.
- Transform weighted summation to matrix multiplication.
- Potential issue: adjacency matrix is too large.
- Fact: adjacency matrix is highly sparse! It can be stored using compressed format.

$$G_{d} = A \cdot E_{d-1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & w_{1} & w_{1} & w_{1} & 0 & 0 \\ w_{2} & 1 & 0 & 0 & w_{1} & 0 \\ w_{2} & 0 & 1 & 0 & 0 & w_{2} \\ w_{2} & 0 & 0 & 1 & 0 & 0 \\ 0 & w_{2} & 0 & 0 & 1 & 0 \\ 0 & 0 & w_{1} & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} e_{d-1}^{(1)} \\ e_{d-1}^{(2)} \\ e_{d-1}^{(3)} \\ e_{d-1}^{(4)} \\ e_{d-1}^{(6)} \\ e_{d-1}^{(6)} \\ e_{d-1}^{(6)} \end{bmatrix}$$

Efficient Training

- Adjacency matrix cannot be split as conventional way.
- A variant of conventional data-parallel scheme.
 - Each GPU process one graph instead of one "chunk";
 - Gather all to calculate the gradient.

Test Point Insertion Flow

- Not every difficult-to-observe node has the same impact for improving the observability;
- Select the observation point locations with largest impact to minimize the total count.
- Impact: The positive prediction reduction in a local neighborhood after inserting an observation point.
- ► E.g., the impact of node a in the figure is 4.

Test Point Insertion Flow

- Iterative prediction and OPs insertion.
- Once an OP is inserted, the netlist would be modified and node attributes would be re-calculated.
- Sparse representation enables incremental update on adjacency matrix.
- Exit condition: no positive predictions left.

Benchmarks

- Industrial designs under 12nm technology node.
- ► Each graph contains > 1M nodes and > 2M edges.

Design	#Nodes	#Edges	#POS	#NEG	
B1	1384264	2102622	8894	1375370	
B2	1456453	2182639	9755	1446698	
B3	1416382	2137364	9043	1407338	
B4	1397586	2124516	8978	1388608	

Classification Results Comparison

- Baselines: classical learning models with feature engineering in industry;
- GCN outperforms other classical learning algorithms.

Multi-stage GCN Results

Single-stage GCN vs. Multi-stage GCN;

Scalability: $10^3 \times$ speedup on inference time for a design with > 1 million cells.

Testability Results Comparison

▶ Without loss on fault coverage, 11% reduction on test points inserted and 6% reduction on test pattern count are achieved.

Design	Industrial Tool			GCN-Flow		
	#OPs	#PAs	Coverage	#OPs	#PAs	Coverage
B1	6063	1991	99.31%	5801	1687	99.31%
B2	6513	2009	99.39%	5736	2215	99.38%
B3	6063	2026	99.29%	4585	1845	99.29%
B4	6063	2083	99.30%	5896	1854	99.31%
Average	6176	2027	99.32%	5505	1900	99.32%
Ratio	1.00	1.00	1.00	0.89	0.94	1.00

Thank You

