
High Performance Graph Convolutional Networks with
Applications in Testability Analysis

Yuzhe Ma1, Haoxing Ren2, Brucek Khailany 2, Harbinder Sikka2, Lijuan Luo2,
Karthikeyan Natarajan2, Bei Yu1

1The Chinese University of Hong Kong
2NVIDIA

1 / 16



Learning for EDA

I Verification [Yang et.al
TCAD’2018]

…

HS

Non-HS

I Mask optimization [Yang et.al DAC’2018]

Litho-
SimulatorGenerator

More Considerations

I Existing attempts still rely on regular format of data, like images;
I Netlists and layouts are naturally represented as graphs;
I Few DL solutions for graph-based problems in EDA.

2 / 16



Learning for EDA

I Verification [Yang et.al
TCAD’2018]

…

HS

Non-HS

I Mask optimization [Yang et.al DAC’2018]

Litho-
SimulatorGenerator

More Considerations

I Existing attempts still rely on regular format of data, like images;
I Netlists and layouts are naturally represented as graphs;
I Few DL solutions for graph-based problems in EDA.

2 / 16



Test Points Insertion
I Fig. (a): Original circuit with bad testability. Module 1 is unobservable. Module 2 is

uncontrollable;
I Fig. (b): Insert test points to the circuit;
I (CP1, CP2) = (0, 1)→ line I = 0; (CP1, CP2) = (1, 1)→ line I = 1;
I CP2 = 0→ normal operation mode.

Module 1

Module 2

(a)

Module 1

OP

CP1 CP2

0
1

Module 2I

(b)

3 / 16



Problem Overview

Problem
Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
* (Focus on observation points insertion in this work.)

I It is a binary classification problem from the perspective of DL model;
I A classifier can be trained from the historical data.
I Need to handle graph-structured data.
I Strong scalability is required for realistic designs.

4 / 16



Problem Overview

Problem
Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
* (Focus on observation points insertion in this work.)

I It is a binary classification problem from the perspective of DL model;
I A classifier can be trained from the historical data.
I Need to handle graph-structured data.
I Strong scalability is required for realistic designs.

4 / 16



Node Classification
I Represent a netlist as a directed graph. Each node represents a gate.
I Initial node attributes: SCOAP values [Goldstein et. al, DAC’1980].
I Graph convolutional networks: compute node embeddings first, then perform

classification.

FC LayersLayer 2Layer 1
Prediction

0
10

0

1 1

5 / 16



Node Classification
Node embedding: two-step operation:
I Neighborhood feature aggregation: weighted sum of the neighborhood features.

g(v)d = e(v)d−1 + wpr ×
∑

u∈PR(v)

e(u)d−1 + wsu ×
∑

u∈SU(v)

e(u)d−1

I Projection: a non-linear transformation to higher dimension.

ed = σ(gd ·Wd)

Classification: A series of fully-connected layers.

6 / 16



Imbalance Issue
I High imbalance ratio: much more negative nodes than positive nodes in a design;
I Poor performance: bias towards majority class;

Solution: multi-stage classification.

I Impose a large weight on positive points.
I Only filter out negative points with high confidence in each stage.

Stage-1 Stage-2 Stage-3

Positive point
Negative point

Decision boundary

+
-

+- +-

7 / 16



Efficient Inference
I Neighborhood overlap leads to duplicated computation→ poor scalability.
I Transform weighted summation to matrix multiplication.
I Potential issue: adjacency matrix is too large.
I Fact: adjacency matrix is highly sparse! It can be stored using compressed format.

2

6

1

3

4

5
Gd = A · Ed−1 =

1 2 3 4 5 6



1 1 w1 w1 w1 0 0
2 w2 1 0 0 w1 0
3 w2 0 1 0 0 w2

4 w2 0 0 1 0 0
5 0 w2 0 0 1 0
6 0 0 w1 0 0 1

×





e(1)d−1

e(2)d−1

e(3)d−1

e(4)d−1

e(5)d−1

e(6)d−1

8 / 16



Efficient Training
I Adjacency matrix cannot be split as conventional way.
I A variant of conventional data-parallel scheme.

- Each GPU process one graph instead of one "chunk";
- Gather all to calculate the gradient.

Training data:

Output Evaluate

Gradient
GPU1 GPU2

Output

9 / 16



Test Point Insertion Flow
I Not every difficult-to-observe node has the same impact for improving the observability;
I Select the observation point locations with largest impact to minimize the total count.
I Impact: The positive prediction reduction in a local neighborhood after inserting an

observation point.
I E.g., the impact of node a in the figure is 4.

Predicted-0

Predicted-1

OP

Fan-in cone

a

(c)

a

(d)

10 / 16



Test Point Insertion Flow
I Iterative prediction and OPs insertion.
I Once an OP is inserted, the netlist would be modified and node attributes would be

re-calculated.
I Sparse representation enables incremental update on adjacency matrix.
I Exit condition: no positive predictions left.

Netlist
Trained GCN 

Model

Prediction Satisfied?

Impact Evaluation

OP Insertion

ENDY

N

11 / 16



Benchmarks

I Industrial designs under 12nm technology node.
I Each graph contains > 1M nodes and > 2M edges.

Design #Nodes #Edges #POS #NEG

B1 1384264 2102622 8894 1375370
B2 1456453 2182639 9755 1446698
B3 1416382 2137364 9043 1407338
B4 1397586 2124516 8978 1388608

12 / 16



Classification Results Comparison
I Baselines: classical learning models with feature engineering in industry;
I GCN outperforms other classical learning algorithms.

B1 B2 B3 B4 Average
0.7

0.8

0.9

1

Ac
cu

ra
cy

LR SVM RF MLP GCN

13 / 16



Multi-stage GCN Results

I Single-stage GCN vs. Multi-stage GCN ;

B1 B2 B3 B4
0

0.2

0.4

0.6

Benchmark

F1
-S

co
re

GCN-S GCN-M

I Scalability: 103× speedup on inference
time for a design with > 1 million cells.

103 104 105 106
10−2

100

102

104

Number of nodes

In
fe
re
nc

e
tim

e
(s
)

Recursion Ours

14 / 16



Testability Results Comparison
I Without loss on fault coverage, 11% reduction on test points inserted and 6% reduction

on test pattern count are achieved.

Design Industrial Tool GCN-Flow
#OPs #PAs Coverage #OPs #PAs Coverage

B1 6063 1991 99.31% 5801 1687 99.31%
B2 6513 2009 99.39% 5736 2215 99.38%
B3 6063 2026 99.29% 4585 1845 99.29%
B4 6063 2083 99.30% 5896 1854 99.31%

Average 6176 2027 99.32% 5505 1900 99.32%
Ratio 1.00 1.00 1.00 0.89 0.94 1.00

15 / 16



Thank You

16 / 16


	Introduction
	GCN for Node Classification
	Test Point Insertion Flow
	Experimental Results

