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Learning for EDA

I Verification [Yang et.al
TCAD’2018]

…

HS

Non-HS

I Mask optimization [Yang et.al DAC’2018]

Litho-
SimulatorGenerator

More Considerations

I Existing attempts still rely on regular format of data, like images;
I Netlists and layouts are naturally represented as graphs;
I Few DL solutions for graph-based problems in EDA.
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Test Points Insertion
I Fig. (a): Original circuit with bad testability. Module 1 is unobservable. Module 2 is

uncontrollable;
I Fig. (b): Insert test points to the circuit;
I (CP1, CP2) = (0, 1)→ line I = 0; (CP1, CP2) = (1, 1)→ line I = 1;
I CP2 = 0→ normal operation mode.

Module 1

Module 2

(a)

Module 1

OP

CP1 CP2

0
1

Module 2I

(b)

3 / 16



Problem Overview

Problem
Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
* (Focus on observation points insertion in this work.)

I It is a binary classification problem from the perspective of DL model;
I A classifier can be trained from the historical data.
I Need to handle graph-structured data.
I Strong scalability is required for realistic designs.
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Node Classification
I Represent a netlist as a directed graph. Each node represents a gate.
I Initial node attributes: SCOAP values [Goldstein et. al, DAC’1980].
I Graph convolutional networks: compute node embeddings first, then perform

classification.
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Node Classification
Node embedding: two-step operation:
I Neighborhood feature aggregation: weighted sum of the neighborhood features.

g(v)d = e(v)d−1 + wpr ×
∑

u∈PR(v)

e(u)d−1 + wsu ×
∑

u∈SU(v)

e(u)d−1

I Projection: a non-linear transformation to higher dimension.

ed = σ(gd ·Wd)

Classification: A series of fully-connected layers.
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Imbalance Issue
I High imbalance ratio: much more negative nodes than positive nodes in a design;
I Poor performance: bias towards majority class;

Solution: multi-stage classification.

I Impose a large weight on positive points.
I Only filter out negative points with high confidence in each stage.
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Efficient Inference
I Neighborhood overlap leads to duplicated computation→ poor scalability.
I Transform weighted summation to matrix multiplication.
I Potential issue: adjacency matrix is too large.
I Fact: adjacency matrix is highly sparse! It can be stored using compressed format.
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1 1 w1 w1 w1 0 0
2 w2 1 0 0 w1 0
3 w2 0 1 0 0 w2

4 w2 0 0 1 0 0
5 0 w2 0 0 1 0
6 0 0 w1 0 0 1
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Efficient Training
I Adjacency matrix cannot be split as conventional way.
I A variant of conventional data-parallel scheme.

- Each GPU process one graph instead of one "chunk";
- Gather all to calculate the gradient.

Training data:
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Test Point Insertion Flow
I Not every difficult-to-observe node has the same impact for improving the observability;
I Select the observation point locations with largest impact to minimize the total count.
I Impact: The positive prediction reduction in a local neighborhood after inserting an

observation point.
I E.g., the impact of node a in the figure is 4.
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Test Point Insertion Flow
I Iterative prediction and OPs insertion.
I Once an OP is inserted, the netlist would be modified and node attributes would be

re-calculated.
I Sparse representation enables incremental update on adjacency matrix.
I Exit condition: no positive predictions left.
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Benchmarks

I Industrial designs under 12nm technology node.
I Each graph contains > 1M nodes and > 2M edges.

Design #Nodes #Edges #POS #NEG

B1 1384264 2102622 8894 1375370
B2 1456453 2182639 9755 1446698
B3 1416382 2137364 9043 1407338
B4 1397586 2124516 8978 1388608
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Classification Results Comparison
I Baselines: classical learning models with feature engineering in industry;
I GCN outperforms other classical learning algorithms.
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Multi-stage GCN Results

I Single-stage GCN vs. Multi-stage GCN ;
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I Scalability: 103× speedup on inference
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Testability Results Comparison
I Without loss on fault coverage, 11% reduction on test points inserted and 6% reduction

on test pattern count are achieved.

Design Industrial Tool GCN-Flow
#OPs #PAs Coverage #OPs #PAs Coverage

B1 6063 1991 99.31% 5801 1687 99.31%
B2 6513 2009 99.39% 5736 2215 99.38%
B3 6063 2026 99.29% 4585 1845 99.29%
B4 6063 2083 99.30% 5896 1854 99.31%

Average 6176 2027 99.32% 5505 1900 99.32%
Ratio 1.00 1.00 1.00 0.89 0.94 1.00
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Thank You
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