High Performance Graph Convolutional Networks with Applications in Testability Analysis

Yuzhe Ma¹, Haoxing Ren², Brucek Khailany ², Harbinder Sikka², Lijuan Luo², Karthikeyan Natarajan², Bei Yu¹

¹The Chinese University of Hong Kong ²NVIDIA

Learning for EDA

 \blacktriangleright Verification [Yang et.al TCAD'2018]

 \blacktriangleright Mask optimization [Yang et.al DAC'2018]

Learning for EDA

Verification [Yang et.al] TCAD'2018]

Mask optimization [Yang et.al DAC'2018]

4 0 8

÷. 医心室

More Considerations

- Existing attempts still rely on regular format of data, like images;
- Netlists and layouts are naturally represented as graphs;
- \blacktriangleright Few DL solutions for graph-based problems in EDA.

Test Points Insertion

- \blacktriangleright Fig. (a): Original circuit with bad testability. Module 1 is unobservable. Module 2 is uncontrollable;
- \blacktriangleright Fig. (b): Insert test points to the circuit;
- \triangleright (CP1, CP2) = (0, 1) → line I = 0; (CP1, CP2) = (1, 1) → line I = 1;
- \triangleright CP2 = 0 \rightarrow normal operation mode.

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1}$

Problem Overview

Problem

Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
- * (Focus on observation points insertion in this work.)

Problem Overview

Problem

Given a netlist, identify where to insert test points, such that:

- Maximize fault coverage;
- Minimize the number of test points and test patterns.
- * (Focus on observation points insertion in this work.)
- It is a binary classification problem from the perspective of DL model;
- A classifier can be trained from the historical data.
- Need to handle graph-structured data.
- Strong scalability is required for realistic designs.

Node Classification

- Represent a netlist as a directed graph. Each node represents a gate.
- Initial node attributes: SCOAP values [Goldstein et. al, DAC'1980].
- Graph convolutional networks: compute node embeddings first, then perform classification.

Node Classification

Node embedding: two-step operation:

 \blacktriangleright Neighborhood feature aggregation: weighted sum of the neighborhood features.

$$
\mathbf{g}_d^{(v)} = \mathbf{e}_{d-1}^{(v)} + w_{pr} \times \sum_{u \in \text{PR}(v)} \mathbf{e}_{d-1}^{(u)} + w_{su} \times \sum_{u \in \text{SU}(v)} \mathbf{e}_{d-1}^{(u)}
$$

 \triangleright Projection: a non-linear transformation to higher dimension.

$$
\boldsymbol{e}_d = \sigma(\boldsymbol{g}_d \cdot \boldsymbol{W}_d)
$$

Classification: A series of fully-connected layers.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Imbalance Issue

- \blacktriangleright High imbalance ratio: much more negative nodes than positive nodes in a design:
- \triangleright Poor performance: bias towards majority class:

Solution: multi-stage classification.

- \blacktriangleright Impose a large weight on positive points.
- \triangleright Only filter out negative points with high confidence in each stage.

Positive point \bullet • Negative point Decision boundary

Efficient Inference

- \triangleright Neighborhood overlap leads to duplicated computation \rightarrow poor scalability.
- \blacktriangleright Transform weighted summation to matrix multiplication.
- \triangleright Potential issue: adjacency matrix is too large.
- \blacktriangleright Fact: adjacency matrix is highly sparse! It can be stored using compressed format.

1 2 3 4 5 6 (1) *e* 1 1 *w*¹ *w*¹ *w*¹ 0 0 *d*−1 (2) *e* 6 2 *w*² 1 0 0 *w*¹ 0 3 *d*−1 (3) 5 3 *w*² 0 1 0 0 *w*² *e* 1 *d*−1 *G^d* = *A* · *Ed*−¹ = × 4 (4) 2 4 *w*² 0 0 1 0 0 *e d*−1 5 0 *w*² 0 0 1 0 (5) *e d*−1 6 0 0 *w*¹ 0 0 1 (6) *e [d](#page-10-0)*[−](#page-11-0)[1](#page-0-0)

Efficient Training

- Adjacency matrix cannot be split as conventional way.
- \blacktriangleright A variant of conventional data-parallel scheme.
	- Each GPU process one graph instead of one "chunk";
	- Gather all to calculate the gradient.

 \rightarrow \rightarrow \equiv

▶ 4 章

4 ロ ト 4 *円*

Test Point Insertion Flow

- In Not every difficult-to-observe node has the same impact for improving the observability;
- I Select the observation point locations with largest impact to minimize the total count.
- Impact: The positive prediction reduction in a local neighborhood after inserting an observation point.
- \blacktriangleright E.g., the impact of node a in the figure is 4.

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1}$

Test Point Insertion Flow

- \blacktriangleright Iterative prediction and OPs insertion.
- I Once an OP is inserted, the netlist would be modified and node attributes would be re-calculated.
- \triangleright Sparse representation enables incremental update on adjacency matrix.
- Exit condition: no positive predictions left.

Benchmarks

- \blacktriangleright Industrial designs under 12nm technology node.
- Each graph contains > 1 M nodes and > 2 M edges.

重

イロトス個人 スミメスき

Classification Results Comparison

- Baselines: classical learning models with feature engineering in industry;
- GCN outperforms other classical learning algorithms.

Multi-stage GCN Results

▶ Single-stage GCN vs. Multi-stage GCN ;

Scalability: $10^3 \times$ speedup on inference

 \leftarrow \Box

 299

Testability Results Comparison

In Without loss on fault coverage, 11% reduction on test points inserted and 6% reduction on test pattern count are achieved.

Thank You

