Faster Region-based Hotspot Detection

Ran Chen¹, Wei Zhong², Haoyu Yang¹, Hao Geng¹, Xuan Zeng³, Bei Yu¹

¹The Chinese University of Hong Kong ²Dalian University of Technology ³Fudan University

Lithography Hotspot Detection

- ▶ RET: OPC, SRAF, MPL
- Still hotspot: low fidelity patterns
- Simulations: extremely CPU intensive

Previous Solution

- A binary classification problem.
- Scan over whole region.
- Single stage detector.
- Scanning is time consuming and single stage is not robust to false alarm.

イロト イポト イヨト イヨト

Region based approach

Learning what and where is hotspot at same time.

Classification Problem -> Classification & Regression Problem.

Feature Extraction

Encoder-decoder preprocess

- Symmetric Structure for feature encoding and decoding.
- Much faster than discrete cosine transformation.

Inception based structure

- Multi threads feature extraction.
- Prune the depth of the output channel for each stage.
- Downsample the feature map size in height and width direction.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Clip Proposal Network

Definition

- **Clip**: Predefined box to crop hotspot features in region.
- **Proposal**: Selected clip which contribute to classification and regression.

- Based on extracted features, Clip Proposal Network is designed to locate and classify hotspots.
- Classification and regression branches share features.

Details on Clip Proposal Network

- ► To a classifier, we have to balance the positive and negative samples.
- As a regression task on location, we need to select reasonable clips as proposals.
- We also need to consider efficiency and quality of features.

Solutions

Hotspot Non Maximum Suppression.

Details on Clip Proposal Network

Intersection over Union (IoU)

$$IoU = \frac{clip_{groundtruth} \bigcap clip_{generated}}{clip_{groundtruth} \bigcup clip_{generated}}$$

Clip generation: generate group of clips with different aspect ratios and scales in dense.

• Number of clips: $w \times h \times clips$ per location

Clip Pruning before Classification and Regression.

- ► IoU > 0.7, reserved as positive sample;
- IoU with any ground truth highest score should be reserved as positive sample;
- loU < 0.3, reserved as negative sample;
- Rest of clips do no contribution to the network training.

< ロ > < 同 > < 回 > < 回 > < 回 >

Details on Clip Proposal Network

- Hotspot Non maximum suppression
- CS: classification score
- Take advantage of the structural relation between core region and clips
- Avoid error dropout during the training

Examples of (a) conventional non-maximum suppression, and (b) the proposed hotspot non-maximum suppression.

イロト イポト イヨト イヨト

Loss Function Design

Regression Loss for target i:

$$l_{loc}(l_i, l'_i) = \begin{cases} \frac{1}{2}(l_i - l'_i)^2, & \text{if } |l_i - l'_i| < 1, \\ |l_i - l'_i| - 0.5, & \text{otherwise}, \end{cases}$$
(1)

Classification Loss for target i:

$$l_{hotspot}(h_{i}, h_{i}^{'}) = -(h_{i} \log h_{i}^{'} + h_{i}^{'} \log h_{i}).$$
⁽²⁾

Refinement

(a) 1st hotspot classification in clip proposal network; (b) The labelled hotspots are fed into 2nd hotspot classification in refinement stage to reduce false alarm.

- We get a rough prediction with the clip proposal network.
- Refinement stage is applied to further decrease the false alarm.

Refinement

- Rol (Region of Interest) Pooling is a resize operation to transform feature maps to fixed size.
- Only clips selected from first stage contribute to refinement.

Experimental Result

- Benchmarks from ICCAD Contest 2016.
- Ground truth hotspot locations are label according to the results of industrial 7nm metal layer EUV lithography simulation under a given process window.
- No defects found with lithography simulation on Case1.

Bench	TCAD'18*			Faster R-CNN†			SSD‡			Ours		
	Accu (%)	FA	Time (s)	Accu (%)	FA	Time (s)	Accu (%)	FA	Time (s)	Accu (%)	FA	Time (s)
Case2	77.78	48	60.0	1.8	3	1.0	71.9	519	1.0	93.02	17	2.0
Case3	91.20	263	265.0	57.1	74	11.0	57.4	1730	3.0	94.5	34	10.0
Case4	100.00	511	428.0	6.9	69	8.0	77.8	275	2.0	100.00	201	6.0
Average	89.66	274.0	251.0	21.9	48.7	6.67	69.0	841.3	2.0	95.8	84	6.0
Ratio	1.00	1.00	1.00	0.24	0.18	0.03	0.87	3.07	0.01	1.07	0.31	0.02

*Haoyu Yang et al. (2018). "Layout hotspot detection with feature tensor generation and deep biased learning". In: *IEEE TCAD*.

†Shaoqing Ren et al. (2015). "Faster R-CNN: Towards real-time object detection with region proposal networks". In: *Proc. NIPS*, pp. 91–99.

‡Wei Liu et al. (2016). "SSD: Single shot multibox detector". In: Proc. ECCV, pp. 21–37. B + C =

Experimental Result

Visualization of different hotspot detection results.

・ロト ・四ト ・ヨト ・ヨト

Ablation Study

Comparison among different settings on (a) average accuracy and (b) average false alarm.

Thank You

