

Efficient Layout Hotspot Detection via Binarized Residual Neural Network

Yiyang Jiang1, Fan Yang1∗, Hengliang Zhu1, Bei Yu³, Dian Zhou², Xuan Zeng1∗

¹State Key Lab of ASIC & System, Microelectronics Department, Fudan University ²University of Texas at Dallas 3Chinese University of Hong Kong

Outline

■ Introduction

- Proposed Binarized Neural Network-based Hotspot Detector
- Experimental Results

Outline

■ Introduction

■ Proposed Binarized Neural Network-based Hotspot Detector

■ Experimental Results

Lithography Proximity Effect

- What you see \neq what you get
- RETs: OPC, SRAF, MPL
- Still exists hotspots: low fidelity patterns
- Lithography simulation: time consuming

Hotspot Detection Problem

Definition: Accuracy

The ratio of correctly predicted hotspots among the set of actual hotspots. $Accuracy =$ # $\#TP + \#FN$

Definition: False Alarm

The number of incorrectly predicted non-hotspots. $False$ Alarm = #FP

Problem: Hotspot Detection

Given a dataset that contains hotspot and non-hotspot instances, train a classifier that can maximize the $accuracy$ and minimize the $false$ alarm.

Hotspot Detection Methods

Two Classes:

- Pattern matching-based
- Machine learning-based

Pattern Matching-based Hotspot **Detection**

- Characterize the hotspots as explicit patterns and identify the hotspots by matching these patterns
- [Yu+,ICCAD'14] [Nosato+,JM3'14] [Kahng+,SPIE'06] [Su+,TCAD'15] [Wen+,TCAD'14] [Yang+,TCAD'17]
- Fast but hard to detect unseen patterns

Machine Learning-based Hotspot **Detection**

- Build implicit models by learning from existing training data
	- SVM, Bayesian, Decision-tree, Boosting, NN, ...
- [Ding+,ASPDAC'11] [Yu+,DAC'13] [Matsunawa+,SPIE'15] [Zhang+,ICCAD'16] [Wen+,TCAD'14]
- Possible to detect the unseen hotspots but may cause false alarm issues

Deep Learning-based Hotspot Detection

- Belongs to ML-based hotspot detection but different from conventional ML models:
	- Feature Crafting v.s. Feature Learning
	- Stronger scalability
- [Yang+,DAC'17]
- Drawback: not storage and computational efficient

Outline

■ Introduction

■ Proposed Binarized Neural Network-based Hotspot Detector

■ Experimental Results

Parameter Quantization

- Problem with deep neural networks:
	- Enormous computational and storage consumption
- To alleviate this problem:
	- Parameter Quantization
	- 32-bit floating-point weights not necessary: quantized to fixed-point of 8-bit, 3-bit, 1-bit…
	- [Arora+,ICML'14] [Hwang+,SiPS'14] [Soudry+,ANIPS'14] [Rastegari+,ECCV'16]

Binarized Neural Network

- Binarized neural network (BNN):
	- Extremely quantized to 1 bit
	- Inherently suitable for hardware implementation
- Layout patterns are binary images
	- BNN might be suitable for that

Binarization Approach

Definition

Let W be the kernel which is an n -element vector and X be the vector of the corresponding block in the input tensor, $n = w_k \times h_k$. Let W_B , X_B be the binarized kernel and input vector and α_W , α_X be the corresponding scaling factors. Here W, $X \in$ \mathbb{R}^n , W_B , $X_B \in \{-1, +1\}^n$ and α_W , $\alpha_X \in \mathbb{R}^+$.

Problem: Binarization

Given the kernel and input vector W, X, find best $W_B, X_B, \alpha_W, \alpha_X$ that minimizes the binarization loss L_i . $L_i(W_B, X_B, \alpha_W, \alpha_X) = ||W \bigodot X - \alpha_W W_B \bigodot \alpha_X X_B||^2$ where \bigodot means inner product.

Binarization Approach

■ Solving the minimization problem:

$$
W_B^* = sign(W), X_B^* = sign(X)
$$

$$
\alpha_W^* = \frac{1}{n} ||W||_{l1}, \ \alpha_X^* = \frac{1}{n} ||X||_{l1}
$$

■ The estimated weight and corresponding input vector \widetilde{W} , \widetilde{X} are:

$$
\widetilde{W} = \frac{1}{n} sign(W) ||W||_{l1}
$$

$$
\widetilde{X} = \frac{1}{n} sign(X) ||X||_{l1}
$$

Training BNN

Gradient for $sign$ function [Hubara, 2016]

$$
\frac{\partial sign(x)}{\partial x} = \mathbf{1}_{\|W\| < 1}
$$

■ Back propagation through the Binarizing Layer

$$
\frac{\partial l}{\partial W} = \frac{\partial l}{\partial \widetilde{W}} \frac{\partial \widetilde{W}}{\partial W}
$$

=
$$
\frac{\partial l}{\partial \widetilde{W}} \frac{\partial (\frac{1}{n} ||W||_{l_1} sign(W))}{\partial W}
$$

=
$$
\frac{\partial l}{\partial \widetilde{W}} \left(\frac{1}{n} + \alpha_W^* \mathbf{1}_{||W|| < 1} \right)
$$

Network Architecture

- Information loss caused by binarization: need a stronger network
- Residual block-based architecture

Implementation Details

■ Typical BNN block structure

■ Speedup scaling factor calculation [Rastegari, 2016]

Implementation Details

- Biased Learning [Yang, 2017]
	- Loss function: Softmax cross entropy
	- Trained with hotspot's label $y_h^* = [0,1]$ and non-hotspot's label $y_n^* = [1,0]$
	- Trained model is fine-tuned with non-hotspot's label changed to $y_n^* = [1 \epsilon$, ϵ] and hotspot's label keeps the same. ϵ is set to 0.2.
- Data preprocessing
	- Down-sampled to 128×128
- Training hyperparameters
	- Batch size:128
	- Learning rate: Initial 0.15, exponentially decay each time loss plateaus
	- Optimizer: NAdam optimizer [Dozat, 2016]
	- Initializer: Xavier initializer [Glorot, 2010]

Outline

Introduction

■ Proposed Binarized Neural Network-based Hotspot Detector

Experimental Results

Performance Comparisons with Previous Hotspot Detectors

■ Benchmark: ICCAD 2012 Contest

- Accuracy improved from 84.2% to 99.2%
- Fewest False Alarms: 2787
- Lowest Runtime: 60s, 8x faster

Thank You