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Lithography Proximity Effect

■ What you see ≠ what you get

■ RETs: OPC, SRAF, MPL

■ Still exists hotspots: low fidelity patterns

■ Lithography simulation: time consuming



Hotspot Detection Problem

Definition: Accuracy

The ratio of correctly predicted hotspots among the set of actual hotspots.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁

Definition: False Alarm

The number of incorrectly predicted non-hotspots.

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 = #𝐹𝑃

Problem: Hotspot Detection

Given a dataset that contains hotspot and non-hotspot instances, train a classifier 

that can maximize the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and minimize the 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚.



Hotspot Detection Methods

Two Classes:

– Pattern matching-based

– Machine learning-based



Pattern Matching-based Hotspot 
Detection

■ Characterize the hotspots as explicit patterns and identify the hotspots by 
matching these patterns

■ [Yu+,ICCAD’14] [Nosato+,JM3’14] [Kahng+,SPIE’06] [Su+,TCAD’15] 
[Wen+,TCAD’14] [Yang+,TCAD’17]

■ Fast but hard to detect unseen patterns



Machine Learning-based Hotspot 
Detection

■ Build implicit models by learning from existing training data

– SVM, Bayesian, Decision-tree, Boosting, NN, ...

■ [Ding+,ASPDAC’11] [Yu+,DAC’13] [Matsunawa+,SPIE’15] [Zhang+,ICCAD’16] 
[Wen+,TCAD’14]

■ Possible to detect the unseen hotspots but may cause false alarm issues



Deep Learning-based Hotspot Detection

■ Belongs to ML-based hotspot detection but different from conventional ML 
models:

– Feature Crafting v.s. Feature Learning

– Stronger scalability

■ [Yang+,DAC’17]

■ Drawback: not storage and computational efficient
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Parameter Quantization

■ Problem with deep neural networks:

– Enormous computational and storage consumption

■ To alleviate this problem:

– Parameter Quantization

– 32-bit floating-point weights not necessary: quantized to fixed-point of 8-bit, 
3-bit, 1-bit… 

– [Arora+,ICML’14] [Hwang+,SiPS’14] [Soudry+,ANIPS’14] 
[Rastegari+,ECCV’16]



Binarized Neural Network

■ Binarized neural network (BNN):

– Extremely quantized to 1 bit

– Inherently suitable for hardware 
implementation

■ Layout patterns are binary images

– BNN might be suitable for that
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Binarization Approach

Definition

Let 𝑊 be the kernel which is an 𝑛-element vector and 𝑋 be the vector of the 

corresponding block in the input tensor, 𝑛 = 𝑤𝑘 × ℎ𝑘. Let 𝑊𝐵 , 𝑋𝐵 be the binarized

kernel and input vector and 𝛼𝑊, 𝛼𝑋 be the corresponding scaling factors. Here 𝑊,𝑋 ∈
ℝ𝑛, 𝑊𝐵 , 𝑋𝐵 ∈ {−1, +1}𝑛 and 𝛼𝑊, 𝛼𝑋 ∈ ℝ+.

Problem: Binarization

Given the kernel and input vector 𝑊,𝑋, find best 𝑊𝐵 , 𝑋𝐵 , 𝛼𝑊, 𝛼𝑋 that minimizes the 

binarization loss 𝐿𝑖. 𝐿𝑖(𝑊𝐵 , 𝑋𝐵 , 𝛼𝑊, 𝛼𝑋) = ‖𝑊 ⊙𝑋 − 𝛼𝑊𝑊𝐵 ⊙𝛼𝑋𝑋𝐵‖
2 where ⊙ means 

inner product.



Binarization Approach

■ Solving the minimization problem:

■ The estimated weight and corresponding input vector ෩𝑊, ෨𝑋 are:
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Training BNN

■ Gradient for 𝑠𝑖𝑔𝑛 function [Hubara, 2016] 

■ Back propagation through the Binarizing Layer
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Network Architecture

■ Information loss caused by binarization: need a stronger network

■ Residual block-based architecture
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Implementation Details

■ Typical BNN block structure

■ Speedup scaling factor calculation [Rastegari, 2016]

3x3 B_conv, 64 Binarizing

BatchNorm

Binary Convolution

Output channel: 64

Kernel size: 3x3



Implementation Details
■ Biased Learning [Yang, 2017]

– Loss function: Softmax cross entropy

– Trained with hotspot’s label yh
∗ = 0,1 and non-hotspot’s label yn

∗ = [1, 0]

– Trained model is fine-tuned with non-hotspot’s label changed to yn
∗ = [1 −

ϵ, ϵ] and hotspot’s label keeps the same. ϵ is set to 0.2.

■ Data preprocessing

– Down-sampled to 128×128

■ Training hyperparameters

– Batch size:128

– Learning rate: Initial 0.15, exponentially decay each time loss plateaus

– Optimizer: NAdam optimizer [Dozat, 2016]

– Initializer: Xavier initializer [Glorot, 2010]
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Performance Comparisons with Previous 
Hotspot Detectors

Method Accuracy (%) False Alarm # Runtime (s)

SPIE’15 84.2 2919 2672

ICCAD’16 97.7 4497 1052

DAC’17 98.2 3413 482

Ours 99.2 2787 60

■ Benchmark: ICCAD 2012 Contest

■ Accuracy improved from 84.2% to 99.2%

■ Fewest False Alarms: 2787

■ Lowest Runtime: 60s, 8x faster
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