

Efficient Layout Hotspot Detection via Binarized Residual Neural Network

Yiyang Jiang¹, Fan Yang^{1*}, Hengliang Zhu¹, Bei Yu³, Dian Zhou², Xuan Zeng^{1*}

¹State Key Lab of ASIC & System, Microelectronics Department, Fudan University ²University of Texas at Dallas ³Chinese University of Hong Kong

Outline

Introduction

- Proposed Binarized Neural Network-based Hotspot Detector
- Experimental Results

Outline

Introduction

Proposed Binarized Neural Network-based Hotspot Detector

Experimental Results

Lithography Proximity Effect

- What you see \neq what you get
- RETs: OPC, SRAF, MPL
- Still exists hotspots: low fidelity patterns
- Lithography simulation: time consuming

Hotspot Detection Problem

Definition: Accuracy

The ratio of correctly predicted hotspots among the set of actual hotspots. $Accuracy = \frac{\#TP}{\#TP + \#FN}$

Definition: False Alarm

The number of incorrectly predicted non-hotspots. False Alarm = #FP

Problem: Hotspot Detection

Given a dataset that contains hotspot and non-hotspot instances, train a classifier that can maximize the *accuracy* and minimize the *false alarm*.

Hotspot Detection Methods

Two Classes:

- Pattern matching-based
- Machine learning-based

Pattern Matching-based Hotspot Detection

- Characterize the hotspots as explicit patterns and identify the hotspots by matching these patterns
- [Yu+,ICCAD'14] [Nosato+,JM3'14] [Kahng+,SPIE'06] [Su+,TCAD'15] [Wen+,TCAD'14] [Yang+,TCAD'17]
- Fast but hard to detect unseen patterns

Machine Learning-based Hotspot Detection

- Build implicit models by learning from existing training data
 - SVM, Bayesian, Decision-tree, Boosting, NN, ...
- [Ding+,ASPDAC'11] [Yu+,DAC'13] [Matsunawa+,SPIE'15] [Zhang+,ICCAD'16] [Wen+,TCAD'14]
- Possible to detect the unseen hotspots but may cause false alarm issues

Deep Learning-based Hotspot Detection

- Belongs to ML-based hotspot detection but different from conventional ML models:
 - Feature Crafting v.s. Feature Learning
 - Stronger scalability
- [Yang+,DAC'17]
- Drawback: not storage and computational efficient

Outline

Introduction

Proposed Binarized Neural Network-based Hotspot Detector

Experimental Results

Parameter Quantization

- Problem with deep neural networks:
 - Enormous computational and storage consumption
- To alleviate this problem:
 - Parameter Quantization
 - 32-bit floating-point weights not necessary: quantized to fixed-point of 8-bit,
 3-bit, 1-bit...
 - [Arora+,ICML'14] [Hwang+,SiPS'14] [Soudry+,ANIPS'14]
 [Rastegari+,ECCV'16]

Binarized Neural Network

- Binarized neural network (BNN):
 - Extremely quantized to 1 bit
 - Inherently suitable for hardware implementation
- Layout patterns are binary images
 - BNN might be suitable for that

Binarization Approach

Definition

Let *W* be the kernel which is an *n*-element vector and *X* be the vector of the corresponding block in the input tensor, $n = w_k \times h_k$. Let W_B, X_B be the binarized kernel and input vector and α_W, α_X be the corresponding scaling factors. Here $W, X \in \mathbb{R}^n$, $W_B, X_B \in \{-1, +1\}^n$ and $\alpha_W, \alpha_X \in \mathbb{R}^+$.

Problem: Binarization

Given the kernel and input vector W, X, find best $W_B, X_B, \alpha_W, \alpha_X$ that minimizes the binarization loss L_i . $L_i(W_B, X_B, \alpha_W, \alpha_X) = ||W \odot X - \alpha_W W_B \odot \alpha_X X_B||^2$ where \odot means inner product.

Binarization Approach

• Solving the minimization problem:

$$W_B^* = sign(W), X_B^* = sign(X)$$

$$\alpha_W^* = \frac{1}{n} \|W\|_{l1}, \ \alpha_X^* = \frac{1}{n} \|X\|_{l1}$$

• The estimated weight and corresponding input vector \widetilde{W} , \widetilde{X} are:

$$\widetilde{W} = \frac{1}{n} sign(W) \|W\|_{l1}$$
$$\widetilde{X} = \frac{1}{n} sign(X) \|X\|_{l1}$$

Training BNN

■ Gradient for *sign* function [Hubara, 2016]

$$\frac{\partial sign(x)}{\partial x} = \mathbf{1}_{\|W\| < 1}$$

Back propagation through the Binarizing Layer

$$\begin{aligned} \frac{\partial l}{\partial W} &= \frac{\partial l}{\partial \widetilde{W}} \frac{\partial \widetilde{W}}{\partial W} \\ &= \frac{\partial l}{\partial \widetilde{W}} \frac{\partial (\frac{1}{n} \|W\|_{l_1} sign(W))}{\partial W} \\ &= \frac{\partial l}{\partial \widetilde{W}} \frac{\partial l}{(\frac{1}{n} + \alpha_W^* \mathbf{1}_{\|W\| < 1})} \end{aligned}$$

Network Architecture

- Information loss caused by binarization: need a stronger network
- Residual block-based architecture

Implementation Details

Typical BNN block structure

Speedup scaling factor calculation [Rastegari, 2016]

Implementation Details

- Biased Learning [Yang, 2017]
 - Loss function: Softmax cross entropy
 - Trained with hotspot's label $y_h^* = [0,1]$ and non-hotspot's label $y_n^* = [1,0]$
 - Trained model is fine-tuned with non-hotspot's label changed to $y_n^* = [1 \epsilon, \epsilon]$ and hotspot's label keeps the same. ϵ is set to 0.2.
- Data preprocessing
 - Down-sampled to 128×128
- Training hyperparameters
 - Batch size:128
 - Learning rate: Initial 0.15, exponentially decay each time loss plateaus
 - Optimizer: NAdam optimizer [Dozat, 2016]
 - Initializer: Xavier initializer [Glorot, 2010]

Outline

Introduction

Proposed Binarized Neural Network-based Hotspot Detector

Experimental Results

Performance Comparisons with Previous Hotspot Detectors

Benchmark: ICCAD 2012 Contest

Method	Accuracy (%)	False Alarm #	Runtime (s)
SPIE'15	84.2	2919	2672
ICCAD'16	97.7	4497	1052
DAC'17	98.2	3413	482
Ours	99.2	2787	60

- Accuracy improved from 84.2% to 99.2%
- Fewest False Alarms: 2787
- Lowest Runtime: 60s, 8x faster

Thank You