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Split Manufacturing
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Figure 1: Wire width in Nangate 45 nm open cell library.

I Hardware is vulnerable with
un-trusted foundries ab.

I Split manufacturing
safeguards chip designs cd.

a[Durvaux and Standaert 2016]
b[Shamsi et al. 2019]
c[McCants 2011]
d[Bi, Yuan, and Jin 2015]
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Threat Model
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Figure 2: Two source fragments and three sink fragments.

Available: FEOL design, cell library, database of
layouts generated in a similar manner.

Objective: correct connection rate a

CCR =
∑m

i=1 cixi∑m
i=1 ci

, (1)

m is the number of sink fragments,
c1, c2, . . . , cm are the numbers of
sinks in every fragment,
xi = 1 when a positive virtual pin
pair (VPP) is selected for the i-th
sink fragment, xi = 0 when a
negative VPP is selected for the
i-th sink fragment.

a[Wang et al. 2018]
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Contributions

Vector- and Image-based Feature Extraction
A!acking DesignsTraining Designs

Network Training A!acking

Figure 3: A�ack flow.

I Design and train a deep neural network to
predict the missing BEOL connections.

I The neural network makes use of both
vector-based and image-based features.

I Propose so�max regression loss to select best
connection among variable-size candidates.

4 / 15



Vector-based Features

I Distances for VPPs along both directions.
I Numbers of sinks connected within the fragments.
I Maximum capacitance of the driver and pin capacitance of the sinks.
I Wirelength and via contribution in each FEOL metal layer.
I Driver delay according to the underlying timing paths.
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Image-based Features

Feature Image 1

Feature Image 2

Feature Image 3

Figure 4: Layout Image Scaling.
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Figure 5: Layout Image Representation.
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Sample Selection
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Figure 6: All VPPs are considered as candidates except VPP (Source A, Sink B).

Table 1: VPP Preferences

Sink Source Sink Prefers Source Source Prefers Sink Direction Criterion

A A 3 7 3

A B 3 3 3

B A 7 7 7

B B 3 3 3
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Model Architecture
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Figure 7: Neural Network Structure.
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Model Architecture
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So�max Regression Loss
The loss of the two-class classification is
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The partial derivative in the last FC layer is
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We propose the following so�max regression loss

lc = − log
est∑n
j=1 e

sj , (5)

whose partial derivative is

∂lc
∂sj
=
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(6)

The partial derivative in the last FC layer is
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sj − xi, t . (7)
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Experimental Results
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Experimental Results
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Figure 9: Comparison between di�erent se�ings of techniques used.
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Conclusion

I Demonstrate vector-based and image-based features.

I Process these heterogeneous features simultaneously in a neural network.

I Propose a so�max regression loss.
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Thanks!

�estions?
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