Attacking Split Manufacturing from a Deep Learning Perspective

Haocheng Li¹, Satwik Patnaik², Abhrajit Sengupta², Haoyu Yang¹, Johann Knechtel³, Bei Yu¹, Evangeline F. Y. Young¹, Ozgur Sinanoglu³

¹The Chinese University of Hong Kong ²New York University ³New York University Abu Dhabi

1/15

= nar

Split Manufacturing

M10		
V9		
M9		
V8		
M8]
V7]
M7]
V6		_
M6		
V5		
M5		
V4		
M4	Back-en	d-of-line (BEOL)
V3	Front-en	d-of-line (FEOL)
M3		· · · · ·
V2		
M2		
V1		
M1		

- Hardware is vulnerable with un-trusted foundries ^{ab}.
- Split manufacturing safeguards chip designs ^{cd}.
- ^{*a*}[Durvaux and Standaert 2016] ^{*b*}[Shamsi et al. 2019] ^{*c*}[McCants 2011] ^{*d*}[Bi, Yuan, and Jin 2015]

Figure 1: Wire width in Nangate 45 nm open cell library.

Threat Model

Figure 2: Two source fragments and three sink fragments.

Available: FEOL design, cell library, database of layouts generated in a similar manner.

Objective: correct connection rate ^a

$$CCR = \frac{\sum_{i=1}^{m} c_i x_i}{\sum_{i=1}^{m} c_i},$$
 (1)

m is the number of sink fragments, c_1, c_2, \ldots, c_m are the numbers of sinks in every fragment,

 $x_i = 1$ when a positive virtual pin pair (VPP) is selected for the *i*-th sink fragment, $x_i = 0$ when a negative VPP is selected for the *i*-th sink fragment.

^{*a*}[Wang et al. 2018]

Contributions

Figure 3: Attack flow.

- Design and train a deep neural network to predict the missing BEOL connections.
- The neural network makes use of both vector-based and image-based features.
- Propose softmax regression loss to select best connection among variable-size candidates.

Vector-based Features

- Distances for VPPs along both directions.
- Numbers of sinks connected within the fragments.
- Maximum capacitance of the driver and pin capacitance of the sinks.
- Wirelength and via contribution in each FEOL metal layer.
- Driver delay according to the underlying timing paths.

Image-based Features

Figure 4: Layout Image Scaling.

Figure 5: Layout Image Representation.

Sample Selection

Figure 6: All VPPs are considered as candidates except VPP (Source A, Sink B).

Table 1: VPP Preferences

Sink	Source	Sink Prefers Source	Source Prefers Sink	Direction Criterion
A	A	1	X	1
A	B	1	\checkmark	✓
В	A	×	×	×
B	В	1	\checkmark	\checkmark

э.

Model Architecture

Figure 7: Neural Network Structure.

Model Architecture

Figure 8: Neural Network Architecture.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

9/15

Softmax Regression Loss

The loss of the two-class classification is

$$l_r = -\frac{1}{n} \left(\log \frac{e^{s_t^+}}{e^{s_t^-} + e^{s_t^+}} + \sum_{j \neq t} \log \frac{e^{s_j^-}}{e^{s_j^-} + e^{s_j^+}} \right), \quad (2)$$

whose partial derivative is

$$\frac{\partial l_r}{\partial s_j^+} = -\frac{\partial l_r}{\partial s_j^-} = \begin{cases} -\frac{e^{s_j^-}}{n\left(e^{s_j^-} + e^{s_j^+}\right)} & \text{if } j = t, \\ \frac{e^{s_j^+}}{n\left(e^{s_j^-} + e^{s_j^+}\right)} & \text{otherwise.} \end{cases}$$
(3)

The partial derivative in the last FC layer is

$$\frac{\partial l_r}{\partial w_i^+} = -\frac{\partial l_r}{\partial w_i^-} = \frac{1}{n} \left(\sum_{j=1}^n \frac{e^{s_j^+} x_{i,j}}{e^{s_j^-} + e^{s_j^+}} - x_{i,t} \right).$$
(4)

We propose the following softmax regression loss

$$l_{c} = -\log \frac{e^{s_{t}}}{\sum_{j=1}^{n} e^{s_{j}}},$$
(5)

whose partial derivative is

$$\frac{\partial l_c}{\partial s_j} = \begin{cases} \frac{e^{s_j}}{\sum_{j=1}^n e^{s_j}} - 1 & \text{if } j = t, \\ \frac{e^{s_j}}{\sum_{j=1}^n e^{s_j}} & \text{otherwise.} \end{cases}$$
(6)

The partial derivative in the last FC layer is

$$\frac{\partial l_c}{\partial w_i} = \frac{\sum_{j=1}^n e^{s_j} x_{i,j}}{\sum_{j=1}^n e^{s_j}} - x_{i,t}.$$
(7)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Experimental Results

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … 釣ぬの

Experimental Results

Figure 9: Comparison between different settings of techniques used.

Conclusion

- Demonstrate vector-based and image-based features.
- Process these heterogeneous features simultaneously in a neural network.
- Propose a softmax regression loss.

Thanks!

Questions?

References I

- Bi, Yu, Jiann Yuan, and Yier Jin (2015). "Beyond the interconnections: Split manufacturing in RF designs". In: *Electronics* 4.3, pp. 541–564.
- Durvaux, François and François-Xavier Standaert (2016). "From improved leakage detection to the detection of points of interests in leakage traces". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, pp. 240–262.
- McCants, C (2011). "Trusted integrated chips (TIC)". In: Intelligence Advanced Research Projects Activity (IARPA), Tech. Rep.
- Shamsi, Kaveh, Travis Meade, Meng Li, David Z. Pan, and Yier Jin (2019). "On the approximation resiliency of logic locking and IC camouflaging schemes". In: *IEEE Transactions on Information Forensics and Security* 14.2, pp. 347–359.
- Wang, Yujie, Pu Chen, Jiang Hu, Guofeng Li, and Jeyavijayan Rajendran (2018). "The cat and mouse in split manufacturing". In: *IEEE Transactions on Very Large Scale Integration (VLSI) Systems* 26.5, pp. 805–817.