Hotspot Detection Using Squish-Net

Haoyu Yang, The Chinese University of Hong Kong (Hong Kong SAR); Piyush Pathak, Frank Gennari, Ya-Chieh Lai, Cadence Design Systems (United States); Bei Yu, The Chinese University of Hong Kong (Hong Kong SAR).

cādence[®]

Outline

Introduction

Adaptive Squish Pattern

The Squish-Net Framework

Results

Conclusion

© 2018 Cadence Design Systems, Inc. All rights reserved.

Moore's Law Extreme Scaling

Lithography Proximity Effect

- What you see \neq what you get
- Diffraction information loss

- ▶ RET: OPC, SRAF, MPL
- ▶ Worse on designs under 10*nm* or beyond

Hospot Detection

- Design-process weak points
 - called "hotspots"
 - source of systematic yield loss.
- Conventional verification methods
 - Process simulations
 - Accurate
 - Can detect new/unknown "hotspots"
 - Long runtimes
 - Pattern Matching
 - Fast runtimes
 - Less accurate
 - Cannot detect new/unknown "hotspots"

Source: J. Yang et al. "DRCPlus in a router: automatic elimination of lithography hotspots using 2D pattern detection and correction", Proc. SPIE, 76410 (2010)

Supervised Machine Learning in DFM

Source: V. Dai et al. "Developing DRC plus rules through 2D pattern extraction and clustering techniques", Proc. SPIE, 7275 (2009)

- Application of Machine Learning (ML) for hotspot detection
 - Requirements:
 - Can detect new/unknown hotspots
 - Reasonable detection accuracy

Problem Statement

- Build predictive models trained over the known hotspots to detect hotspots on new design data

7

Adaptive Squish Pattern

© 2018 Cadence Design Systems, Inc. All rights reserved.

Data Representation: Pattern Catalog

Source: J. Kim et al. "Advanced DFM Analytics with Machine Learning on Layout Hotspot Prediction", DAC, 2018 (WIP)

- 1. Systematically window across entire design
- In every fixed window, centered on the corner or center of anchor layer shape, identify <u>every</u> pattern that exists in that design and target layer(s) (with <u>dimensions</u>)
- 3. Store a full catalog of all patterns with dimensions!

Adaptive Squish [Yang+, ASPDAC'19]

Padding does not solve the problem

10

Adaptive Squish

Instead of padding, we repeat certain rows or columns of squish topologies $\mathbf{T'} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$

- Which rows/columns are to be repeated/duplicated?
 - In machine learning, if some entries of the input are too large/small, there will be bias related to those entries.
 - Subtract RGB means in conventional image classification tasks.
 - Duplicate rows/columns with larger deltas.

$$\min_{\mathbf{s}} || \boldsymbol{\delta}' ||_{\infty}$$

s.t. $\delta'_i = \delta_i / s_i, \forall i,$
 $s_i \in \mathbb{Z}^+, \forall i,$
 $\sum_i s_i = d.$

A Greedy Solution for Adaptive Squish

Pattern $\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{vmatrix}$ deltaX=[28 18 2] deltaY=[16 16 16] $3 \times 3 \rightarrow 3 \times 6$ Algorithm 1 Obtaining adaptive squish patterns with a greedy procedure. **Input:** T, δ , a, d₀, d; Output: T, δ ;
 I
 I
 I
 I
 0
 0
 0

 Result
 1
 1
 1
 0
 0
 0

 I
 1
 1
 1
 1
 0
 0
1: while $d_0 < d$ do $\mathbf{s} \leftarrow \mathbf{1} \in \mathbb{R}^{d_0}, i \leftarrow \arg \max_i \{\delta_i | i = 1, 2, ..., d_0 - 1\};$ 2: $s_i \leftarrow 2, \, \delta_i \leftarrow \delta_i/2, \, \forall i;$ 3: 4: $\delta \leftarrow \text{RepeatElements}(\delta, s, 1);$ 5: $T \leftarrow \text{RepeatElements}(T, s, a);$ $deltaX = \begin{bmatrix} 7 & 7 & 14 & 9 & 9 & 2 \end{bmatrix}$ $d_0 \leftarrow d_0 + 1;$ 6: 7: end while $deltaY = [16 \ 16 \ 16]$

cādence[°]

The Squish-Net Framework

Pattern Labeling

Should a pattern be labeled as hotspot as long as defects occur?

- Hotspots are caused by a larger pattern context.
- Risky if defects are located near the boundaries of the clip.
- C2C distance (t_c2c=48nm)

-- X -- Defect • Clip Center

(a) Hotspot

(b) Non-hotspot

(c) Non-hotspot

Imbalance-aware Training

Statistics of the dataset

- Highly imbalanced
- Overfitting

Force balanced batch [Yang+, TCAD]

Algorithm 3 Batch Biased-learning
Require: W, λ , α , k , \mathbf{y}_h^* , \mathbf{y}_n^* , β ;
1: Initialize parameters, $\mathbf{y}_h^* \leftarrow [0, 1];$
2: while not stop condition do
3: Sample <i>m</i> non-hotspot instances $\{N_1, N_2,, N_m\};$
4: Sample <i>m</i> hotspot instances $\{\mathbf{H}_1, \mathbf{H}_2,, \mathbf{H}_m\};$
5: Calculate average loss of non-hotspot samples l_n with
ground truth $[1,0]$;
6: $\mathbf{y}_n^* \leftarrow [1 - \epsilon(l_n), \epsilon(l_n)];$
7: for $i \leftarrow 1, 2,, m$ do
8: $\mathcal{G}_{h,i} \leftarrow backprop(\mathbf{H}_i);$
9: $\mathcal{G}_{n,i} \leftarrow backprop(\mathbf{N}_i);$
10: end for
11: Calculate gradient $\overline{\mathcal{G}} \leftarrow \frac{1}{2m} \sum_{i=1}^{m} (\mathcal{G}_{h,i} + \mathcal{G}_{n,i});$
12: Update weight $\mathbf{W} \leftarrow \mathbf{W} - \overline{\lambda \mathcal{G}};$
13: if $j \mod k = 0$ then
14: $\lambda \leftarrow \alpha \lambda, j \leftarrow 0;$
15: end if
16: end while

cādence[®]

Imbalance-aware Training

• Pre-sampling according to CCD score.

CCD- Count of Critical Dimension

Pathak, Piyush, et al. "Methodology to extract, data mine and score geometric constructs from physical design layouts for analysis and applications in semiconductor manufacturing." *Design-Process-Technology Co-optimization for Manufacturability X*. Vol. 9781. International Society for Optics and Photonics, 2016.

Legacy CNN Structure

The Network Architecture

conv/2 conv/1 fc

ResBlock-1 ResBlock-2 ResBlock-3

He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016.

Yang, Haoyu, et al. "Lithography hotspot detection: From shallow to deep learning." 2017 30th IEEE International System-on-Chip Conference (SOCC). IEEE, 2017.

- ResBlock: Allows gradients to be easily backpropagated towards earlier layers.
- NoPool: Replace all pooling layers with strided convolutions to alleviate information loss.

Study of C2C Threshold

- Smaller C2C threshold: Low label noises, high imbalanced distribution.
- Larger C2C threshold: High label noises, even data distribution.

Study of Pattern Radius

- Best performance occurs at r=112nm.
- Larger radius gives more pattern context information while making the imbalanced problem worse.

• Adaptive squish pattern to fit machine learning engines

- Fixed representation size for fixed pattern

- Labeling of layout patterns
 - C2C threshold

Study of pattern radius

- Tradeoffs between context information and imbalanced data distribution

• Efficient learning model

ResNet+NoPooling

cādence®

© 2018 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at <u>www.cadence.com/go/trademarks</u> are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.