Detecting Multi-Layer Layout Hotspots with Adaptive Squish Patterns

> Haoyu Yang¹, Piyush Pathak², Frank Gennari², Ya-Chieh Lai², Bei Yu¹

¹The Chinese University of Hong Kong ²Cadence Design Systems Inc.

cādence

Outline

Introduction

The Algorithm

Results

Conclusion

Outline

Introduction

The Algorithm

Results

Conclusion

Moore's Law to Extreme Scaling

Lithography Proximity Effect

- What you see \neq what you get
- Diffraction information loss

- ▶ RET: OPC, SRAF, MPL
- Worse on designs under 10nm or beyond

Machine Learning based Hotspot Detection

Machine Learning based Hotspot Detection

Predict new patterns

- Decision-tree, ANN, SVM, Boosting, Deep Neural Networks
- [Drmanac+,DAC'09] [Ding+,TCAD'12] [Yu+,JM3'15] [Matsunawa+,SPIE'15] [Yu+,TCAD'15][Zhang+,ICCAD'16][Yang+,DAC'17][Yang+,TCAD]

Multi-Layer Hotspots

- More complicated patterns
- More failure types (e.g. Metal-to-Via failure)

Layout Representations

Density-based features [Matsunawa+,SPIE'15]

Concentric circle sampling [Zhang+,ICCAD'16]

Feature tensor extraction [Yang+,TCAD]

Squish Patterns

A simple multilayer pattern example with scan lines.

Lossless

- Storage-friendly
- Incompatible with most machine learning engines.

Squish representation does not guarantee a fixed tensor dimensionality for a given clip size.

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}_x = \begin{bmatrix} 0.2 & 0.072 & 0.06 & 0.048 \end{bmatrix},$$

$$\vec{\delta}_y = \begin{bmatrix} 0.013 & 0.06 & 0.017 & 0.137 & 0.09 \end{bmatrix}.$$

Introduction

The Algorithm

Results

Conclusion

An Alternative of Padding

 Legacy padding induces large fraction of zeros that are not informative to CNNs.

- Instead of padding, we repeat certain rows or columns of squish topologies.
- $\vec{\delta}$ s are adjusted accordingly to make the pattern unchanged.

▶ < 글 > < 글 >

Which Rows/Columns Are to Be Duplicated/Repeated?

- In machine learning, if some entries of the input are too large/small, there will be bias related to those entries.
- Subtract RGB means in conventional image classification tasks.
- Duplicate rows/columns with larger deltas.

Adaptive Squish Problem:

$$\min_{\vec{s}} ||\vec{\delta}'||_{\infty} \tag{1a}$$

s.t.
$$\delta'_i = \delta_i / s_i, \forall i,$$
 (1b)

$$s_i \in \mathbb{Z}^+, \forall i,$$
 (1c)

$$\sum_{i} s_i = d. \tag{1d}$$

Repeat Elements

RepeatElements: $\vec{M}' = \text{RepeatElements}(\vec{M}, \vec{s}, a)$, which duplicates the columns (a = 0) or rows (a = 1) of a matrix $\vec{M} \in \mathbb{R}^{a_1 \times a_2}$ by certain times such that the shape of the new matrix \vec{M}' will be increased to a desired value.

 $\vec{m}'_k = \vec{m}_j, \forall \sum_{i=1}^{j-1} s_i < k \le \sum_{i=1}^j s_i.$ (2)

► *a* = 1 :

 $\blacktriangleright a = 0$:

RepeatElements $(\vec{M}, \vec{s}, 1) =$ RepeatElements $(\vec{M}^{\top}, \vec{s}, 0)^{\top}$. (3)

Repeat Elements

For example, if we let $\vec{s} = \begin{bmatrix} 1 & 1 & 2 & 1 \end{bmatrix}^{\top}$ and a = 0, then the RepeatElements operation on the topology matrix \vec{T} will result in

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \vec{T}' = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 3 & 3 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

(4)

Adaptive Squish: Solution 1

Algorithm 1 Obtaining adaptive squish patterns with a greedy procedure.

Extend a 3×3 squish topology to shape 3×6 .

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}_x = \begin{bmatrix} 28 & 18 & 2 \end{bmatrix}, \vec{\delta}_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

$$\vec{T}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix},$$

$$\vec{\delta}'_x = \begin{bmatrix} 7 & 7 & 14 & 9 & 9 & 2 \end{bmatrix}, \vec{\delta}'_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

Adaptive Squish: Solution 2

Algorithm 2 Deriving an approximate solution of Formula (8) that will be used for generating adaptive squish patterns.

Input: δ , d_0 , d; Output: s; 1: $l \leftarrow \sum_i \delta_i$; 2: $t \leftarrow l/(d-1)$; 3: $s_i \leftarrow \max\{1, \operatorname{int}(\delta_i/t)\}, \forall i$; 4: while $\sum_i s_i < d-1$ do 5: $\delta'_i \leftarrow \delta_i/s_i, \forall i$; 6: $i \leftarrow \arg\max_i \{\delta_i | i = 1, 2, ..., d_0 - 1\}$; 7: $s_i \leftarrow s_i + 1$; 8: end while 9: $\delta_i \leftarrow \delta_i/s_i, \forall i$; 10: $\delta \leftarrow \operatorname{RepeatElements}(\delta, s, 1)$; 11: $T \leftarrow \operatorname{RepeatElements}(T, s, a)$; Extend a 3×3 squish topology to shape 3×6 .

$$\vec{T} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix},$$
$$\vec{\delta}_x = \begin{bmatrix} 28 & 18 & 2 \end{bmatrix}, \vec{\delta}_y = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$
$$\vec{T}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix},$$
$$\vec{\delta}_x' = \begin{bmatrix} 9.33 & 9.33 & 9.33 & 9 & 9 & 2 \end{bmatrix}, \vec{\delta}_y' = \begin{bmatrix} 16 & 16 & 16 \end{bmatrix}.$$

Adaptive Squish: Data Preparation

The squish topology and $\vec{\delta}$ s will be stacked together into a 3D tensor $[\vec{T}'; \vec{\delta}'_X; \vec{\delta}'_Y]$ that will be fed into neural networks for training and inference, where,

• • = • • = •

ResNet Block

- Gradient vanishing problem.
- Allows gradient to be easily backpropagated to early layers.
- Feature reuse.

The Neural Network Architecture

	JN	13 [Yang+,J	IM3'17]				Ours		
Layer	Filter	Stride	Output	Parameter	Layer	Filter	Stride	Output	Parameter
conv1-1	3×3×4	2	160×160×4	36	conv1-1	5×5×128	2	32×32×128	9600
conv1-2	3×3×4	2	80×80×4	144	conv1-2	5×5×128	1	32×32×128	409600
conv2-1	3×3×8	1	80×80×8	288	conv1-3	5×5×128	1	32×32×128	409600
conv2-2	3×3×8	1	80×80×8	576	conv1-4	5×5×128	1	32×32×128	409600
conv2-3	3×3×8	1	80×80×8	576	conv2-1	$5 \times 5 \times 256$	2	$16 \times 16 \times 256$	819200
pool2	2×2	2	40×40×8		conv2-2	$5 \times 5 \times 256$	1	$16 \times 16 \times 256$	1638400
conv3-1	3×3×16	1	40×40×16	1152	conv2-3	5×5×256	1	$16 \times 16 \times 256$	1638400
conv3-2	3×3×16	1	40×40×16	2304	conv2-4	$5 \times 5 \times 256$	1	$16 \times 16 \times 256$	1638400
conv3-3	3×3×16	1	$40 \times 40 \times 16$	2304	conv3-1	5×5×512	2	8×8×512	3276800
pool3	2×2	2	20×20×16		conv3-2	5×5×512	1	8×8×512	6553600
conv4-1	3×3×32	1	20×20×32	4608	conv3-3	5×5×512	1	8×8×512	6553600
conv4-2	3×3×32	1	$20 \times 20 \times 32$	9216	conv3-4	5×5×512	1	8×8×512	6553600
conv4-3	3×3×32	1	20×20×32	9216	conv4-1	5×5×1024	2	4×4×1024	13107200
pool4	2×2	2	$10 \times 10 \times 32$						
conv5-1	3×3×32	1	$10 \times 10 \times 32$	9216					
conv5-2	3×3×32	1	10×10×32	9216					
conv5-3	3×3×32	1	$10 \times 10 \times 32$	9216					
pool5	2×2	2	$5 \times 5 \times 32$						
fc1			2048	1638400	fc1			1024	16777216
fc2			512	1048576	fc2			2	2048
fc3			2	1024					
Summary				2746068					59796864

Introduction

The Algorithm

Results

Conclusion

18/21

The Dataset & Configurations

14nm metal layer, M3, V3, V4

	Train	Test	Image	Squish	
Hotspot	3073	6015	200~200	64×64×3	
Nonhotspot	973197	1457830	320×320		

- Initial learning rate: 0.001
- Decay: 0.7 per 2000 steps
- Weight normalization: 0.001
- Xavier, Adam

Results

Hit : # of hotspot patterns that are predicted as hotspots

False Alarm : # of good patterns that are predicted as hotspots

ltem	JM3 [Yang+,JM3'17]	Algorithm 1	Algorithm 2
Accuracy (%)	98.87	97.51	99.24
False Alarm Rate (%)	4.81	5.05	4.52
Hit	5947	5865	5969
False Alarm	70193	73645	65926
Precision (%)	7.81	7.38	8.30

Receiver Operating Characteristics

- JM3 behaves even better than Algorithm 2 in terms of area under curve.
- AUC advantages of JM3 comes from the region where the decision threshold is above 0.9.
- Higher confidence on hotspot patterns that can be correctly predicted by classifiers is not necessary.

Outline

Introduction

The Algorithm

Results

Conclusion

Conclusion

Adaptive Squish Pattern.

Attains good properties of squish patterns and compatible with most learning machines.

Multilayer Hotspot Detection. First time consider metal-to-via failure.

ResNet.

Allow better convergence and model generality.

