SRAF Insertion via Supervised Dictionary Learning

Hao Geng¹, Haoyu Yang¹, Yuzhe Ma¹, Joydeep Mitra², Bei Yu¹

¹The Chinese University of Hong Kong ²Cadence Inc.

Moore's Law to Extreme Scaling

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

E

 290

Nanometer Era of Manufacturing: An Inverter Example

メロトメ 御 トメ 君 トメ 君 ト

Optical Proximity Correction (OPC)

Design target

Optical Proximity Correction (OPC)

Optical Proximity Correction (OPC)

What is SRAF?

- \blacktriangleright Patterns deliver light to target features without printing themselves
- I Make isolated features more dense
- Improve the robustness of the target patterns
- Rule-based [Jun+,SPIE'15], Model-based [Shang+,Mentor'05], Machine learning model-based [Xu+,ISPD'16]

(a) Printing with OPC only (2688 *nm*² PV band area); (b) Printing with both OPC and SRAF (2318 $nm²$ PV band area).

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 & 1 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 2 & 1 & 1 & 1 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 2 & 1 & 1 \end{array} \right\}$

[Supervised Feature Revision](#page-8-0)

[SRAF Insertion](#page-19-0)

[Experimental Results](#page-22-0)

Outline

[Supervised Feature Revision](#page-8-0)

[SRAF Insertion](#page-19-0)

[Experimental Results](#page-22-0)

Concentric Circle Area Sampling

 \blacktriangleright Initial feature extraction method in SRAF generation

(a) SRAF label; (b) CCAS feature extraction method in machine learning model-based SRAF generation.

Introduction to Dictionary Learning

Overview

Originally, the dictionary learning model is composed of two parts. One is **sparse coding** and the other is **dictionary constructing**. The joint objective function with respect to **D** and **x** is below.

$$
\min_{\mathbf{x}, \mathbf{D}} \frac{1}{N} \sum_{t=1}^{N} \left\{ \frac{1}{2} \left\| \mathbf{y}_t - \mathbf{D} \mathbf{x}_t \right\|_2^2 + \lambda \left\| \mathbf{x}_t \right\|_p \right\},\tag{1}
$$

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B}$

- \blacktriangleright $\mathbf{y}_t \in \mathbb{R}^{(n)}$: the *t*-th input data vector
- \blacktriangleright *D* = {**d**_{*j*}}^{*s*}_{*j*} $j_{j=1}^s$, $\mathbf{d}_j \in \mathbb{R}^{(n)}$: the dictionary where every column is called an atom.
- \blacktriangleright $\mathbf{x}_t \in \mathbb{R}^{(s)}$: the sparse code
- \blacktriangleright λ : hyper-parameter
- \blacktriangleright p: the norm type of penalty term, e.g. l_1 norm

8 / 19

┍

┍

Online Learning Framework

Sparse Coding

The subproblem with **D** fixed is convex. The objective function for sparse coding of *i*-th training data vector in memory is

$$
\mathbf{x}_{t} \stackrel{\Delta}{=} \arg\min_{\mathbf{x}} \frac{1}{2} \left\| \mathbf{y}_{t} - \mathbf{D}\mathbf{x} \right\|_{2}^{2} + \lambda \|\mathbf{x}\|_{p}.
$$
 (2)

Solver Details

- \blacktriangleright $p = 0$: l_0 norm and NP-hard [Mallat+, TIP'93], [Pati+, ACSSC'93]
- \blacktriangleright $p = 1$: LASSO problem [Friedman+, JSS'10], [Beck+, SIIMS'09]

Online Learning Framework

Dictionary Constructing

The subproblem with **x** fixed is also convex. The objective function for dictionary constructing is

$$
\mathbf{D} \stackrel{\Delta}{=} \arg\min_{\mathbf{D}} \frac{1}{N} \sum_{t=1}^{N} \frac{1}{2} \left\| \mathbf{y}_t - \mathbf{D} \mathbf{x}_t \right\|_2^2 + \lambda \left\| \mathbf{x}_t \right\|_p.
$$
 (3)

Solver Details

- I Block coordinate descent method with warm start
- Introducing two auxiliary variables \bf{B} and **C** to speed up convergence rate
- \blacktriangleright Sequentially updating atoms in a dictionary **D**

$$
\vec{B}_t \leftarrow \frac{t-1}{t} \vec{B}_{t-1} + \frac{1}{t} \vec{y}_t \vec{x}_t^{\top}, \tag{4}
$$

$$
\vec{C}_t \leftarrow \frac{t-1}{t}\vec{C}_{t-1} + \frac{1}{t}\vec{x}_t\vec{x}_t^{\top}.
$$
 (5)

Further Exploration: Supervised Dictionary Learning

Exploring Latent Label Information

$$
\min_{\mathbf{x}, \mathbf{D}, \mathbf{A}} \frac{1}{N} \sum_{t=1}^{N} \left\{ \frac{1}{2} \left\| \left(\mathbf{y}_{t}^{\top}, \sqrt{\alpha} \mathbf{q}_{t}^{\top} \right)^{\top} - \left(\frac{\mathbf{D}}{\sqrt{\alpha} \mathbf{A}} \right) \mathbf{x}_{t} \right\|_{2}^{2} + \lambda \|\mathbf{x}_{t}\|_{p} \right\}.
$$
 (6)

Exploiting both Latent and Direct Label Information

$$
\min_{\mathbf{x}, \mathbf{D}, \mathbf{A}, \mathbf{W}} \frac{1}{N} \sum_{t=1}^{N} \left\{ \frac{1}{2} \left\| \left(\mathbf{y}_{t}^{\top}, \sqrt{\alpha} \mathbf{q}_{t}^{\top}, \sqrt{\beta} h_{t} \right)^{\top} - \left(\frac{\mathbf{D}}{\sqrt{\alpha} \mathbf{A}} \right) \mathbf{x}_{t} \right\|_{2}^{2} + \lambda \|\mathbf{x}_{t}\|_{p} \right\}.
$$
 (7)

イロト 不優 トス 差 トス 差 ト

The Illustration for Supervised Online Dictionary Learning

Outline

[Supervised Feature Revision](#page-8-0)

[SRAF Insertion](#page-19-0)

[Experimental Results](#page-22-0)

SRAF Insertion

Preliminary Work

IN SRAF probability learning for each grid: Logistic regression

In SRAF grid model construction: Merging

$$
c(x, y) = \begin{cases} \sum_{(i,j) \in (x, y)} p(i,j), & \text{if } \exists p(i,j) \ge \text{threshold}, \\ -1, & \text{if all } p(i,j) < \text{threshold}. \end{cases}
$$

▶
$$
p(i, j)
$$
: the probability of a grid with index (i, j)

 $c(x, y)$: the summed probability value of $\overline{c(x, y)}$ (x,y) (x,y)

SRAF grid model construction.

(8)

SRAF Insertion via ILP

$$
\max_{a(x,y)} \sum_{x,y} c(x,y) \cdot a(x,y) \qquad (9a)
$$
\n
$$
\text{s.t.} \quad a(x,y) + a(x-1,y-1) \le 1, \qquad \forall (x,y), \quad (9b)
$$
\n
$$
a(x,y) + a(x-1,y+1) \le 1, \qquad \forall (x,y), \quad (9c)
$$
\n
$$
a(x,y) + a(x+1,y-1) \le 1, \qquad \forall (x,y), \quad (9d)
$$
\n
$$
a(x,y) + a(x+1,y+1) \le 1, \qquad \forall (x,y), \quad (9e)
$$
\n
$$
a(x,y) + a(x,y+1) + x(x,y+2) + a(x,y+3) \le 3, \qquad \forall (x,y), \quad (9f)
$$
\n
$$
a(x,y) + a(x+1,y) + x(x+2,y) + a(x+3,y) \le 3, \qquad \forall (x,y), \quad (9g)
$$
\n
$$
a(x,y) \in \{0,1\}, \qquad \forall (x,y). \quad (9h)
$$

SRAF insertion design rule under the grid model.

イロト 不優 トイモト 不正人

Outline

[Supervised Feature Revision](#page-8-0)

[SRAF Insertion](#page-19-0)

[Experimental Results](#page-22-0)

The Overall Flow

K ロ ト K 御 ト K 君 ト K 君 ト

Experimental Bed

Benchmark Set

- The same benchmark set as applied in $[Xu+.$ ISPD'16]
- \triangleright 8 dense layouts and 10 sparse layouts with contacts sized 70nm
- \triangleright 70nm spacing for dense and \triangleright 70nm spacing for sparse layouts

(a) Dense layout with golden SRAFs; (b) Sparse layout with gold[en](#page-23-0) S[R](#page-25-0)[A](#page-23-0)[Fs.](#page-24-0)

Results \mathbf{S} , comparison with a state-of-the-art SRAF insertion tools tool

defined as the discriminative sparse code of t-th input sample, and then A 2 Rs \sim performance comparisons with a state-of-the-art ma We employ a benchmark set which consists of 8 dense nic performance comparisons with a state-of-the-art machine learning base Lithographic performance comparisons with a state-of-the-art machine learning based SRAF insertion tool.

 $\{1, 1, 2, \ldots, N\}$ and $\{1, 2, \ldots, N\}$ is an equal $\{1, 2, \ldots, N\}$.

DE STE **JONFERENC** 2990

活

Conclusion

Summary:

 \blacktriangleright First introduced the concept of dictionary learning into the layout feature extraction stage

and further proposed a supervised online dictionary learning algorithm.

- \blacktriangleright ILP for SRAF generation in a global view.
- Boost F_1 score and enhance lithographic performance with less time overhead.

Future Work:

 \blacktriangleright .

- ▶ Speed up SRAF insertion process
- Consider more SRAF design rules into ILP

