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Nanometer Era of Manufacturing: An Inverter Example
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Optical Proximity Correction (OPC)

Design target
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Optical Proximity Correction (OPC)

Design target Mask Wafer

without OPC
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Optical Proximity Correction (OPC)

Design target Mask Wafer

without OPC

with OPC
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What is SRAF?

I Patterns deliver light to target features without printing themselves
I Make isolated features more dense
I Improve the robustness of the target patterns
I Rule-based [Jun+,SPIE’15], Model-based [Shang+,Mentor’05], Machine learning

model-based [Xu+,ISPD’16]

(a)

(b)

Target

OPC

SRAF

PV band

(a) Printing with OPC only (2688 nm2 PV band area); (b) Printing with both OPC and SRAF (2318
nm2 PV band area).
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Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results
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Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results
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Concentric Circle Area Sampling

I Initial feature extraction method in SRAF generation

Label: 1

Label: 0

(a)

0 1 2N%1
sub%sampling0point

(b)

(a) SRAF label; (b) CCAS feature extraction method in machine learning model-based SRAF generation.
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Introduction to Dictionary Learning

Overview
Originally, the dictionary learning model is composed of two parts. One is sparse coding
and the other is dictionary constructing. The joint objective function with respect to D and
x is below.

min
x,D

1
N

N∑

t=1

{1
2
‖yt − Dxt‖2

2 + λ ‖xt‖p}, (1)

I yt ∈ R(n): the t-th input data vector
I D = {dj}sj=1 ,dj ∈ R(n): the dictionary where every column is called an atom.

I xt ∈ R(s): the sparse code
I λ: hyper-parameter
I p: the norm type of penalty term, e.g. l1 norm
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The Illustration for Dictionary Learning

yt>
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The Illustration for Dictionary Learning

yt>
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The Illustration for Dictionary Learning

yt>

D

xt>
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Online Learning Framework

Sparse Coding

The subproblem with D fixed is convex. The objective function for sparse coding of i-th
training data vector in memory is

xt
∆
=argmin

x

1
2
‖yt − Dx‖22 + λ‖x‖p. (2)

Solver Details

I p = 0: l0 norm and NP-hard [Mallat+,TIP’93], [Pati+,ACSSC’93]
I p = 1: LASSO problem [Friedman+,JSS’10], [Beck+,SIIMS’09]
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Online Learning Framework
Dictionary Constructing

The subproblem with x fixed is also convex. The objective function for dictionary
constructing is

D ∆
=argmin

D

1
N

N∑

t=1

1
2
‖yt − Dxt‖22 + λ‖xt‖p. (3)

Solver Details
I Block coordinate descent method with

warm start
I Introducing two auxiliary variables B and

C to speed up convergence rate
I Sequentially updating atoms in a

dictionary D

~Bt ←
t − 1

t
~Bt−1 +

1
t
~yt~x>t , (4)

~Ct ←
t − 1

t
~Ct−1 +

1
t
~xt~x>t . (5)
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Further Exploration: Supervised Dictionary Learning
Exploring Latent Label Information

min
x,D,A

1
N

N∑

t=1
{1

2

∥∥∥∥
(

y>t ,
√
αq>t

)>
−
(

D√
αA

)
xt

∥∥∥∥
2

2
+ λ‖xt‖p}. (6)

Exploiting both Latent and Direct Label Information

min
x,D,A,W

1
N

N∑

t=1
{1

2

∥∥∥∥∥∥

(
y>t ,
√
αq>t ,

√
βht

)>
−




D√
αA√
βW


 xt

∥∥∥∥∥∥

2

2

+ λ‖xt‖p}. (7)
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The Illustration for Supervised Online Dictionary Learning

xi>for i  t

yi>,
p
↵q>t ,

p
�ht

0
@

Dp
↵Ap
�W

1
A
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Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results
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SRAF Insertion
Preliminary Work

I SRAF probability learning for each grid: Logistic regression
I SRAF grid model construction: Merging

c(x, y) =

{∑
(i,j)∈(x,y) p(i, j), if ∃ p(i, j) ≥ threshold,

−1, if all p(i, j) < threshold.
(8)

I p(i, j): the probability of a grid with index
(i,j)

I c(x, y): the summed probability value of
merged grid with index (x,y)

(x, y)

(i, j)

10nm

SRAF grid model construction.
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SRAF Insertion via ILP

max
a(x,y)

∑

x,y
c(x, y) · a(x, y) (9a)

s.t. a(x, y) + a(x− 1, y− 1) ≤ 1, ∀(x, y), (9b)
a(x, y) + a(x− 1, y + 1) ≤ 1, ∀(x, y), (9c)
a(x, y) + a(x + 1, y− 1) ≤ 1, ∀(x, y), (9d)
a(x, y) + a(x + 1, y + 1) ≤ 1, ∀(x, y), (9e)
a(x, y) + a(x, y + 1) + x(x, y + 2)

+ a(x, y + 3) ≤ 3, ∀(x, y), (9f)
a(x, y) + a(x + 1, y) + x(x + 2, y)

+ a(x + 3, y) ≤ 3, ∀(x, y), (9g)
a(x, y) ∈ {0, 1}, ∀(x, y). (9h)

Wmin

Wmax

40nm

X X

X X

SRAF insertion design rule
under the grid model.
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Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results
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The Overall Flow

CCAS Feature ExtractionLayout 
Pattern

Supervised Feature Revision

SRAF Probability Learning
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Experimental Bed

Benchmark Set

I The same benchmark set as applied in [Xu+,ISPD’16]
I 8 dense layouts and 10 sparse layouts with contacts sized 70nm
I 70nm spacing for dense and ≥ 70nm spacing for sparse layouts

(a) (b)

(a) Dense layout with golden SRAFs; (b) Sparse layout with golden SRAFs.
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Results
the proposed approach shows some improvement on accuracy
with higher false alarms.

B. SRAF insertion

In the flow of machine learning-based SRAF insertion,
when comes to the feature extraction stage, each layout
clip is firstly put on a 2-D grid plane with a specific grid
size. Then original features are extracted via constrained
concentric circle with area sampling (CCCAS) method at each
grid.With CCCAS features and corresponding labels as input,
the proposed supervised online dictionary learning (SODL)
model will be expected to output the discriminative feature in
low-dimension.

Considering the label information, the joint objective func-
tion has been proposed as Equation (2) in [2]:
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where yt 2 Rn still acts as the raw feature vector, and D =
{dj}s

j=1 ,dj 2 Rn refers to the dictionary, xt 2 Rs indicates
new representation of a CCCAS feature. Besides, qt 2 Rs is
defined as the discriminative sparse code of t-th input sample,
and then A 2 Rs⇥s transforms original sparse code xt into
discriminative sparse code. In addition, ht 2 R is the label
information, while W 2 R1⇥s is the label weight vector. ↵
and � are hyper-parameters which control the contribution of
each term to reconstruction error and balance the trade-off.

After feature extraction via CCCAS and proposed SODL
framework, the new discriminative feature in low-dimension is
fed into a machine learning classifier. Through SODL model
and classifier, the probabilities of each 2-D grid can be ob-
tained. Combined with some relaxed SRAF design rules such
as maximum length and width, minimum spacing, the SRAF
insertion can be modeled as an integer linear programming
(ILP) problem. With ILP to model SRAF insertion, we will
obtain a global view for SRAF generation.

We employ a benchmark set which consists of 8 dense
layouts and 10 sparse layouts with contacts sized 70nm. The
spacing for dense and sparse layouts are set to 70nm and
� 70nm respectively. In following comparisons (i.e. Figures 4
to 7), “ISPD’16” denotes the results from a state-of-the-
art SRAF insertion tool , while “SODL” and “SODL+ILP”
correspond to the results of our supervised online dictionary
learning framework without and with ILP model in post-
processing. Note that in “SODL”, a greedy SRAF generation
approach as in “ISPD’16” is utilized. Due to the length of
limitation, only comparisons of SRAF insertion outputs on
one sparse benchmark are exemplified in Fig. 7, in which red
rectangles are inserted SRAFs, while green ones are OPCed
target contacts. Therefore, experimental results have verified
the effectiveness and the efficiency of our SODL algorithm
and ILP model.
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the proposed approach shows some improvement on accuracy
with higher false alarms.

B. SRAF insertion

In the flow of machine learning-based SRAF insertion,
when comes to the feature extraction stage, each layout
clip is firstly put on a 2-D grid plane with a specific grid
size. Then original features are extracted via constrained
concentric circle with area sampling (CCCAS) method at each
grid.With CCCAS features and corresponding labels as input,
the proposed supervised online dictionary learning (SODL)
model will be expected to output the discriminative feature in
low-dimension.

Considering the label information, the joint objective func-
tion has been proposed as Equation (2) in [2]:
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where yt 2 Rn still acts as the raw feature vector, and D =
{dj}s

j=1 ,dj 2 Rn refers to the dictionary, xt 2 Rs indicates
new representation of a CCCAS feature. Besides, qt 2 Rs is
defined as the discriminative sparse code of t-th input sample,
and then A 2 Rs⇥s transforms original sparse code xt into
discriminative sparse code. In addition, ht 2 R is the label
information, while W 2 R1⇥s is the label weight vector. ↵
and � are hyper-parameters which control the contribution of
each term to reconstruction error and balance the trade-off.

After feature extraction via CCCAS and proposed SODL
framework, the new discriminative feature in low-dimension is
fed into a machine learning classifier. Through SODL model
and classifier, the probabilities of each 2-D grid can be ob-
tained. Combined with some relaxed SRAF design rules such
as maximum length and width, minimum spacing, the SRAF
insertion can be modeled as an integer linear programming
(ILP) problem. With ILP to model SRAF insertion, we will
obtain a global view for SRAF generation.

We employ a benchmark set which consists of 8 dense
layouts and 10 sparse layouts with contacts sized 70nm. The
spacing for dense and sparse layouts are set to 70nm and
� 70nm respectively. In following comparisons (i.e. Figures 4
to 7), “ISPD’16” denotes the results from a state-of-the-
art SRAF insertion tool , while “SODL” and “SODL+ILP”
correspond to the results of our supervised online dictionary
learning framework without and with ILP model in post-
processing. Note that in “SODL”, a greedy SRAF generation
approach as in “ISPD’16” is utilized. Due to the length of
limitation, only comparisons of SRAF insertion outputs on
one sparse benchmark are exemplified in Fig. 7, in which red
rectangles are inserted SRAFs, while green ones are OPCed
target contacts. Therefore, experimental results have verified
the effectiveness and the efficiency of our SODL algorithm
and ILP model.
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the proposed approach shows some improvement on accuracy
with higher false alarms.

B. SRAF insertion

In the flow of machine learning-based SRAF insertion,
when comes to the feature extraction stage, each layout
clip is firstly put on a 2-D grid plane with a specific grid
size. Then original features are extracted via constrained
concentric circle with area sampling (CCCAS) method at each
grid.With CCCAS features and corresponding labels as input,
the proposed supervised online dictionary learning (SODL)
model will be expected to output the discriminative feature in
low-dimension.

Considering the label information, the joint objective func-
tion has been proposed as Equation (2) in [2]:
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where yt 2 Rn still acts as the raw feature vector, and D =
{dj}s

j=1 ,dj 2 Rn refers to the dictionary, xt 2 Rs indicates
new representation of a CCCAS feature. Besides, qt 2 Rs is
defined as the discriminative sparse code of t-th input sample,
and then A 2 Rs⇥s transforms original sparse code xt into
discriminative sparse code. In addition, ht 2 R is the label
information, while W 2 R1⇥s is the label weight vector. ↵
and � are hyper-parameters which control the contribution of
each term to reconstruction error and balance the trade-off.

After feature extraction via CCCAS and proposed SODL
framework, the new discriminative feature in low-dimension is
fed into a machine learning classifier. Through SODL model
and classifier, the probabilities of each 2-D grid can be ob-
tained. Combined with some relaxed SRAF design rules such
as maximum length and width, minimum spacing, the SRAF
insertion can be modeled as an integer linear programming
(ILP) problem. With ILP to model SRAF insertion, we will
obtain a global view for SRAF generation.

We employ a benchmark set which consists of 8 dense
layouts and 10 sparse layouts with contacts sized 70nm. The
spacing for dense and sparse layouts are set to 70nm and
� 70nm respectively. In following comparisons (i.e. Figures 4
to 7), “ISPD’16” denotes the results from a state-of-the-
art SRAF insertion tool , while “SODL” and “SODL+ILP”
correspond to the results of our supervised online dictionary
learning framework without and with ILP model in post-
processing. Note that in “SODL”, a greedy SRAF generation
approach as in “ISPD’16” is utilized. Due to the length of
limitation, only comparisons of SRAF insertion outputs on
one sparse benchmark are exemplified in Fig. 7, in which red
rectangles are inserted SRAFs, while green ones are OPCed
target contacts. Therefore, experimental results have verified
the effectiveness and the efficiency of our SODL algorithm
and ILP model.
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the proposed approach shows some improvement on accuracy
with higher false alarms.

B. SRAF insertion

In the flow of machine learning-based SRAF insertion,
when comes to the feature extraction stage, each layout
clip is firstly put on a 2-D grid plane with a specific grid
size. Then original features are extracted via constrained
concentric circle with area sampling (CCCAS) method at each
grid.With CCCAS features and corresponding labels as input,
the proposed supervised online dictionary learning (SODL)
model will be expected to output the discriminative feature in
low-dimension.

Considering the label information, the joint objective func-
tion has been proposed as Equation (2) in [2]:
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where yt 2 Rn still acts as the raw feature vector, and D =
{dj}s

j=1 ,dj 2 Rn refers to the dictionary, xt 2 Rs indicates
new representation of a CCCAS feature. Besides, qt 2 Rs is
defined as the discriminative sparse code of t-th input sample,
and then A 2 Rs⇥s transforms original sparse code xt into
discriminative sparse code. In addition, ht 2 R is the label
information, while W 2 R1⇥s is the label weight vector. ↵
and � are hyper-parameters which control the contribution of
each term to reconstruction error and balance the trade-off.

After feature extraction via CCCAS and proposed SODL
framework, the new discriminative feature in low-dimension is
fed into a machine learning classifier. Through SODL model
and classifier, the probabilities of each 2-D grid can be ob-
tained. Combined with some relaxed SRAF design rules such
as maximum length and width, minimum spacing, the SRAF
insertion can be modeled as an integer linear programming
(ILP) problem. With ILP to model SRAF insertion, we will
obtain a global view for SRAF generation.

We employ a benchmark set which consists of 8 dense
layouts and 10 sparse layouts with contacts sized 70nm. The
spacing for dense and sparse layouts are set to 70nm and
� 70nm respectively. In following comparisons (i.e. Figures 4
to 7), “ISPD’16” denotes the results from a state-of-the-
art SRAF insertion tool , while “SODL” and “SODL+ILP”
correspond to the results of our supervised online dictionary
learning framework without and with ILP model in post-
processing. Note that in “SODL”, a greedy SRAF generation
approach as in “ISPD’16” is utilized. Due to the length of
limitation, only comparisons of SRAF insertion outputs on
one sparse benchmark are exemplified in Fig. 7, in which red
rectangles are inserted SRAFs, while green ones are OPCed
target contacts. Therefore, experimental results have verified
the effectiveness and the efficiency of our SODL algorithm
and ILP model.
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(d)

Lithographic performance comparisons with a state-of-the-art machine learning based SRAF insertion tool.
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Conclusion

Summary:
I First introduced the concept of dictionary learning into the layout feature extraction

stage
and further proposed a supervised online dictionary learning algorithm.

I ILP for SRAF generation in a global view.

I Boost F1 score and enhance lithographic performance with less time overhead.

Future Work:
I Speed up SRAF insertion process

I Consider more SRAF design rules into ILP

I ...
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