SRAF Insertion via Supervised Dictionary Learning

Hao Geng¹, Haoyu Yang¹, Yuzhe Ma¹, Joydeep Mitra², Bei Yu¹

¹The Chinese University of Hong Kong ²Cadence Inc.

Moore's Law to Extreme Scaling

イロン イロン イヨン イヨン

Nanometer Era of Manufacturing: An Inverter Example

Optical Proximity Correction (OPC)

Design target

Optical Proximity Correction (OPC)

Optical Proximity Correction (OPC)

What is SRAF?

- Patterns deliver light to target features without printing themselves
- Make isolated features more dense
- Improve the robustness of the target patterns
- Rule-based [Jun+,SPIE'15], Model-based [Shang+,Mentor'05], Machine learning model-based [Xu+,ISPD'16]

(a) Printing with OPC only (2688 nm^2 PV band area); (b) Printing with both OPC and SRAF (2318 nm^2 PV band area).

Supervised Feature Revision

SRAF Insertion

Experimental Results

Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results

Concentric Circle Area Sampling

Initial feature extraction method in SRAF generation

(a) SRAF label; (b) CCAS feature extraction method in machine learning model-based SRAF generation.

Introduction to Dictionary Learning

Overview

Originally, the dictionary learning model is composed of two parts. One is **sparse coding** and the other is **dictionary constructing**. The joint objective function with respect to D and x is below.

$$\min_{\mathbf{x},\mathbf{D}} \frac{1}{N} \sum_{t=1}^{N} \{ \frac{1}{2} \| \mathbf{y}_{t} - \mathbf{D} \mathbf{x}_{t} \|_{2}^{2} + \lambda \| \mathbf{x}_{t} \|_{p} \},$$
(1)

- $\mathbf{y}_t \in \mathbb{R}^{(n)}$: the *t*-th input data vector
- ▶ $D = {\mathbf{d}_j}_{i=1}^s, \mathbf{d}_j \in \mathbb{R}^{(n)}$: the dictionary where every column is called an atom.
- ▶ $\mathbf{x}_t \in \mathbb{R}^{(s)}$: the sparse code
- \triangleright λ : hyper-parameter
- > p: the norm type of penalty term, e.g. l_1 norm

8/19

Online Learning Framework

Sparse Coding

The subproblem with \mathbf{D} fixed is convex. The objective function for sparse coding of *i*-th training data vector in memory is

$$\mathbf{x}_{t} \stackrel{\Delta}{=} \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y}_{t} - \mathbf{D}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{p}.$$
 (2)

Solver Details

- \triangleright p = 0: l_0 norm and NP-hard [Mallat+,TIP'93], [Pati+,ACSSC'93]
- ▶ p = 1: LASSO problem [Friedman+,JSS'10], [Beck+,SIIMS'09]

Online Learning Framework

Dictionary Constructing

The subproblem with \boldsymbol{x} fixed is also convex. The objective function for dictionary constructing is

$$\mathbf{D} \stackrel{\Delta}{=} \arg\min_{\mathbf{D}} \frac{1}{N} \sum_{t=1}^{N} \frac{1}{2} \|\mathbf{y}_t - \mathbf{D}\mathbf{x}_t\|_2^2 + \lambda \|\mathbf{x}_t\|_p.$$
(3)

Solver Details

- Block coordinate descent method with warm start
- Introducing two auxiliary variables B and C to speed up convergence rate
- Sequentially updating atoms in a dictionary D

$$\vec{B}_t \leftarrow \frac{t-1}{t} \vec{B}_{t-1} + \frac{1}{t} \vec{y}_t \vec{x}_t^\top, \qquad (4)$$

$$\vec{C}_t \leftarrow \frac{t-1}{t}\vec{C}_{t-1} + \frac{1}{t}\vec{x}_t\vec{x}_t^{\top}.$$
 (5)

Further Exploration: Supervised Dictionary Learning

Exploring Latent Label Information

$$\min_{\mathbf{x},\mathbf{D},\mathbf{A}} \frac{1}{N} \sum_{t=1}^{N} \left\{ \frac{1}{2} \left\| \left(\mathbf{y}_{t}^{\top}, \sqrt{\alpha} \mathbf{q}_{t}^{\top} \right)^{\top} - \left(\frac{\mathbf{D}}{\sqrt{\alpha} \mathbf{A}} \right) \mathbf{x}_{t} \right\|_{2}^{2} + \lambda \|\mathbf{x}_{t}\|_{p} \right\}.$$
(6)

Exploiting both Latent and Direct Label Information

$$\min_{\mathbf{x},\mathbf{D},\mathbf{A},\mathbf{W}} \frac{1}{N} \sum_{t=1}^{N} \left\{ \frac{1}{2} \left\| \left(\mathbf{y}_{t}^{\top}, \sqrt{\alpha} \mathbf{q}_{t}^{\top}, \sqrt{\beta} h_{t} \right)^{\top} - \left(\begin{matrix} \mathbf{D} \\ \sqrt{\alpha} \mathbf{A} \\ \sqrt{\beta} \mathbf{W} \end{matrix} \right) \mathbf{x}_{t} \right\|_{2}^{2} + \lambda \|\mathbf{x}_{t}\|_{p} \right\}.$$
(7)

イロト イポト イヨト イヨト

The Illustration for Supervised Online Dictionary Learning

Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results

SRAF Insertion

Preliminary Work

SRAF probability learning for each grid: Logistic regression

SRAF grid model construction: Merging

$$c(x,y) = \begin{cases} \sum_{(i,j) \in (x,y)} p(i,j), & \text{if } \exists \ p(i,j) \ge \text{threshold}, \\ -1, & \text{if all } p(i,j) < \text{threshold}. \end{cases}$$

- *p*(*i*,*j*): the probability of a grid with index (*i*,*j*)
- c(x, y): the summed probability value of merged grid with index (x,y)

SRAF grid model construction.

イロト イポト イヨト イヨト

(8)

SRAF Insertion via ILP

$$\max_{a(x,y)} \sum_{x,y} c(x,y) \cdot a(x,y)$$
(9a)
s.t. $a(x,y) + a(x-1,y-1) \le 1$, $\forall (x,y)$, (9b)
 $a(x,y) + a(x-1,y+1) \le 1$, $\forall (x,y)$, (9c)
 $a(x,y) + a(x+1,y-1) \le 1$, $\forall (x,y)$, (9d)
 $a(x,y) + a(x+1,y+1) \le 1$, $\forall (x,y)$, (9d)
 $a(x,y) + a(x,y+1) + x(x,y+2)$
 $+ a(x,y+3) \le 3$, $\forall (x,y)$, (9f)
 $a(x,y) + a(x+1,y) + x(x+2,y)$
 $+ a(x+3,y) \le 3$, $\forall (x,y)$, (9g)
 $a(x,y) \in \{0,1\}$, $\forall (x,y)$. (9h)

SRAF insertion design rule under the grid model.

イロト イロト イヨト イヨト

Outline

Supervised Feature Revision

SRAF Insertion

Experimental Results

The Overall Flow

イロト イヨト イヨト イヨト

Experimental Bed

Benchmark Set

- The same benchmark set as applied in [Xu+,ISPD'16]
- 8 dense layouts and 10 sparse layouts with contacts sized 70nm
- ▶ 70nm spacing for dense and ≥ 70nm spacing for sparse layouts

(a) Dense layout with golden SRAFs; (b) Sparse layout with golden SRAFs

Results

Lithographic performance comparisons with a state-of-the-art machine learning based SRAF insertion tool.

イロト イロト イヨト イヨト

Conclusion

Summary:

First introduced the concept of dictionary learning into the layout feature extraction stage and further proposed a supervised online dictionary learning algorithm.

and further proposed a supervised online dictionary learning algorithm.

ILP for SRAF generation in a global view.

Boost F₁ score and enhance lithographic performance with less time overhead.

Future Work:

- Speed up SRAF insertion process
- Consider more SRAF design rules into ILP

