Hardware-Software Co-design of Slimmed Optical Neural Networks

Zheng Zhao¹, Derong Liu¹, Meng Li¹, Zhoufeng Ying¹, Lu Zhang², Biying Xu¹, Bei Yu², Ray Chen¹, David Pan¹ The University of Texas at Austin¹ The Chinese University of Hong Kong²

ASIA SOUTH PACIFIC

Introduction

- Emergence of dedicated AI accelerators
 - > Optical neural network processor: light in and light out
 - » Speed-of-light floating point matrix-vector multiplication
 - » >100GHz detection rate
 - » Ultra-low energy consumption if configured
 - > Great number of components, sensitivity to noise

Previous Optical Neural Network (ONN)

[[]Shen+, Nature Photonics 2017]

- SVD decompose $W = U \Sigma V^*$
- U and V* are unitary matrices

Most area expensive

- Σ is a diagonal matrix
 - > Diagonal values are non-negative real
 - > Implemented by optical attenuators
- **σ** is non-linear activation
 - Implemented by saturable absorber

Implementing Unitary U and V*

- Mach-Zehnder interferometers (MZI) for U and V*
 - > A single MZI implements a 2-dim unitary

> An array of n(n-1)/2 MZIs implements an n-dim unitary

Given an n-dim unitary, φ's can be uniquely computed

Previous ONN overview

 $(m \times m) (m \times n) (n \times n)$

- Layer size measured by # of MZIs = m(m-1)/2+n(n-1)/2
- Software training and hardware implementation
 - > Train W directly in software \rightarrow SVD-decomp to obtain U, Σ , V*

Slimmed Architecture

 $(m \times n) (n \times n) (n \times n)$

- T: sparse tree network
- U: unitary network]

- same constraints as the previous architecture

- Σ: diagonal network
- Use less # of MZIs = n(n-1)/2
 - 1 unitary matrix to maintain the expressivity
 - An area-efficient tree network to match the dimension

Co-design Overview

- An arbitrary weight W is not TUΣ-decomposable
- Co-design solution: training and implementation are coupled
 - > T and Σ : Train the device parameters, constraints embedded
 - > U: Add unitary regularization then approximate with true unitary

Previous Train and Impl.				
Software Training	SVD	Optical Implementation		
W	decomp	υ Σ ν*		

Sparse Tree Network

- Sparse Tree network (T) to match the different dimension
 - Suppose in-dim > out-dim
 - > α: linear transfer coefficient

Sparse Tree Network Implementation

- Implemented with MZIs or directional couplers
- A 2 x 1 subtree

$$x_1 \longrightarrow y \qquad y = \alpha_1 \cdot x_1 + \alpha_2 \cdot x_2$$

x₂ 2 x 1 subtree

can be Implemented with a single-out MZI or directional coupler

Sparse Tree Network Implementation

• Any *N*-input subtree with arbitrary α 's satisfying energy conservation

$$\sum_{i=1}^N \alpha_i^2 = 1, -1 \le \alpha_i \le 1, i = 1, \cdots, N$$

can be implemented it by cascading (N-1) single-out MZIs.

• Energy conservation embedded in training

Unitary Network in Training

- For unitary network U satisfying UU* = I, add the regularization
 reg = ||UU* I ||_F
- Training loss function

Loss = Data Loss + Regularization Loss

leading to a **near-implementable** ONN with high accuracy

Trained Ut ~ unitary but only true unitary is implementable by MZIs

Unitary Network in Implementation

- Approximate Ut by a true unitary Ua
- SVD-decompose Ut = $PSQ^* \rightarrow Ua = PQ^*$
- Claim. Minimize the regularization ⇔ find the best approximation
 Min. reg ⇔ Min. || Ut Ua ||_F

Simulation Results

Implemented in TensorFlow for various ONN setup

N1: (14 × 14)-100-10	N4: (14 × 14)-150-150-10	N7: (14 × 14)-150-150-150-10
N2: (14 × 14)-150-10	N5: (28 × 28)-400-400-10	N8: (28 × 28)-400-400-200-10
N3: (28×28)-400-10	N6: (28×28)-600-300-10	N9: (28×28)-600-600-300-10

• Tested it on Intel Core i9-7900X CPU and an NVIDIA TitanXp GPU

Performed on the handwritten digit dataset MNIST

Simulation Results

- N1~N9: network configurations
- Our architecture uses 15%-38% less MZIs

- Similar accuracy (~0 accuracy loss)
- Maximum loss is 0.0088
- Average is 0.0058

Noise Robustness

Better resilience due to less cascaded components

Previous ONN Our ONN 1.01.0 Accuracy 9.0 0.8 Accuracy 0.6 0.4 0.4 0.2 0.2 0.05 0.05 0.025 $\overline{\mathsf{O}}$.02 0.025 .02 Noise Amplitude Noise Amplitude

Training Curve

- Converged in 300 epochs
- Balance of the accuracy and the unitary approximation

Contributions of This Work

An new architecture for ONN

- > Area-efficiency
- ~0 accuracy loss
- > Better robustness to noise
- Hardware and software co-design methodology
 - > Software-embedded hardware parameters
 - > Hardware constraints guaranteed by software

Future Work

- Better MZI pruning methods
 - \sim ~0 phase MZI \rightarrow pruned + accuracy recover
 - > MZI-sparse unitary matrix
- Design for robustness
 - > Adjust noise distribution in training
- Online training
- ONN for other neural network architectures
 - > CNN, RNN, etc.

Thanks Q&A