

Power Grid Reduction by Sparse Convex Optimization

Wei Ye¹, Meng Li¹, Kai Zhong², Bei Yu³, David Z. Pan¹

¹ECE Department, University of Texas at Austin ²ICES, University of Texas at Austin ³CSE Department, Chinese University of Hong Kong

On-chip Power Delivery Network

Power grid

- > Multi-layer mesh structure
- > Supply power for on-chip devices
- Power grid verification
 - > Verify current density in metal wires (EM)
 - > Verify voltage drop on the grids
 - > More **expensive** due to increasing sizes of grids
 - » e.g., 10M nodes, >3 days

Modeling Power Grid

Circuit modeling

- > Resistors to represent metal wires/vias
- > Current sources to represent current drawn by underlying devices
- Voltage sources to represent external power supply
- > Transient: capacitors are attached from each node to ground
- Port node: node attached current/voltage sources
- Non-port node: only has internal connection

Linear System of Power Grid

• Resistive grid model:

$$Lv = i$$

> L is $n \times n$ Laplacian matrix (symmetric and diagonallydominant):

$$L_{i,j} = \begin{cases} \sum_{k,k\neq i} g(i,k), & \text{if } i = j \\ -g(i,j), & \text{if } i \neq j \end{cases}$$

- g_{i,j} denotes a physical conductance between two nodes
 i and j
- A power grid is safe, if $\forall i$:

$$v_i \leq V_{th}$$

• Long runtime to solve Lv = i for large linear systems

Previous Work

Power grid reduction

- Reduce the size of power grid while preserving inputoutput behavior
- > Trade-off between accuracy and reduction size
- Topological methods
 - > TICER [Sheehan+, ICCAD'99]
 - > Multigrid [Su+, DAC'03]
 - > Effective resistance [Yassine+, ICCAD'16]
- Numerical methods
 - PRIMA [Odabasioglu+, ICCAD'97]
 - Random sampling [Zhao+, ICCAD'14]
 - Convex optimization [Wang+, DAC'15]

Problem Definition

Input:

- > Large power grid
- > Current source values
- Output: reduced power grid
 - > Small
 - > Sparse (as input grid)
 - > Keep all the port nodes
 - > Preserve the accuracy in terms of voltage drop error

Overall Flow

Node Elimination

- Linear system: Lv = i
- L can be represented as a 2×2 block-matrix:

$$L = \begin{bmatrix} L_{11} & L_{12} \\ L_{12}^T & L_{22} \end{bmatrix}$$

• *v* and *i* can be represented as follows:

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $i = \begin{bmatrix} i_1 \\ 0 \end{bmatrix}$

• Applying Schur complement on the DC system: \hat{f}

$$\hat{L} = L_{11} - L_{12} L_{22}^{-1} L_{12}^T$$

which satisfies:

$$\hat{L}v_1 = i_1$$

Node Elimination (cont'd)

- Output graph keeps all the nodes of interest
- Output graph is **dense**
- Edge sparsification: sparsify the reduced Laplacian without losing accuracy

Edge Sparsification

- Goal of edge sparsification
 - > Accuracy
 - Sparsity reduce the nonzero elements off-the-diagonal in L
- Formulation (1):

$$\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \|(X - L)v_k\|_2^2 + \lambda \|X\|_0, \quad \text{s.t. } X \text{ is a Laplacian matrix}$$

• Formulation (2): [Wang+, DAC2014] $\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \|(X - L)v_k\|_2^2 + \lambda \|X\|_1, \text{ s.t. } X \text{ is a Laplacian matrix}$ $\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2m} \sum_{k=1}^{m} \|(X - L)v_k\|_2^2 + \lambda \sum_{i=1}^{n} X_{i,i}, \text{ s.t. } X \text{ is a Laplacian matrix}$ L2 norm

Edge Sparsification

Problem: accuracy on the Vdd node does not guarantee accuracy on the current source nodes

Formulation (3):

$$\min_{X \in \mathbb{R}^{n \times n}} \quad \frac{1}{2m} \sum_{k=1}^{m} \| ((X - L)v_k) \circ w \|_2^2 + \lambda \sum_{i=1}^{n} X_{i,i}, \quad \text{s.t. } X \text{ is a Laplacian matrix}$$

- Weight vector: $w_0 = 1/n, w_i = 1, \forall i = 1, \cdots, n$
- Strongly convex and coordinate-wise Lipschitz smooth

Coordinate Descent (CD) Method

- Update one coordinate at each iteration
- Coordinate descent:
 - Set t = 1 and $X^1 = 0$

For a fixed number of iterations (or convergence is reached):

Choose a coordinate (i, j)Compute the step size δ^* by minimizing $\underset{\delta}{\operatorname{argmin}} f(X + \delta e_{i,j})$ Update $X_{i,i}^{t+1} \leftarrow X_{i,i}^t + \delta^*$

- How to decide the coordinate?
 - > Cyclic (CCD)
 - Random sampling (RCD)
 - Greedy coordinate descent (GCD)

CD vs Gradient Descent

- Gradient descent (GD) algorithm: $X^{t+1} \leftarrow X^t - \alpha \nabla f(X)$
- GD/SGD update O(n²) elements in X and gradient matrix
 G at each iteration
- CD updates O(1) elements in X (Laplacian property)
- CD proves to update O(n) elements in G for Formulation
 (2) and (3).

Greedy Coordinate Descent (GCD)

Input L

Max-heap

Output X

GCD vs CCD

GCD produces sparser results

- > CCD (RCD) goes through all coordinates repeatedly
- GCD selects the most significant coordinates to update

GCD Coordinate Selection

General Gauss-Southwell Rule:

 $(i^*, j^*) = \underset{(i,j)\in[n]\times[n]}{\operatorname{arg\,max}} |G_{i,j}|$

- Observation: the objective function is quadratic w.r.t. the chosen coordinate
- GCD is stuck for some corner cases:

• A new coordinate selection rule: $(i^*, j^*) = \underset{(i,j)\in[n]\times[n]}{\operatorname{arg\,max}} |G_{i,j}| \text{ s.t. } G_{i,j} > 0 \text{ or } y_{i,j} \neq 0$

GCD Speedup

- Time complexity is $O(n^2)$ per iteration
 - > traverse $O(n^2)$ elements to get the best index
 - > As expensive as gradient descent
- Observation: each node has at most n neighbors \rightarrow heap
- Heap to store $O(n^2)$ elements in G:
 - > Pick the largest gradient, O(1)
 - > Update O(n) elements, $O(n \log n)$
- Lookup table
 - > $O(n^2)$ space; O(1) for each update
- Improved time complexity O(n log n)

Experimental Results

Sparsity and accuracy trade-off
Accuracy and runtime trade-off

Gradient Descent Comparison

СКТ		ibmpg2	ibmpg3	ibmpg4	ibmpg5	ibmpg6
#Port Nodes	Before	19,173	100,988	133,622	270,577	380,991
	After	19,173	100,988	133,622	270,577	380,991
#Non-port Nodes	Before	46,265	340,088	345,122	311,072	481,675
	After	0	0	0	0	0
#Edges	Before	106,607	724,184	779,946	871,182	1283,371
	After	48,367	243,011	284,187	717,026	935,322
Error		1.2%	0.7%	4.8%	2.2%	2.0%
Runtime		38s	106s	132s	123s	281s

Conclusion

Main Contributions:

- > An iterative power grid reduction framework
- Weighted convex optimization-based formulation
- A GCD algorithm with optimality guarantee and runtime efficiency for edge sparsification

• Future Work:

> Extension to RC grid reduction

