A Unified Framework for Simultaneous Layout Decomposition and Mask Optimization

Yuzhe Ma¹, Jhih-Rong Gao², Jian Kuang², Jin Miao², Bei Yu¹

¹The Chinese University of Hong Kong ²Cadence Design Systems

Outline

Introduction

Algorithms

Experimental Results

Conclusion

Outline

Introduction

Algorithms

Experimental Results

Conclusion

VLSI Chip Design Flow

VLSI Chip Design Flow

Layout Decomposition (LD)

• Conflict: two features with the same color, while distance $< d_{min}$

Problem Formulation

Input: layout and d_{min} Output: decomposed layout, minimizing conflict #

Mask Optimization (MO)

- The quality of printed image may be poor due to the diffraction effect of the light.
- Optical Proximity Correction(OPC): Refine the mask to compensate the diffraction effect.
- Method for OPC:
 - rule-based [Park+,ISQED'2010];
 - model-based [Kuang+,DATE'2015][Su+,TCAD'2016];
 - inverse lithography technique [Gao+,DAC'2014].

Mask Optimization (cont.)

- Edge Placement Error (EPE): Geometric displacement between the image contour and the edge of target image on the layout.
- EPE Violation: The perpendicular displacement is greater than an EPE threshold value.

Problem Formulation

Input: target layout Output: refined mask, minimizing EPE violation #.

Two-Stage Flow for Layout Optimization

Two stages:

- Layout Decomposition (LD)
- Mask Optimization (MO)

Issues

Solution 1: #EPE Violation = 1

Solution 2: #EPE Violation = 3

Options?

- **Exhaustive MO** for all LD solutions.
 - Running time overhead due to thousands of LD solutions.

Options? (cont.)

- Heuristic selection among LD solutions.
 - Local region density [Yu+,ICCAD'13]: balance the pattern density on each mask.

- Spacing vector [Chen+, ISQED'13]: maximize minimum distance between patterns.

- Limited effectiveness.

Motivation

How about combining LD and MO together?

- It is an open problem.
- It is expected to be more effective and more efficient.

Outline

Introduction

Algorithms

Experimental Results

Conclusion

Preliminaries

- Lithography model:
 - The aerial image is formed by a series of convolution operation between mask ${\bf M}$ and lithography kernel ${\bf h}.$

$$\mathbf{I} = f_{optical}(\mathbf{M}) = \sum_{k=1}^{K} w_k \cdot |\mathbf{M} \otimes \mathbf{h}_k|^2$$

- Photo-resist model
 - Set a threshold I_{th} to binarize aerial image.

$$\mathbf{Z}(x, y) = f_{resist}(\mathbf{I}) = \begin{cases} 1, & \text{if } \mathbf{I}(x, y) \ge I_{th}, \\ 0, & \text{otherwise.} \end{cases}$$

Problem Formulation

LDMO: Given a target image Z_t , find two masks M_1 and M_2 which can form printed image with high fidelity.

$$\begin{split} \min_{\mathbf{M}_1,\mathbf{M}_2} & F = \|\mathbf{Z}_t - \mathbf{Z}\|_2^2\\ \text{s.t.} & \mathbf{M}_1(x,y) \in \{0,1\}, \ \forall x,y,\\ & \mathbf{M}_2(x,y) \in \{0,1\}, \ \forall x,y,\\ & \mathbf{I}_1 = \sum_{k=1}^K w_k \cdot |\mathbf{M}_1 \otimes \mathbf{h}_k|^2,\\ & \mathbf{I}_2 = \sum_{k=1}^K w_k \cdot |\mathbf{M}_2 \otimes \mathbf{h}_k|^2,\\ & \mathbf{Z} = f_{resist}(\mathbf{I}_1) \lor f_{resist}(\mathbf{I}_2). \end{split}$$

Overall Flow

Overall Flow

Grid Construction

- Extract target pattern.
- Add bounding box.
- Construct grid.
- Merge grid.

Overall Flow

Formulation Relaxation

▶ Relaxation on binary constraints with *sigmoid* function.

$$\mathbf{M}_{1}(x, y) \in \{0, 1\} \to \mathbf{M}_{1}(x, y) = \operatorname{sig}(\mathbf{P}_{1}(x, y)) = \frac{1}{1 + \exp[-\theta_{M}\mathbf{P}_{1}(x, y)]}$$
$$\mathbf{Z}_{1}(x, y) = f_{resist}(\mathbf{I}_{1}) \to \mathbf{Z}_{1}(x, y) = \operatorname{sig}(\mathbf{I}_{1}(x, y)) = \frac{1}{1 + \exp[-\theta_{Z}(\mathbf{I}_{1}(x, y) - I_{th})]}$$

Relaxation on Z.

$$\mathbf{Z} = f_{resist}(\mathbf{I}_1) \lor f_{resist}(\mathbf{I}_2) \to \mathbf{Z}(x, y) = \min\{\mathbf{Z}_1(x, y) + \mathbf{Z}_2(x, y), 1\}$$

Gradient-Based Optimization

Algorithm 1 Gradient-Based Mask Update

- 1: function MaskUpdate($\mathbf{P}_1, \, \mathbf{P}_2$)
- 2: Initialize stepsize *t*;
- 3: Compute the relaxed masks M_1, M_2 ;
- 4: Compute \mathbf{Z} according to current \mathbf{P}_1 and \mathbf{P}_2 ;
- 5: Compute the gradient $\nabla_{\mathbf{P}_1} F$, $\nabla_{\mathbf{P}_2} F$
- 6: $\mathbf{P}_1 \leftarrow \mathbf{P}_1 t \times \nabla_{\mathbf{P}_1} F$;
- 7: $\mathbf{P}_2 \leftarrow \mathbf{P}_2 t \times \nabla_{\mathbf{P}_2} F$;
- 8: return $\mathbf{P}_1, \mathbf{P}_2, \nabla_{\mathbf{P}_1} F, \nabla_{\mathbf{P}_2} F$;
- 9: end function

Overall Flow

Violation Graph

$$w_{ij} = \begin{cases} 1, & \text{if } v_i \text{ and } v_j \text{ have conflict,} \\ \beta, & \text{if } v_i \text{ and } v_j \text{ have large #EPEV,} \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbf{W} = \begin{bmatrix} 0 & 0 & 0 & 0 & \beta \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \beta & 0 & 0 & 1 & 0 \end{bmatrix}$$

Semidefinite Programming

• Use $\mathbf{x} = [x_1, x_2, \cdots, x_n]^{\mathsf{T}}$ to denote the grid assignment solution.

Max-Cut:

$$\max_{x_i} \sum_{(i,j)\in E} w_{ij}(1-x_ix_j)$$

s.t. $x_i \in \{-1,1\}, \quad \forall v_i \in V$

Relax to Semidefinite Programming:

$$\begin{array}{l} \min_{\mathbf{X}} \ \mathbf{W} \bullet \mathbf{X} \\ \text{s.t.} \ \operatorname{diag}(\mathbf{X}) = \mathbf{e} \\ \mathbf{X} \succeq \mathbf{0} \end{array}$$

Semidefinite Programming (cont.)

Randomized rounding [Goemans+, JACM'1995]

- Obtain \mathbf{X}^* by solving SDP.
- Cholesky decomposition with X*.

 $\mathbf{X}^* = \mathbf{U}^\intercal \mathbf{U}$

- Get x_i as follows. **u**_i is the *i*-th column of **U** and **r** is random unit vector.

$$x_i = \operatorname{sgn}(\mathbf{u}_i^{\mathsf{T}}\mathbf{r}) = \begin{cases} 1, & \text{if } \mathbf{u}_i^{\mathsf{T}}\mathbf{r} \ge 0, \\ -1, & \text{otherwise.} \end{cases}$$

Pruning

- Obtain multiple solutions by randomized rounding.
- Efficient pruning.

Outline

Introduction

Algorithms

Experimental Results

Conclusion

#EPE Violation Convergence Curve

Comparison – EPE Violation Num

Comparison – Runtime

Distribution of #EPE violations

Examples of Printed Image

```
(a) [ICCAD'13] + [DAC'14];
(b) [ISQED'13] + [DAC'14];
(c) Ours.
```


Examples of Printed Image

```
(a) [ICCAD'13] + [DAC'14];
(b) [ISQED'13] + [DAC'14];
(c) Ours.
```


Outline

Introduction

Algorithms

Experimental Results

Conclusion

Conclusion

- A unified framework is proposed for solving LDMO problem.
- Two collaborative flows are designed:
 - A gradient-based numerical optimization
 - A set of discrete optimization.
- Effectiveness and efficiency are verified.

Conclusion

- A unified framework is proposed for solving LDMO problem.
- Two collaborative flows are designed:
 - A gradient-based numerical optimization
 - A set of discrete optimization.
- Effectiveness and efficiency are verified.

Future Exploration

- More advanced lithography process, e.g., triple patterning lithography.
- More optimization targets, such as process variation band.

Thank You

Yuzhe Ma (yzma@cse.cuhk.edu.hk)
Jhih-Rong Gao (jgao@cadence.com)
Jian Kuang (jkuang@cadence.com)
Jin Miao (jmiao@cadence.com)
Bei Yu (byu@cse.cuhk.edu.hk)

