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Layout Decomposition (LD)

I Conflict: two features with the same color, while distance < dmin

dmin

(a) LELE
dmin

(b) LELELE

Problem Formulation
Input: layout and dmin
Output: decomposed layout, minimizing conflict #
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Mask Optimization (MO)

I The quality of printed image may be poor due to the diffraction effect of the light.
I Optical Proximity Correction(OPC): Refine the mask to compensate the diffraction

effect.
I Method for OPC:

- rule-based [Park+,ISQED’2010];
- model-based [Kuang+,DATE’2015][Su+,TCAD’2016];
- inverse lithography technique [Gao+,DAC’2014].
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Mask Optimization (cont.)
I Edge Placement Error (EPE): Geometric displacement between the image contour and

the edge of target image on the layout.
I EPE Violation: The perpendicular displacement is greater than an EPE threshold

value.

Target contour

Printed image

Measure point

EPE violation EPE

Problem Formulation
Input: target layout
Output: refined mask, minimizing EPE violation #.
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Two-Stage Flow for Layout Optimization

Two stages:
I Layout Decomposition (LD)

I Mask Optimization (MO)

Target

LD

MO

Printed
Image
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Issues

Target
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Solution 1: #EPE Violation = 1 Solution 2: #EPE Violation = 3
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Options?
I Exhaustive MO for all LD solutions.

- Running time overhead due to thousands of LD solutions.
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Options? (cont.)

I Heuristic selection among LD solutions.
- Local region density [Yu+,ICCAD’13]: balance the pattern density on each mask.

dmin

- Spacing vector [Chen+,ISQED’13]: maximize minimum distance between patterns.

dmin

- Limited effectiveness.
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Motivation
How about combining LD and MO together?

Target

LDMO

I It is an open problem.

I It is expected to be more effective and more efficient.
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Preliminaries

I Lithography model:
- The aerial image is formed by a series of convolution operation between mask M and
lithography kernel h.

I = foptical(M) =

K∑
k=1

wk · |M⊗ hk|2

I Photo-resist model
- Set a threshold Ith to binarize aerial image.

Z(x, y) = fresist(I) =
{
1, if I(x, y) ≥ Ith,

0, otherwise.
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Problem Formulation
LDMO: Given a target image Zt, find two masks M1 and M2 which can form printed image
with high fidelity.

min
M1,M2

F = ‖Zt − Z‖22

s.t. M1(x, y) ∈ {0, 1}, ∀x, y,
M2(x, y) ∈ {0, 1}, ∀x, y,

I1 =
K∑

k=1
wk · |M1 ⊗ hk|2,

I2 =
K∑

k=1
wk · |M2 ⊗ hk|2,

Z = fresist(I1) ∨ fresist(I2).
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Grid Construction

I Extract target pattern.
I Add bounding box.
I Construct grid.
I Merge grid.

V

V

H

D

D

Pattern grid Spacing grid V HD Horizontal VerticalDiagonal

Merged spacing grid
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Formulation Relaxation

I Relaxation on binary constraints with sigmoid function.

M1(x, y) ∈ {0, 1} →M1(x, y) = sig(P1(x, y)) =
1

1+ exp[−θMP1(x, y)]

Z1(x, y) = fresist(I1)→ Z1(x, y) = sig(I1(x, y)) =
1

1+ exp[−θZ(I1(x, y)− Ith)]

I Relaxation on Z.

Z = fresist(I1) ∨ fresist(I2)→ Z(x, y) = min{Z1(x, y) + Z2(x, y), 1}
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Gradient-Based Optimization

Algorithm 1 Gradient-Based Mask Update

1: function MaskUpdate(P1, P2)
2: Initialize stepsize t;
3: Compute the relaxed masks M1,M2;
4: Compute Z according to current P1 and P2;
5: Compute the gradient ∇P1F, ∇P2F
6: P1 ← P1 − t ×∇P1F;
7: P2 ← P2 − t ×∇P2F;
8: return P1,P2, ∇P1F, ∇P2F;
9: end function
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Violation Graph

EPE violation

Pattern grid

Printed image
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EPE edge
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wij =


1, if vi and vj have conflict,
β, if vi and vj have large #EPEV,
0, otherwise.

W =


0 0 0 0 β
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
β 0 0 1 0
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Semidefinite Programming
I Use x = [x1, x2, · · · , xn]

ᵀ to denote the grid assignment solution.
I Max-Cut:

max
xi

∑
(i,j)∈E

wij(1− xixj)

s.t. xi ∈ {−1, 1}, ∀vi ∈ V

Relax to Semidefinite Programming:

min
X

W • X

s.t. diag(X) = e,
X � 0
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Semidefinite Programming (cont.)

I Randomized rounding [Goemans+,JACM’1995]
- Obtain X∗ by solving SDP.
- Cholesky decomposition with X∗.

X∗ = UᵀU

- Get xi as follows. ui is the i-th column of U and r is random unit vector.

xi = sgn(uᵀ
i r) =

{
1, if uᵀ

i r ≥ 0,
−1, otherwise.
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Pruning

I Obtain multiple solutions by randomized
rounding.

I Efficient pruning.

Solve SDP

Get N solutions by 
randomize rounding

Discarded half of solutions 

Return the solution to 
numerical optimization flow

Gradient-based mask 
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N

Y
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#EPE Violation Convergence Curve
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Comparison – EPE Violation Num
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Comparison – Runtime
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Distribution of #EPE violations
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I Flow-2 [ICCAD’13] + [DAC’14];
I Flow-3 [ISQED’13] + [DAC’14];
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Examples of Printed Image

(a) [ICCAD’13] + [DAC’14];
(b) [ISQED’13] + [DAC’14];
(c) Ours.

(a) (b) (c)
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(a) (b) (c)

OR2_X1

29 / 31



Examples of Printed Image

(a) [ICCAD’13] + [DAC’14];
(b) [ISQED’13] + [DAC’14];
(c) Ours.

(a) (b) (c)

BUF_X1

(a) (b) (c)

OR2_X1

29 / 31



Outline

Introduction

Algorithms

Experimental Results

Conclusion

30 / 31



Conclusion

I A unified framework is proposed for solving LDMO problem.

I Two collaborative flows are designed:
I A gradient-based numerical optimization
I A set of discrete optimization.

I Effectiveness and efficiency are verified.

Future Exploration

- More advanced lithography process, e.g., triple patterning lithography.
- More optimization targets, such as process variation band.
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